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ON THE ZEROS OF THE DERIVATIVES OF SOME ENTIRE
FUNCTIONS OF FINITE ORDER

by ROBERT M. GETHNER

(Received 12th October 1984)

1. Introduction

Given a function / meromorphic in the plane, and complex numbers w and a, call w
an a-point of fw if fm(w) = a. Denote by A(a,/) the set of zeC such that every
neighborhood of z contains a-points of infinitely many of the functions f(k). Adapting
the terminology of Polya [16], who introduced the sets A(a,/) in [15], we call A(a,/)
the final set of / with respect to a.

Polya showed that if / has at least one pole, then its final sets are remarkably regular.
For each pole A of / , define the shire of A to be the set of all points closer to A than to
any other pole of / .

Polya "shire" theorem. / / o e C and f is a function meromorphic in C having at least
one pole, then A(a, f) is the union of the boundaries of the shires of all poles of f.

Polya paraphrased his theorem in the case a=0 by stating that the poles of a
meromorphic function repel the zeros of its higher derivatives.

The object of this paper is to establish a result analogous to the above theorem for a
certain class of entire functions of finite order. This result (Theorem 1) enables us to
determine, in Section 8, the final sets of a variety of functions, including some of
fractional order (e.g. the Mittag-Leffler functions and a class of Lindelof functions of
genus zero) and some of maximal or minimal type, as well as certain sums of
exponential powers.

Polya, McLeod [13, 14], and Edrei [4, 5] have determined the final sets of various
entire functions. A common feature of the functions examined by these authors is that
the final set lies, roughly speaking, as far as possible from certain rays on which / has
its sharpest growth. These rays therefore seem to repel the zeros of the derivatives, just
as the poles do in the theorem of Polya quoted above. This similarity suggests the
existence of a "shire theorem" for entire functions, in which the set of poles is replaced
by a set of rays. Theorem 1 is such a theorem.

In Section 2 we develop the definitions, including that of shire, needed to state (in
Section 3) Theorem 1 and some related results. The proof of Theorem 1 takes up
Sections 4 through 7. After some preliminaries (Section 4), we use a saddle point
argument adapted from the work of McLeod and Edrei to derive bounds on the
derivatives of the functions / under consideration (Sections 5 and 6). An examination of
these bounds shows that A(a,f) is contained in the union of the boundaries of the
shires. In Section 7 we determine asymptotically the number of a-points of f(k) in small
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382 ROBERT M. GETHNER

discs centred at points on the boundaries, using a slight modification of an argument in
[5]. This determination shows that every boundary point is contained in A(a,/). Also in
Section 7, we prove the other theorems stated in Section 3.

A description of saddle point methods may be found in [3].
This paper is based on a special case of my doctoral dissertation. I am grateful to my

advisor, Professor Simon Hellerstein, whose skillful guidance made this work possible. I
would also like to thank Professor Linda Sons for her helpful comments on a draft of
this paper.

2. Notation and definitions

The following notations and definitions are used throughout the paper. We take x, r,
t, and 0 to be real variables. The letters N and C denote positive constants, possibly
different at each occurrence. By A~B ("A is asymptotic to B") we mean A/B-*\. All
real powers of complex numbers denote the principal branch. For z e C and p > 0, we set

D(z; p) = {w e C: |w — z\ < p).

We employ the standard notations of Nevanlinna Theory, such as M(r, / ) , m(r, / ) , and
n(r, a, / ) .

Given No>0 and <x, 0<a<n, we will say that a function L holomorphic in
{|argz|<ff,|z|>N0} is slowly varying if L(x)>0 for x>No, and

uniformly for |argz|<cr.

Remarks

(a) It is a consequence of Lemma l(c) (Section 4) that the function x-+L(x) is "slowly
increasing" ([11, p. 32]).

(b) Put Log! = Log, and Logp = LogLogp_1 (p = 2,3,4,...). By induction, Logp is
slowly varying for each p. Moreover, a product of slowly varying functions is
again slowly varying, as is a real power of such a function. Hence if
A(\),..., A(P)eZ+ and B(l),...,B(P)eU, then the function

z-^Log,,,!, z)B(1)... (Log/t(P) z)B(P) (2.2)

is slowly varying. Some examples not of the form (2.2) are

exp(log2z)2

expexp(log3z)3. (2.3)
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We now make precise the notions of "sharp growth on rays" and "shire" referred to
in the introduction. Fix a positive integer J, complex numbers vu...,Vj, and distinct real
numbers 0u...,0j satisfying

For j=l,...,J, put

pJ(z) = e-wiz-vJ) (zeC), (2.4)

S/<T) = ^71({|argZ|<a}) ( O « T < 7 T ) , (2.5)

Rj = R(vj,OJ = Pfl(R+), (2.6)

and

Q; = {z e C: Re )3/z) > Re Pq(z) for all q£j}. (2.7)

Call the set fi, the shire of the ray Rj.
Suppose A>0, No>0, and 0<t]<min{(n/X),n}. Suppose L is slowly varying on

{|argz|<?7, |z|>iV0}. We will say that an entire function / lias maximal rays {Rj}J
J=1

(relative to L and X) if both the following conditions hold.

(a) For 7 = 1,...,J,

] } ^ ^ ! ) - ! ^ - 1 ^ ) (|z|->oo), (2.8)

uniformly for z e Sj{rj).
(b) There exist N > 0 and K, 0 < K < 1, such that if \z\ > N and z e C - \JJ

J=j S}{ri), then

log|/(z)|<»c|z|*L(|z|). (2.9)

Remarks

(a) Condition (a) above implies that / has at most finitely many zeros in \JJ
J=t Sj(rj).

(b) It follows from (2.8). (2.4), and (4.3) that

r*L(r)

uniformly for |0|<>/. Furthermore, by Lemma l(a) and (2.1), the function

log jr'Ur)-]

logr

is a "proximate order" ([11, p. 32]). Thus / ° / ? j r l is of "completely regular
growth", order A, in the angle { — t],t]) ([11, p. 139]). In addition, in view of (2.9), /
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is of order X; in fact,

log log M{r,f)
logr

(c) The class of functions having maximal rays contains the class !F considered by
McLeod [14].

3. Statement of main results

Theorems 1 through 3 to follow give our main results. We begin with the "shire
theorem".

Theorem 1. / / / is an entire function having maximal rays {Rj}j=l relative to some
X>1, and the sets {Qj}j=l are given by (2.7), then, for each aeC,

A(a,/)=U3QJ,

Remarks on Theorem 1.

(a) In particular, if J= 1, then A(a,/) is void.

(b) We shall see (Corollary; Section 6) that the a-points of /((t) (large k) avoid the
shires in the following strong sense: For each compact K <= \Jj=iiip |/<fc)(u)|->oo
(fc->oo), uniformly for ueK.

The next theorem gives asymptotically, for a certain class of functions having
maximal rays, the number of a-points near points z on the boundaries of the shires. We
may assume without loss of generality that z = 0. We may also assume, after a
permutation of indices, first, that there exists J', l ^ J ' ^ J , such that Oedilj if and only if
j^J', and second, that 61<92< ••• <6j'

Theorem 2. Suppose X>1, fi>j, and No>0. Let L be a slowly varying function,
defined for all x > No, such that

(x^o)). (3.1)

Suppose f has maximal rays {R(vj, #,)};= i relative to L and X.
Suppose further that there is a J', l^J'f^ J, such that 0 e dSlj if and only if j g J', and

assume that 01<92< ••• <6j.. Put 60 = 6r — 2n. For IOXNQ, put
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Then there exists po>0 such that, for each p,0<p<p0, and each aeC,

n(p,a,/<*>)~[I J; sin

Remark. It may be that the conclusion of Theorem 2 holds even if L does not satisfy
(3.1), but I am unable to prove this. The proof of Theorem 1 does however, yield a less
explicit asymptotic formula (7.23) valid for all slowly varying L. It is easy to check that
the functions (2.2) satisfy (3.1).

The last theorem of this section gives some information about functions of order no
greater than one, having exactly one maximal ray.

Theorem 3. Suppose f has maximal rays {Rj}Jj=i, relative to k, with J = l . / / A=l,
then A(0,/) is void. If k< 1, then, for each aeC, A(a,f) is void.

Remark. If f(z) = ez, then A(a, / ) is void if and only if a = 0.

4. Preliminary Lemmas

We develop here the basic tools for the proofs of our main results. In our first lemma
we collect a number of facts about slowly varying functions.

Lemma 1. Suppose 0<o<n and No>0. Let L be slowly varying on
{|argz|<cr, |z|>AT0}. Fix k>0 and y real. Then:

(a) For each e>0 there is an N>0 such that

x~e<L{x)<xe (x>N).

(b) There exists N>0 such that xxL{x) and x(d/dx)[xAL(x)] increase with x for x>N.
Furthermore, both quantities tend to infinity with x.

(c) For each C>0,

L(z + w)~L(z) (|z|,|z + w|->oo),

uniformly for z such that |argz|<(T and w such that \w\<C\z\ and |arg(z + w)|<<7.

(d) Fix e>0. Suppose H is holomorphic in the region {|argz|<<r, |z|>JV0} and satisfies,
for all z in that region,

\H(z)\<e\z^z)\.

Then there exist N, Cu C2>0 such that

H{q\z)
<8C1|(C2z)'-'L(z)|

for all integers q^O and all z in the region {|argz|<|a, |z|> Af}.
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(e) For each C>0, both the following relations hold as \z\-*co, uniformly for all z and
w such that |argz|<f<r and |w|<C:

y-1L(z); (4.1)

(z + wyL'(z + w) =z"L'(z) + o(l) • zy-2Uz). (4.2)

(f) There exist N1>N0 and au 0<CT1 <a, such that if r>Aft and —a1<co<a1, then

Proof. Part (a) follows quickly from (2.1) and the equation

log Ux) = l

To prove (c), we choose r>0 and 0, 0^9<a, and let T be the contour
From (2.1) and the equation

we deduce that

Ureie)~L{r) (r^oo), (4.3)

uniformly in 6, —a<0<a. Hence we may assume that z and z + w are positive real
numbers. Another application of the fundamental theorem of calculus gives (c) for such
z and w.

To prove (d), we choose a suitably small T > 0 and apply Cauchy's Estimates to H on
the disc D(z; z\z\). Part (d) then follows from part (c).

We proceed to the proof of (e). Using (2.1), and (d) with H = L', we find that, for each
£>0, there exist N, C1; C2>0 such that

(4.4)

for all z such that |argz|<|a and |z|>Af, and all integers g^O. Integrating L' over the
segment from z to z + w and using (4.4) with q=0, we have, for each fixed e>0,

te J Ut)
dt.

Thus, if \w\ < C, we may apply (c) to obtain

oo), (4.5)
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uniformly for |w|<C and |argz|^fa. To complete the proof of (4.1), we expand (z+w)y

using the binomial theorem and multiply the resulting equation by (4.5). A similar
argument gives (4.2).

To prove (f), we write

Urei") = L[r + r{eic°-Y)] = Uf) + rL'{r){ei<°-\)+ Y r" ^(e^-l)".
P=2 ?!

Using (4.4), (2.1), and the Taylor Series for eia>, we obtain

L(reico) = L{r) + icorL'(r) + o(l) • co2Uf) (r-* oo, <u-»0).

Taking real and imaginary parts of the quantities L(reim) and rxe"aX
> we conclude with

the aid of (2.1) and the series for sin Aco and cosAco that

rV^re"0)} = rAL(r)|l - ( y + o(l) L21| ( y ( r - > o o , w->0),

from which (f) follows immediately.
It remains to verify (b). From (2.1) and (4.4) (with q = 1) we deduce that, as X-KX>,

x ̂ - |V L(x)] ~ kxkl\x) (4.6)

and

^ [ ^ l (4.7)

Part (b) follows from (4.6), (4.7), and part (a). This completes the proof of Lemma 1.
The next lemma aids our analysis of /(z) for z e S}{n).

Lemma 2. Suppose X, No>0 and 0<n<n. Let (p be a function holomorphic in the
region {|argz|<»7,|z|>N0}, satisfying

fl_>o (|z|^co;|argz|<r,). (4.8)

Then, as |z|-»oo with |argz|<^»;,

z ^ i = 0(l).|z|'
l-1L(|z|) . (4.9)

and
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Proof. Choose N and T, 0 < T < 1 , such that if |z|>AT and |argz|<|>/, then
Z)(Z;2T|Z|) c {|argw|<^}. Fixing such a z, define O(w) (for w e D(z; 2i\z\)) to be the
holomorphic branch of log (0(w)/</>(z)) satisfying <t(z) = O. By Cauchy's Estimates on
D(Z;T|Z|) and the Borel-Caratheodory Inequality [18, p. 174],

< log — — : \w—z\ = 2T|Z| >.T|Z<I>'0)| ̂  2 max< log

Now, allowing z to vary, we deduce from the above inequality, along with (4.8), (4.8)
with z replaced by w, and Lemma l(c), that

(|z|->oo;|argz|<$i/), (4.10a)

from which (4.9) follows immediately. Relation (4.10) is a consequence of (4.10a) and
Lemma l(d) with H(z) = z<f>'{z) and a=\r\.

We will use the next theorem to estimate the derivatives of functions having maximal
rays. With a change in notation, it is a specialization of a theorem of McLeod, which is
in turn an extension of a result of Hayman [8]. The proof of McLeod's theorem is given
in [14].

Theorem 4. Let f be an entire function. For u, zeC, put

fJLz)=f(u+z), (4.11)

(4.12)

and

Bu(z)=zA'u(z). (4.13)

Let Cu C2, rt>0 be constants, and let K a C be a compact set. Suppose both the
following statements are true.

(a) For each r>rt and ueK, there is a point £u(r)eC, with \C,u{r)\ = r, such that

[im^(Ur))]2_ ( r>r i ,uex), (4.14)

(r>rl,ueK), (4.15)

and, uniformly for ueK,

(r-oo). (4.16)
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(b) For each ueK there is a function A,,:^, oo)—»(0,;r) such that, as r—>oo,

UUr)eil) ~/u(C(r)) • exp {UAJiCM - \t2Bu((u(r))h (4-17)

uniformly for ueK and |t|;SAu(r), whereas

S} <418)

uniformly for ueK and Au(r)^|t|g7t. Then: As r-voo,

uniformly for ueK and /c e Z +.

5. The Saddle Point Equation

We assume throughout Sections 5, 6, and 7, that an entire function / has been fixed,
having maximal rays {Rj}j= i relative to some X > 0 and some slowly varying L defined
on {|argz|<f/,|z|>AT0}, where N0>0 and 0<n<min{(n/l),n}. We associate with this /
the maps fip sectors Sj{a), and shires Q7 of Section 2, as well as the functions /„, Au, and
Bu of Theorem 4. We fix a compact set K c C .

In this section we define certain functions („ which satisfy (as we shall see in the next
section) the hypotheses of Theorem 4. We need the following lemma, which is an
obvious consequence of Lemma l(b).

Lemma 3. There exist v0, N>0 such that, for each v^v0, there is exactly one x^
satisfying x(d/dx) [xAL(x)] = v. / / that value of x is denoted by sv, the numbers {sv}v^Vo

satisfy

sv|oo (v-*oo). (5.1)

Lemma 4. Suppose Rl = R+.

(a) There exists V^VQ such that, for all v^vt and ueK, the equation

Au(z) = v (5.2)

has a complex solution z = I/JU(V) satisfying

+o(l) (v-»oo), (5.3)

uniformly for ueK.

(b) There exist r o >0 and v2^vl such that, for each r^.r0 and each ueK, the set {z: \z\ =
r} n {^(v): v> v2} consists of exactly one point £Jr). The functions („: [r0, oo)—»C
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satisfy
r ( r -oo) , (5.4)

uniformly for ueK.

Equation (5.2) is called the "saddle point equation".

Proof of Lemma 4. Put C1=max{\u\:ueK} and </>(z)=/(z)exp{ —zxL(z)}. We begin
the proof of (a) by noting that L and </> are holomorphic in {|argz|<?/, |z|>JV0}. Thus, in
view of (5.1), we may choose N>0 so that, for each v>N and ueK, the function

+ (sv - M + w) {X(sv + w)x - lL(sv + w)

x v (5.5)

is defined and holomorphic, in particular, for Iwl^Ci/l"1. From the definition of <j> and
(2.8) (with J?i(z)=z since /?1 = R+) we obtain

uniformly for |argz|<j/. Hence, in view of (4.9) of Lemma 2 and Lemma l(c), the first
term on the right-hand side of (5.5) is o(l)-sJ~1#L(sv). Thus, after applications of (4.1)
and (4.2), some multiplication, and the observation that 1SXL^SV) + SX+1L'(SV) — V — 0 (by
definition of sv), we may rewrite (5.5) as

Gv u(w) = 1(X- l)s$-^sjw + (

+ (-u + w)L'(sv)s
x + o(l)-sx-1-L(sv) (v^oo),

uniformly for ueK and |w|^2C1/l~1. Simplifying and applying (2.1),

(v^oo), (5.6)

uniformly in u and w. An application of Rouche's Theorem reveals the existence of an
N > 0 such that, for each v>N and ueK, the equation Gv H(w) = 0 has exactly one root
w = wu(v) in the disc D^IC^X'1). Letting w = wu(v) in (5.6), we obtain

(v-oo), (5.7)

uniformly for ueK. If we now set

(we/C,v>iV),
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it follows from (4.12), (4.11), the definition of <f>, and the nature of wu(v), that i/>u(v) has
the desired properties.

We turn to the proof of (b). Using the definition of <t>, (4.11), (4.12), and (4.13), we
express Bu(z) (for |argz|<?7) in terms of L and 4>. A short calculation involving (2.1),
(4.4), Lemma 2, and Lemma l(c), then shows that the relation

Biz)~X^Uz) (|z|-oo) (5.8)

holds uniformly for |argz|<g?7 and ueK. Hence, from (5.3) and Lemma l(c),

)~^lXsv) (v->oo), (5.9)

uniformly for ueK. It follows from (5.9) and (4.13) that there is an JV>0 such that if
v>N and ueK, then A'u(\l/u(v))^0. Fix v>N and ueK. Applying the complex implicit
function theorem [17, p. 170] to the function (w,z)-*AJiz) — w in a neighbourhood of
(v, \liu{y)), we conclude that \jj'u exists in a (real) neighbourhood of v. Differentiating the
equation Au(\pj<v)) = v, we see after some manipulation that

Thus, allowing v to vary and applying (5.9), we have

In particular, there is a v 2 ^v t such that for all ueK and all v^v2, \ipu\ is a continuous
and increasing function of v. In addition, in view of (5.3), we may assume that v2 is so
large that, for some C > 0,

|<Mv)-s,|<C (ueK,v^v2). (5.10)

Furthermore, again by (5.3),

|^u(v)|-»co (v->oo),

uniformly for ueK. We now choose ro>max{|i/'u(v2) : u e K}, and the existence and
uniqueness of (u(r) follow from the above facts about \i//u.

It remains to verify (5.4). For each ueK and r^.r0, let v(u,r) be the unique number
v^v2 such that |iAu(v)| = r. It is clear from (5.10) and the definition of £Jr) that

|C(r)-sv(u,r) |<C (ueK,r>r0). (5.11)

Since (u(r) lies on the circle \z\ = r and sv(ur) lies on U+, (5.11) implies that
|sinargCu(r)|<(C/r)(uEK, r>r0). This gives (5.4), and the lemma.
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"°6. Bounds onf

We continue our investigation of the function / fixed in the previous section. The
analysis is similar to that carried out by McLeod in [14].

To estimate f(k\ we need two lemmas.

Lemma 5. Suppose R1 = U+. Fix s, 0<e<n. / / J> 1, then

log
fjr)

(r-»oo),

uniformly for ueK and n~^\6\>e. If 7=1, then there exist N, C>0 such that if r>N,
n^\0\>e, and ueK, then

log
fjr)

Proof. Choose j , l^j^J. By (2.8) and Lemma l(c),

(r->oo),

uniformly for u and 9 such that ueK and u + re'6eSj{n). Thus, in view of the definitions
(4.11) and (2.4) of /„ and pp

)]} (6.1)

(6.2)

log \fu(rew)\ = o(l) • r'-'Ur) + n{\r<W-»» + Pj(u)¥ •

as r-+oo, uniformly in u and 9 as above. From (6.1) and Lemma l(c),

log \fu{rew)\=r'Ur) [cos 1(8-6} + o(l)] (r-*oo),

uniformly in u and 6.
Let at be as in Lemma l(f), and pick 5, 0<5<min{cr1,^»;}. Combining (6.2), the

inequality r\<njk from the definition of maximal rays, (2.9), and Lemma l(c), we
deduce the existence of numbers T < 1 and JV>0 such that if r>N, ueK, and
u + reieeC-\JJ

q=1Sq(8), then

log|/u(rei9)|<T^/-). (6.3)

Meanwhile, returning to (6.1) and using first (4.1) with w = P}{u), then (4.3) with 9
replaced by 9—9j,

log |

(6.4)

as r-*co, uniformly for u and 9 such that ueK and u + reweS](8). In particular, putting
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0 = 0 and ; = 1 (whence 0j=0 and /?,{u) = u),

log |/_(r)| = r"Ur) + Xrx-lUf) re {u + o(l)}

as r-KX>, uniformly for ueK. Again, from (6.4) and Lemma l(f),

log \fu(reie)\ = rkUr) + krx-lUr) re{e'(A- 1)(9-^)?/u) + o(l)}

as r->oo, uniformly for u and 8 such that ueK and u + re'eeS}{5).
It is now easy, using (6.6), (6.5), and (6.3), to complete the proof.

Lemma 6. Suppose Rl = U+, and define i/>u(v) as in Lemma 4. Then

393

(6.5)

(6.6)

log ) —vlogsv + —reu + ol —) (v->oo),

uniformly for ueK.

Proof. Note first that, in view of (4.6) and the definition of sv (Lemma 3),

V
(v-oo). (6.7)

Thus, noting that f}1(z) = z since R1 = R+, we have by (2.8), the approximation (5.3) for
iv), and Lemma l(c),

1) (v->oo), (6.8)

uniformly for ueK.
Next, using (5.3) and (4.1),

(v^oo),

uniformly for ueK.
Finally, (5.3) and the Taylor Series for log( l+) give

log <Au(v) = log s^ + uVr1- l)s;l + ois;1) (v-oo),

(6.9)

(6.10)

uniformly for ueK.
Lemma 6 follows readily from (6.8), (6.9), (6.7), and (6.10).
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Theorem 5. Fix j , l^j^J.

(a) / / K c Qj and A> 1, then

log
/<*>(«)

fc!
= skL{sk) — k log sk + ksk

 1 r e p/u) + o(ksk
 L) (fc -»oo),

uniformly for ueK.
(b) / / K g dj and either X > 1 or J = \, then

log
fe!

- fe log sk + ksk
 l r e fi/ju) + o(ksk

 x) » oo),

uniformly for ueK.

Proof. We assume without loss of generality that j=l and i?x = R+. To prove (a),
we first verify the hypotheses of Theorem 4, with f M(r) as in Lemma 4, and with Au(r) =
ryL(r)]~2/5 for all ueK. Recall that |Cu(r)|=r. Hence, in view of (5.11) and the
monotonicity (5.1) of sv,

v(u,r)->co (r->co),

uniformly for ueK. Thus, by definition of £„ and \]/u (Lemma 4), there is an N>0 such
that

(r>N,ueK). (6.11)

Relations (4.14), (4.15), and (4.16) follow instantly from (6.11), (5.8), and (5.4).
We now verify (4.17). Set p = min{l,%ri}. From (5.8), Lemma l(c), and the equality

\Cu(
r)\ = r> w e n nd that there is an N>0 such that, if zeD(CJr),pr), then

BJLz) (r>N,u<=K).

Furthermore, by Lemma l(b) and the definition AM(r) = [rAL(r)] 2/5, there is an AT'>0
such that

Au(r)^ip (ueK,r>N).

We may thus apply Lemma 2 of [14], with C = 2(l +p)x, af = Au, bf = Bu, and w = (,u{r),
to obtain

) = log MM + itAJtJLr)) - - BJ£Jj)) + £(C(r), t), (6.12)
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where

\Bu(Ur))t3\ (ueK,r>N',\t\^AJr))- (6-13)

Thus, in view of (5.8) and (5.4),

(r-oo),

uniformly for ueK and |t|^Au(r). The formula (4.17) follows from the latter relation
along with (6.12) and (6.13).

It remains to verify (4.18). Recall from Section 2 that / has at most finitely many
zeros in largz

and t,

<r\. Choose a, 0<a<min{5/7,(71/3)}, and expand the function
in a Taylor Series: there exists JV>0 such that for each r>N, ueK,

t\ ^ <r, there is a t, between 0 and t satisfying

log \MJLr)e°)\ = log \MUr))\ ~ im Au(Cu(r))t - i re Bu{Cu(r)e^)t2.

By the latter, along with (6.11), (5.8), (5.4), and the inequality | e i ? - l | ^ | ^ | , there is an
N > 0 such that

log ^ -£/lVL(r)r2 (r>N,ueK,\t\^a). (6.14)

It follows from (6.14) and Lemma l(b) that (4.18) holds under the restriction
Au(r)^\t\«r.

Again from (6.14) (along with (5.4)), there is an N>0 such that

\fJLr)\£\MJLr))\ (r>N,ueK). (6.15)

Up to now, K could have been any compact set. Now, however, we make use of the
assumption K c il1. It follows from Lemma 5 and the definition (2.7) of fix that, if X> 1
(or even if Argl and J = l ) , then there exist N,a>0 such that for all r>N,ueK, and 9,

log
L(rew)

fir)
<-r*Ur).

Thus, in view of (6.15), the relation (4.18) holds under the restriction 7t^| t |^a.
We have now verified the hypotheses of Theorem 4. Allowing (u(r) to pass through

the values yjiu{k) (/ceZ+) in the conclusion (4.19), and recalling that Au(\pu(k)) = k, we see
that, if X> 1 or J = 1, then

MM)
k\

(6.16)

https://doi.org/10.1017/S001309150001720X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150001720X


396 ROBERT M. GETHNER

as fc->oo, uniformly for ueK. Now (5.9), (6.7), Lemma l(a), and k>\ imply that

(fc-oo), (6.17)

uniformly for ueK, and Theorem 5(a) follows from (6.16), (6.17), and Lemma 6.
In the proof of (b), we first use Lemma 5, the definition (2.7) of Q1; and (6.15), along

with (6.14), to see that

max < log

as r-*co, uniformly for ueK. Introduction of the factor |/u(£u(r))| into Cauchy's
Estimates then yields

log /no)
k\ rk (r-oo), (6.18)

uniformly for fceZ+ and ueK. Taking r = |î u(fc)| in (6.18), Theorem 5(b) is easily derived
from Lemma 6. This completes the proof of Theorem 5.

We need in the sequel the following two relations. First, let 0<C1<C2. A calculation
involving Stirling's formula and the fact (from 6.7)) that sjjL(st) ~ k/k shows that

(fc->oo), (6.19)

uniformly in x, C1<x<C2. Secondly, by (6.7) and Lemma l(a),

k fco (if A > 1)
(if A < 1)

(6.20)

as fc->oo.

Corollary. If k>l then, for each aeC, the final set A(a,/) is contained in \JJ
J=t BClj.

Proof. It is clear from the definition of the shires that every point in the plane is
contained in the closure of some Qj. Hence it is enough to show that A(a, / ) <= C —
{JJ

j=! Clj. Fix j and z €Qjt and choose p >0 so that D(z; p) a Qj. Then, by Theorem 5,
(6.19), and (6.20),

\fk\u)\^ao (fc-oo),

uniformly for ueD(z;p). The desired inclusion now follows from the definition of final
set.
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7. Proofs of the main theorems

We now prove Theorems 1, 2, and 3. In each proof we assume that the function / of

the theorem is the function we fixed in Section 5.

Proof of Theorem 3. First suppose A<1. It is clear from Theorem 5(b), (6.19), and
(6.20), that

|/<*>(u)|->0 (fc^oo),

uniformly for u in compact subsets of the plane. Hence, if a^O, then A(a,/) is void. If
we now suppose that A _ l , then (6.16) and the fact that / has at most finitely many
zeros in |arg z\ < n imply that A(0, / ) is void. This completes the proof.

The following lemma is, with a change in notation, due to Edrei. Its proof is given
in [5].

Lemma 7 (Edrei). Suppose Pi>0. Let {Fk}™=l be a sequence of functions analytic and
not identically zero in the disc D(0;px). Put

^ J P l ) . (7.1)

Let {bk}™=! be a sequence of positive numbers, and assume that

Uk{p)~bkp (fc->co),

uniformly for 3P1 = p = p t . Then, for each a,\p^<a<pu

n{o,0,Fk)~bko (fc->oo).

In the proof of Theorem 1 we estimate the number of a-points near points on the
boundaries of the shires. The method is that used by Edrei [5].

Proof of Theorem 1. In view of the Corollary (Section 6), it is enough to show that if
z e [jJj= x dilj, then z e A(a, / ) . We assume without loss of generality that 2 = 0, and that
there is a J', 1 ^ J' _ J, such that 0 e dQj if and only if j _ J'. (Then J' _ 2.) We assume
also that 6i<02<--- <9r.

Put 0O = 6j.-2n, and

(7.2)
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Then the numbers oiu...,ojr, coj> + 1 are, respectively, the midpoints of the intervals
(00,

Choose po>0 so that D(0;5p0) <= {JJj'=1[ij. (This is possible for the following reason.
By definition of shire ((2.7) and (2.4)), every point in C is in the closure of some shire.
Thus, if p0 does not exist, then there is a shire ilq, q>J, such that every disc D(0;p)
contains some point of &q. Then z e d£lq, contrary to hypothesis.) For j , p, and 6 such
that l^j^f, 0<p<4po, and co1S9So)i + 2n, we see from the definition (2.4) of fa and
the hypothesis OedQj that

re fa(peie) = re ̂ (0) + p • re g'»-»A

Thus, by the definition (2.7) of shire, if 0<p<4p0, then

peieeQj if and only if tOj<d<coj + l. (7.3)

Fix aeC. For «eC and integers k> v0, put

Fk(u) = ̂ - y exp j - s^L(5t) + k log s4 - re [^(0)] - | . (7.4)

Then the zeros of Fk and fm — a coincide and have the same multiplicities.
We claim that the formulas of Theorem 5 remain valid if fik\u) is replaced by f{k\u)

— a. To prove the claim, say, for the first formula, we exponentiate the formula, multiply
by k\, and, with the aid of (6.19), (6.20), and the inequality A>1, obtain

|/<k»(u) -a\ = k\ exp {stL(sk) - k log sk

The claim follows upon rewriting the factor l + o(l) as exp {o(ksk~ ̂ J, as we may do
since, by (6.20), fcst~

x-»oo.
From Theorem 5 (with fw(u) replaced by fk\u)-a), (7.3), (7.4), and the equations

re fa{0) = re/?i(0) (j — \,...,J'), we obtain the following formulas, valid for each fixed T, 5,
and j , 0<x<4p 0 , 0<d<^minj{coJ+1— coj},

) (fc-»oo), (7.5)

uniformly in p, z^p^4p0, and 9, a>j + d^8^(oJ+1— 5;

log\Fk(peie)\^pcoS(e~ej) + o(~) (fc-,00), (7.6)

uniformly in p, 0^p^4/9o , and 0, coJ^0^o)J-+1.
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For S as above, put

Also put / = [(o1)coj. + 1] and

(J [(Oj-S,
j=2

399

(7.7)

(7.8)

Then g>0. Upon integrating (7.5) and (7.6), we deduce from the definition (7.1) of
that, if 0 < T < 4p0, then

(*->oo),

and

2n,\

both uniformly in p, r ^ p ^ 4 p 0 .
Fix T, 0<r<p o . We will show that

(7.9)

(7.10)

Jlog+ 1

Fk(pe»)

uniformly in p,rSp^Po- To this end we need the Poisson-Jensen Formula [9, p.

"log \Fk(u)\ = 1- j " log \Fk(rei0)\ • P(r, \u\, <D - 9) dd>
2M o

(7.11)

1],

(7.12)

K,l£'
log

r2Squ
r{u-dq)

where {dq} (q = 1,2,3,...) are the zeros of Fk, and

P(r,\u\,d>-9) = -
r2-\u\2

is the Poisson Kernel. We need also the standard inequality

r-\u\
(7.13)
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and the identity

ROBERT M. GETHNER

= l o g + x - l o g + -

We now begin the proof of (7.11).
Relations (7.5) and (6.20) imply that there is an N >0 such that

log|F»(poc"l)|>0

Put u = poe
i6i and r = 2p0 in (7.12). The positivity of each term of £ log | -

together with (7.15), (7.14), and (7.13), imply that

m[2po,yJ<9m(2po,Fk)

If \dq\ ̂  2p0, then, by the triangle inequality,

(7.14)

(7.15)

in (7.12),

(7.16)

4Po(p0e
i6>-dq)

Setting r = 4p0 and u = poe
lBl in (7.12), neglecting some terms of £ log | - | ,

(7.17), (7.14), and (7.13), we obtain

(7.17)

and using

log- \n(2p0,0, Fk) ̂  - log \Fk(poe
ie>)\ + 2m(4p0, Fk),

so that, by (7.15) and (7.6), there exist C, N>0 such that

n(2po,0, Fk)^C-
sk

(7.18)

Reversing the sign of (7.12), setting r = 2p0 and u = pe'e, and recalling that p^p0, we
deduce that

log+ 1
Fk(peie) \d\tkip0

log
pe'*-dq

(7.19)

Fix q and write dq = \dq\e
iy. Clearly \pew-dq\>\im[(peie-dq)e-i{y+e)l% whence

\peie-dq\>p • (0-1
sin (7.20)
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An examination of the graph of

1

401

x-+log |sin(x/2)|

shows that, in view of the definition (7.7) of Ig,

1
Jlog

sin((0-y)/2)

1

sin(x/2).
dx.

Hence, in view of the inequality sin(z/2)<(x/7t), there exist <50, C>0, independent of q,
such that

jlog
1

'sin((0-y)/2)

We conclude from (7.19), (7.20), and (7.21), that

d6 <C5\og5 (5<5O). (7.21)

JlogH

* «

1

Fk(pew)
d9 ̂  6J'dm( 2Po, y ) + n(2Po, 0, Fk) • C5 log <5. (7.22)

The desired inequality (7.11) follows from (7.22), (7.16), (7.6), and (7.18).
It is a consequence of (7.9), (7.10), (7.11), and the definition (7.1) of Uk(p), that

Uk(p)~Q-P (/c-cx)),
sk

uniformly in p, z^p^p0. Thus, from Lemma 7 and the definition of Fk,

n(o,a,pk))~Q-o (fc-oo) (7.23)

for each a, 0<a<po. Theorem 1 follows from (7.23), (6.20), and the positivity of Q.

Proof of Theorem 2. In view of (7.23) and the definiton (7.8) of Q, it is enough to
show that, if tk is given by (3.2), then

— ~tk (k->oo). (7.24)

We first show that, if y is real, then

(x-oo). (7.25)
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To see this, we assume without loss of generality that fj.<l and use (3.1) to pick C,
N > 0 so that

(7-26)
t(iogty

Integration of (7.26) from N to x reveals that

1- ' ' (X-KJO). (7.27)

Furthermore, the fundamental theorem of calculus, Lemma l(a), and (7.26) imply that
there is an N>0 such that, for x>N,

|log Ux) - log L[x(L(xOT| < -^- |(log x)1 -" - [log x + y log L ^

whence, by the binomial theorem and (7.27),

Since \i>\, (7.28) implies (7.25).
To prove (7.24), we put H(x) = XxxL(x), and observe that, by (4.6) and the definition of

sk (Lemma 3),

H(sk)~k (*-»oo). (7.29)

Meanwhile, if C>0, then the definition (3.2) of tk, along with Lemma l(c) and (7.25)
(with z=(k/X)l/x and y= -(I/A)) give

H[C-)~Cxk (fc-oo). (7.30)

Fix e>0. Setting C = l + e in (7.30) and using (7.29), we find that there exists AT>0 such
that

H((l+e)!f)>H(sk) (k>N). (7.31)

But st-»oo and k/tk->oo (by (5.1), (3.2), and Lemma l(a)), and thus, by (7.31) and the
monotonicity of if (Lemma l(b)), there is an JV'>0 such that

t (k>N%
h
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The latter inequality, in view of the arbitrary nature of e, gives half of (7.24). A similar
argument with C = 1 — e in (7.30) gives the other half of (7.24). This completes the proof
of Theorem 2.

8. Examples

We determine in this section the final sets of some specific functions. Our aim is not
to give the most general results possible, but rather to indicate some interesting
consequences of the main theorems.

Theorem 8, which appears later in this section, yields the following examples.

Examples. Let aeC.

(a) If /1(z)=cosz2, then A(a,/j) is the union of the real and imaginary axes.

(b) If/2(z)=exp(z2) + exp(-z2)+exp(- iz2) , then

n 3n 6n 9n lln I5n

o o o o o o

(c) If /3(z) = exp[(z — l)3]+exp[ — (z+1)3], then A(a,/3) is the union of the imaginary
axis, the segment joining — 1 to +1 , and the four rays

and {— 1

The examples given above differ from those of Polya and McLeod, in that, in the
latter, if X denotes the order of the function, then the final set consists of X equally
spaced rays emanating from a single point.

The Mittag-Leffler functions [2, p. 50] are defined, for k > %, by

In particular, E1(z) = ez. The following theorem gives a generalization of Ex.
For 0 < (7 < n and N>0, put

Sa,N = {\argw\<o,\w\>N}.

Theorem 6. Suppose X>\, N>0, and (n/2X)<n<n. Suppose L is slowly varying on
S,jv- Then there exists an entire function fLX such that, for each a satisfying
(7t/2A)<o<n, there is an M > 0 such that

(zeSa,N), (8.1)
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whereas

\fL,x(z)\<M (zeC-Sa.N). (8.2)

/ / X£ 1 then, for each aeC, A(a,fLX) is void. If A= 1, then A(0,/tiil) is iwid.

Remark. If L(z) = 1, then fLyX = Ex.

Proof of Theorem 6. Fix T, (TT/2A) < x < r\. For r>N, let C(r) be the contour {rew:
— T ^ 0 J £ T } , oriented counterclockwise, and set

X exp{w^w)}

27Tictr) W - Z V '

It is not difficult to show, with the aid of (4.3) and Lemma l(b), that f converges to an
entire function fL A satisfying (8.1) and (8.2). We omit the details, which are similar to
those given by Heins [10, p. 127] for the case L(z) = l.

It follows from (8.1), (8.2), (4.3), and Lemma l(b), that fLX has the single maximal ray
R+. The assertions about A(a,/L A) thus follow from Theorems 1 and 3. This completes
the proof of Theorem 6.

It is a consequence of the next theorem that, if {Rj}J
j=l are rays as in Section 2, then

there exists a function having maximal rays {Rj}j=i-

Theorem 7. Let {RJ}J=I, {PJ}JJ=I, and {Oj}j=i be associated rays, maps, and shires as
in Section 2. Suppose X> 1, N>0, and {n/2X)<n<n. Let L be slowly varying on S^N, and
let fLX be as in Theorem 6. Assume that cu...,Cj are non-zero complex constants. If

/(*)= t CjAMz)) (zeC), (8.3)
J = I

then f has maximal rays {Rj}j= t and, for each aeC, A(a,/) = \Jj= t dilj.

Proof. Define sectors S/•) by (2.5). Choose a, 0<o<(n/X), so small that S/<J) n Sq(a)
is bounded for all pairs of distinct integers j and q. From the definition (2.4) of fij,

-^ (j=l,...,J). (8.4)

A calculation involving (8.1), (8.4), and Lemma l(c) shows that, for each j ,

\fL,APj{reie))\>Xcxp{r^r)-(coSX(e-9j) + o(l))}-M (r-oo), (8.5)

uniformly for 0 such that reieeS}{a), so that, by (8.3), (8.2), and Lemma l(b),

/(r^cxpt-C/J/re")]^^/^9)]}-^ (r-oo), (8.6)

uniformly for reieeS}(o-). Similar considerations show that there exist N>0 and y,
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0<)>< 1, such that, for each j ,

( W ) (8.7)

Theorem 7 follows from (8.6), (8.7), the definition of maximal rays, and Theorem 1.
Our next result concerns sums of exponential powers.

Theorem 8. Let X, MeZ+, and let <S>lt...,OM be real numbers such that the XM
numbers <Pm + 2njX~i (m=l,...,M;j = 0,...,X — l) are all distinct. Let vu...,vMeC. Then
the function

f{z)= £ exptfe-'^z-O]*} (zeC)
m = l

has maximal rays {R(vm,(^m + 2njX~1)} (m=l,...,M;j = 0,...,X—l), and its final sets are
given by Theorem 1.

Proof. Let L(z)=l. By (8.1), (8.2), and Liouville's Theorem there are complex
numbers wu...,wM such that

m (zeC). (8.8)

Theorem 8 follows from (8.8) and Theorem 7.
The following result is an obvious consequence of Theorems 8 and 2.

Theorem 9. Let X be an integer greater than one. Let aeC. For zeC, set f(z) = exp(zA),
and

w-U 1 + 1/isin(7rM) ifz = 0

A) if z^O.

Then for every ze A(a,/), there is a p0>0 suc/i t/ia£ /or eac/i p, 0<p<po, the number of
a-points of f(k) in D(z;p) is asymptotic, as k-*ao, to h(z)k1~l/xp.

We consider finally a subclass of the Lindelof functions, namely, the subclass

. (8.9)

Theorem 10. For each aeC, and each X, 0<A< 1, A(a,Px) is void.

Proof. We need the following formulas of Lindelof [12, pp. 49-53], valid for
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0<<5<7t:

. T O **•
Px(z) sin 7tA

and

1 (|z|-oo), (8.10)

both uniformly for |arg z| < 7r — 8. We also need a result proved by Hardy [7] and again,
recently, by Abi-Khuzam [1]: There exists a <50>0 such that

(-z)A} (|z|-»oo), (8.12)

uniformly for |arg z — n\ < <50.
Fix A. With the principal branch of the logarithm, set

^ (|argz|<*). (8.13)

It is clear from (8.9), (8.10), and (8.11) that L is slowly varying. Furthermore, by (8.13),
(8.12), and (8.11), Pk has the single maximal ray (R+ relative to L and X. Theorem 10
thus follows from Theorem 3. This completes the proof.

I am indebted to Professors A. Baernstein and C. Prather for bringing to my
attention, respectively, [7] and [1].
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