TRANSFORMATIONS WITH DISCRETE SPECTRUM ARE STACKING TRANSFORMATIONS

ANDRÉS DEL JUNCO

Introduction. The stacking method (see [1] and [5, Section 6]) has been used with great success in ergodic theory to construct a wide variety of examples of ergodic transformations (see, for example, [1;3;4;5;7]). However very little is known in general about the class \mathscr{S} of transformations which can be constructed by the stacking method using single stacks. In particular there is no simple characterization of the class \mathscr{S} . In [1], the following question is raised: is every transformation with simple spectrum an \mathscr{S} -transformation? (Since the converse is true by [2, Theorem 1], this would give a nice characterization of \mathscr{S}). The simplest case of simple spectrum is discrete spectrum and the aim of this paper is to prove that any ergodic transformation T with discrete spectrum belongs to \mathscr{S} (Theorem 2.3).

The method of proof consists in finding an increasing sequence $\{\mathscr{G}_n\}$ of T-invariant σ -algebras which generate the full σ -algebra and such that T/\mathscr{G}_n looks like a cartesian product of several rotations and one cyclic permutation. The result is proved for this concrete case which is where the difficulty lies. One then applies a simple lemma which gives the result for T itself.

I would like to thank Professor M. A. Akcoglu for suggesting this problem.

Section 0: Notation and definitions. All measure spaces (X, \mathscr{F}, μ) will be isomorphic to the unit interval with Borel sets and Lebesgue measure. A *transformation* (*automorphism*) of (X, \mathscr{F}, μ) is an invertible bimeasurable, measure-preserving mapping of X onto X. A *partition* of X is a finite collection of mutually disjoint sets in \mathscr{F} . If $\{P_n\}$ is a sequence of partitions, $P_n \to \epsilon$ means $\mu(A \bigtriangleup P_n(A)) \to 0$ for all $A \in \mathscr{F}$, where $P_n(A)$ denotes any union of atoms of P_n such that $\mu(P_n(A) \bigtriangleup A)$ is minimal. If T is a transformation of X, a *stack* for T (or T-stack) is an ordered partition $S = \{S_1, \ldots, S_n\}$ of X such that $T(S_j) = S_{j+1}$ for $1 \leq j < n$. S_1 is called the *base* of S, S_i the *i-th level* and n its *height*.

 \mathscr{S} is the class of transformations T for which there exists a sequence $\{S_n\}$ of T-stacks such that $S_n \to \epsilon$ and the base of S_n is a union of levels of S_{n+1} . This is just the class of transformations which can be constructed by the stacking method using single stacks. (For the stacking method see [5]). The following theorem, due to Baxter ([2, Theorem 2.1]), which we shall use implicitly, shows that the requirement that the base of S_n be a union of levels of S_{n+1} is unnecessary.

Received December 4, 1975.

THEOREM (Baxter). A transformation T belongs to \mathcal{S} if and only if there is a sequence $\{S_n\}$ of T-stacks such that $S_n \to \epsilon$.

Section 1. If $\alpha \in [0, 1)$ we define the transformation T_{α} on [0, 1) by $T_{\alpha}(x) = x + \alpha \pmod{1}$. Let $\alpha(1), \ldots, \alpha(n) \in [0, 1)$ and let π be a cyclic permutation of $S = \{1, \ldots, m\}$. Let $T = T_{\alpha(1)} \times \ldots \times T_{\alpha(m)} \times \pi$ and assume T is ergodic. Denote by $(\Omega, \mathcal{F}, \mu)$ the measure space on which T acts $(\Omega = [0, 1)^n \times S, \mathcal{F}$ the product Borel structure, μ the product of Lebesgue measures and normalized counting measure).

For each $\alpha(i)$ choose a sequence p(i, j)/q(i, j) of irreducible fractions such that q(i, j) increases to ∞ as $j \to \infty$ and

$$\left| \alpha(i) - \frac{p(i,j)}{q(i,j)} \right| \leq \left(\frac{1}{q(i,j)} \right)^2.$$

(It is elementary and well known that this can be done. See, for example, [6, Section 11.3]). Denote by T_i the transformation

 $T_{p(1,j)/q(1,j)} \times \ldots \times T_{p(n,j)/q(n,j)} \times \pi.$

Consider also the partition Q_{ij} of [0, 1] into sets

$$\left[\frac{r}{q(i,j)}, \frac{r+1}{q(i,j)}\right), \quad 0 \le r < q(i,j)$$

and the partition $Q_j = Q_{ij} \times \ldots \times Q_{nj} \times \eta$ of Ω where η denotes the partition of S into points. Note that T_j permutes the atoms of Q_j . For $\epsilon > 0$ let $E_{\epsilon} = [0, \epsilon)^n \times \{1\} \subset \Omega$.

LEMMA 1.1. Given $\epsilon > 0$, there exists a K such that if $x \in \Omega$ then for some $k, 0 \leq k < K, T^k x \in E_{\epsilon}$.

Proof. This follows easily from the fact that the *T*-orbit of any point is dense in Ω , which in turn follows easily from the ergodicity of *T*.

LEMMA 1.2. Given $\epsilon > 0$ there exist K and J such that if j > J and ξ is an atom of Q_j then for some k, $0 \leq k < K$, $T_j^k \xi \subset E_{\epsilon}$.

Proof. By Lemma 1.1 we can choose a K such that for all $x \in \Omega$ there is a $k, 0 \leq k < K$ such that $T^k x \in E_{\epsilon/4}$. Then choose J so large that

$$K\left| \alpha(i) - \frac{p(i,j)}{q(i,J)} \right| < \frac{\epsilon}{4} \text{ and } \frac{1}{q(i,J)} < \frac{\epsilon}{4}$$

for all i. One checks easily that K and J satisfy the desired condition.

Proposition 1.3. $T \in \mathscr{S}$.

Proof. It will suffice to show that for each $\epsilon > 0$ we can find a *T*-stack whose base is contained in E_{ϵ} and which covers a part of the space of measure more than $1 - \epsilon$. Given ϵ , then, choose *K* and *J* as in Lemma 1.2 and such that $2/K < \epsilon/2$.

ANDRÉS DEL JUNCO

Now for any j, Q_j breaks up into a disjoint union of T_j -stacks. Let us call these stacks $\xi(j, 1), \ldots, \xi(j, n_j)$. It is easy to see that they all have the same height, say h_j , and that h_j is at least as large as $\max_i q(i, j)$, so that $h_j \to \infty$. Fix for the moment a j such that j > J, $h(j) > K^3$ and $1/q(i, j) < \epsilon$ for all i. Let $h_j = K^2D + r$, $0 \leq r < K^2$.

For each $n, 1 \leq n \leq n_j$, and for each $d, 1 \leq d \leq D$, choose a level of $\xi(j, n)$ between the $(dK^2 + 1)$ -th level and the $(dK^2 + K)$ -th level which is contained in E_{ϵ} (this can be done by our choice of J and K) and let B be the union of all these levels. Each of these levels we have chosen has at least K(K - 1) images disjoint from any other chosen level, so B is the base for a T_j -stack of height K(K - 1) + 1 which will cover Ω except for a set of measure less than $2K^2/h(j) \leq 2/K < \epsilon/2$.

We now get a *T*-stack from this T_j -stack by shrinking *B* by a small fraction of its measure. This is done as follows. Each atom γ of Q_j is a product of intervals I_{ij}^{γ} of length $1/q(i, j), 1 \leq i \leq n$, and a single point in *S*. By chopping off from each end of I_{ij}^{γ} an interval of length $K(K-1)|\alpha_i - p(i, j)/q(i, j)|$ one gets an interval \bar{I}_{ij}^{γ} such that

$$T^{l}_{\alpha(i)}\overline{I}^{\gamma}_{ij} \subset T_{p(i,j)/q(i,j)}I^{\gamma}_{ij} \quad \text{for } 0 \leq l \leq K(K-1).$$

(Note for future use that since $|\alpha(i) - p(i, j)/q(i, j)| \leq (1/q(i, j))^2$ we can make the amount chopped off from I_{ij}^{γ} as small a fraction of its length as we like by choosing j large). It follows that if we set $\tilde{\gamma} = \prod_i \bar{I}_{ij}^{\gamma} \times \{1\}$ then $T^i \tilde{\gamma} \subset T_j^{\ i} \gamma$ for $0 \leq l \leq K(K-1)$. Finally, if $B = \bigcup_{\gamma \in \Gamma} \gamma$ for $\Gamma \subset Q_j$, we set $\bar{B} = \bigcup_{\gamma \in \Gamma} \tilde{\gamma}$ and we have again $T^i \bar{B} \subset T_j^{\ i} B$ for $0 \leq l \leq K(K-1)$. Since \bar{I}_{ij}^{γ} can be made as large a portion of I_{ij}^{γ} as we wish, the same is true of \bar{B} and B so that our T-stack can be made to cover a part of Ω of measure more than $1 - \epsilon$. Of course $\bar{B} \subset B \subset E_{\epsilon}$ so this finishes the proof.

Section 2. Our aim in this section is to extend Proposition 1.3 to the case of ergodic T with discrete spectrum. We begin with a simple general lemma.

LEMMA 2.1. Suppose T is a transformation of (X, \mathcal{F}, μ) and $\{\mathcal{G}_n\}$ is an increasing sequence of T-invariant σ -algebras which generate \mathcal{F} such that $T|_{\mathcal{G}_n} \in \mathcal{S}$. Then $T \in \mathcal{S}$.

Proof. If Σ is a σ -algebra and $\{E_n\}$ is a sequence of sets in Σ we'll say $\{E_n\}$ is an *approximating sequence for* Σ if for each $E \in \Sigma$ and $\epsilon > 0$ there is an E_n such that $\mu(E_n \triangle E) < \epsilon$. Let $\{E_n\}$ be a sequence of sets in $\bigcup_n \mathscr{G}_n$ which contains an approximating sequence for each \mathscr{G}_n . Since any set in \mathscr{F} can be approximated arbitrarily well by sets in $\bigcup_n \mathscr{G}_n$ it follows that E_n is an approximating sequence for \mathscr{F} . Now for each $n, \{A_1, \ldots, A_n\} \subset G_m$ for some m and since $T|_{\mathscr{G}_m} \in \mathscr{S}$ we can find a $(\mathscr{G}_m$ -measurable) T-stack S_n such that $\mu(A_i \triangle S_n(A)) < 1/n$ for $1 \leq i \leq n$. Then it is clear that $\mu(A \triangle S_n(A)) \to 0$ for every $A \in \mathscr{F}$.

838

Now let T be an ergodic transformation with discrete spectrum (see [8, p. 46] for the definition). Let $\{\lambda_i\}$ be an enumeration of the eigenvalues of the induced unitary operator and suppose f_i is an eigenvector with eigenvalue λ_i . Let \mathscr{A}_n denote the complex algebra of functions generated by $\{f_i, f_i : i = 1, \ldots, n\}$. Note that $\mathscr{A}_n \subset \mathscr{L}_{\infty} \subset \mathscr{L}_2$. Denote by \mathscr{H}_n the \mathscr{L}_2 closure of \mathscr{A}_n . Let \mathscr{G}_n denote the σ -algebra of sets generated by f_1, \ldots, f_n (that is, the σ -algebra generated by $\{f_i^{-1}(B) : i = 1, \ldots, n, B$ a borel set $\}$). Note that \mathscr{G}_n is Tinvariant.

LEMMA 2.2. $\mathscr{H}_n = \mathscr{L}_2(X, \mathscr{G}_n, \mu).$

Proof. This can be shown using the Stone-Weierstrass theorem together with some straightforward measure-theoretic arguments.

Theorem 2.3. $T \in \mathscr{S}$.

Proof. Lemma 2.2 implies that $T|_{\mathscr{G}_n}$ has discrete spectrum and that its set of eigenvalues is the multiplicative group generated by $\{\lambda_1, \ldots, \lambda_n\}$. This group can be generated by a set $\{e^{2\pi i\alpha(j)} : j = 1, \ldots, r\}$ where $\{\alpha(1), \ldots, \alpha(r)\}$ is independent over the rationals. Supposing for convenience that $\alpha(r) = 1/m$ is the sole rational member of this set, we have by the discrete spectrum theorem ([8, p. 46]) that $T|_{\mathscr{G}_n}$ is isomorphic to $T_{\alpha(1)} \times \ldots \times T_{\alpha(r-1)} \times \pi$ where π is a cyclic permutation of $\{1, \ldots, m\}$. Thus $T|_{\mathscr{G}_n} \in \mathscr{S}$ by Proposition 1.3. In view of Lemma 2.1 we need only show that $\mathscr{G}_n \uparrow \mathscr{F}$ to complete the proof. But this follows immediately from the fact that $\mathscr{L}_2(X, \mathscr{G}_n, \mu) \uparrow \mathscr{L}_2(X, \mathscr{F}, \mu)$.

References

- 1. J. R. Baxter, A class of ergodic automorphisms, Ph.D. Thesis, University of Toronto (1969).
- A class of ergodic transformations having simple spectrum, Proc. Amer. Math. Soc. 24 (1970).
- **3.** R. V. Chacon, A geometric construction of measure preserving transformations, Fifth Berkeley Symposium on Probability and Statistics (2) 2 (1967), 335-360.
- Weakly mixing transformations which are not strongly mixing, Proc. Amer. Math. Soc. 22 (1969), 559-562.
- 5. N. A. Friedman, Introduction to ergodic theory (Van Nostrand Reinhold, 1970).
- 6. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, fourth edition (Oxford University Press 1960).
- D. S. Ornstein, On the root problem in ergodic theory, Proc. 6th Berkeley Symp. Math. Stat. Prob. II (Univ. of Calif. Press 1967), 347-356.
- 8. P. R. Halmos, Ergodic theory (Chelsea 1956).

University of British Columbia, Vancouver, British Columbia