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Abstract. We use an Ulam-type discretization scheme to provide pointwise approximations
for invariant densities of interval maps with a neutral fixed point. We prove that the
approximate invariant density converges pointwise to the true density at a rate C∗ ·
(ln m)/m, where C∗ is a computable fixed constant and m−1 is the mesh size of the
discretization.

1. Introduction
Ulam-type discretization schemes provide rigorous approximations for dynamical
invariants. Moreover, such discretizations are easily implementable on a computer. In [18]
it was shown that the original Ulam method [23] is remarkably successful in approximating
isolated spectrum of transfer operators associated with piecewise expanding maps of the
interval. In particular, it was shown that this method provides rigorous approximations in
the L1-norm for invariant densities of Lasota–Yorke maps (see [18] and references therein).
This method has been also successful when dealing with multi-dimensional piecewise
expanding maps [20], and partially successful§ in providing rigorous approximations for
certain uniformly hyperbolic systems [10, 11]. Recently, Blank [5] and Murray [21]
independently succeeded in applying the pure Ulam method in a non-uniformly hyperbolic
setting. They obtained approximations in the L1-norm for invariant densities of certain
non-uniformly expanding maps of the interval¶.

Although L1 approximations provide significant information about the long-term
statistics of the underlying system, they are not helpful when dealing with rare events

§ See [6] for examples where the pure Ulam method provides fake spectra for certain hyperbolic systems.
¶ In [21], in addition to proving convergence, Murray also obtained an upper bound on the rate of convergence.
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in dynamical systems. In fact, when studying rare events in dynamical systems [1, 15] one
often obtains probabilistic laws that depend on pointwise information from the invariant
density of the system. In particular, extreme value laws of interval maps with a neutral
fixed point depend pointwise on the invariant density of the map [13].

Statistical properties of non-uniformly expanding maps were studied by Pianigiani [22],
who first proved existence of invariant densities of such maps. Later, it was independently
proved in [14, 19, 24] that such maps exhibit polynomial decay of correlations. The slow
mixing behaviour that such maps exhibit has made them good testing tools for real and
difficult physical problems.

The difficulty in obtaining pointwise approximations for invariant densities of interval
maps with a neutral fixed point is twofold. Firstly, the transfer operator associated
with such maps does not have a spectral gap in a classical Banach space. Therefore,
powerful perturbation results [16]† are not directly available in this setting. Secondly,
invariant densities of such maps are not L∞ functions. Consequently, to provide pointwise
approximation of such densities, one should first measure the approximations in a ‘properly
weighted’ L∞-norm.

In this paper we use a piecewise linear Ulam-type discretization scheme to provide
pointwise approximations for invariant densities of non-uniformly expanding interval
maps. Our main result is stated in Corollary 3.2. For x ∈ (0, 1] we prove that the
approximate invariant density converges pointwise to the true density at a rate C∗/x1+α

·

(ln m)/m, where C∗ is a computable fixed constant, α ∈ (0, 1) is a fixed constant, and
m−1 is the mesh size of the discretization. To overcome the spectral difficulties and
the unboundedness of the densities which we discussed above, we first induce the map
and obtain a uniformly piecewise, expanding and onto map. Then we perform our
discretization on the induced space. After that we pull back, both the invariant density
and the approximate one to the full space and measure their difference in a weighted L∞-
norm. Full details of our strategy are given in §3.2.

In §2, we recall results on uniformly piecewise expanding and onto maps. Moreover,
we introduce our discretization scheme and recall results about uniform approximations for
invariant densities of uniformly piecewise expanding and onto maps. In §3, we introduce
our non-uniformly expanding system, set up our strategy, and state our main results,
Theorem 3.1 and Corollary 3.2. Section 4 contains technical lemmas and the proof of
Theorem 3.1. Section 5 presents an algorithm based on the result of Corollary 3.2 and
discusses its feasibility.

2. Preliminaries
2.1. A piecewise expanding system. Let (1,B, λ̂) denote the measure space where 1
is a closed interval, B is Borel σ -algebra and λ̂ is normalized Lebesgue measure on 1.
Let T̂ :1→1 be a measurable transformation. We assume that there exists a countable
partition P of 1, which consists of a sequence of intervals, P = {Ii }

∞

i=0, such that:

(1) for each i = 1, . . . ,∞, T̂i := T̂
|
◦

I i
is monotone, C2, and it extends to a C2 function

on Īi ;

† See also [12] for another perturbation result.
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(2) T̂i (Ii )=1, i.e. for each i = 1, . . . ,∞, T̂i is onto;
(3) there exists a constant D > 0 such that supi supx∈Ii

(|T̂ ′′(x)|/(T̂ ′(x))2)≤ D;

(4) there exists a number γ such that 1/|T̂ ′i | ≤ γ < 1.
Let L̂ : L1

→ L1 denote the transfer operator (Perron–Frobenius) [4, 8] associated to T̂ :

L̂ f (x)=
∑

y=T̂−1x

f (y)

|T̂ ′(y)|
.

Under the above assumptions, among other ergodic properties, it is well known that (see,
for instance, [7]) T̂ admits a unique invariant density f̂ , i.e. L̂ f̂ = f̂ . Moreover, L̂ admits
a spectral gap when acting on the space of Lipschitz continuous functions over1 [2]†. We
will denote by BV (1) the space of functions of bounded variation defined on the interval
1. Set ‖ · ‖BV (1) := V1 + ‖ · ‖1,1, where V1 denotes the one-dimensional variation over
1. Then it is well known that (BV (1), ‖ · ‖BV (1)) is a Banach space and L̂ satisfies the
following inequality (see, for instance, [22]): there exists a constant CLY > 0 such that, for
any f ∈ BV (1), we have

V1L̂ f ≤ γ V1 f + CLY‖ f ‖1,1. (2.1)

Inequality (2.1) is called the Lasota–Yorke inequality.

2.2. Markov discretization. We now introduce a discretization scheme which enables
us to obtain rigorous uniform approximation of f̂ , the invariant density of T̂ . We use a
piecewise linear approximation which was introduced by Ding and Li [9]. Let η = {ci }

m
i=0

be a partition of1 into intervals. Since uniform partitions are the first choice for numerical
work, we set ci − ci−1 = |1|/m, where |1| is the length of 1. Everything we do can be
easily modified for non-uniform partitions with only minor notational changes. Let

ϕi = χ[ci−1,ci ] and φi (x)=
m

|1|

∫ x

0
ϕi dλ.

Let ψi denote a set of hat functions over η:

ψ0 := (1− φ1), ψm := φm and for i = 1, . . . , m − 1, ψi := (φi − φi+1). (2.2)

For f ∈ L1, we set Ii := [ci−1, ci ] and

fi :=
m

|1|

∫
Ii

f dx, i = 1, 2, . . . , m,

the average of f over the associated partition cell. For f ∈ L1 we set

Qm f := f1ψ0 +

m−1∑
i=1

fi + fi+1

2
ψi + fmψm .

Obviously, the operator Qm retains good stochastic properties, i.e.:
• for f ≥ 0, Qm f ≥ 0;
•

∫
Qm f =

∫
f .

† In [2], a Lasota–Yorke inequality was obtained for Markov interval maps with a finite partition. The proof
carries over for piecewise onto maps with a countable number of branches satisfying the assumptions of §2.1.

1030 W. Bahsoun et al

https://doi.org/10.1017/etds.2013.91 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2013.91


We now define a piecewise linear Markov discretization of L̂ by

Pm := Qm ◦ L̂. (2.3)

Notice that Pm is a finite-rank Markov operator whose range is contained in the space
of continuous, piecewise linear functions with respect to η. The matrix representation of
Pm restricted to this finite-dimensional space and with respect to the basis {ψi } is a (row)
stochastic matrix. By the Perron–Frobenius theorem for stochastic matrices [17], Pm has a
left invariant density f̂m , i.e.

f̂m = f̂mPm .

The following theorem was proved in [2].

THEOREM 2.1. There exists a computable constant Ĉ such that, for any m ∈ N,

‖ f̂ − f̂m‖∞ ≤ Ĉ
ln m

m
.

Remark 2.2. We recall that in [2] it was shown that the constant Ĉ , which is independent
of m, can be computed explicitly.

3. Pointwise approximations for invariant densities of maps with a neutral fixed point
3.1. The non-uniformly expanding system. Let I = [0, 1] be the unit interval, λ be the
Lebesgue measure on [0, 1]. Let T : I → I be a piecewise smooth map with two branches.
We assume that:
• T (0)= 0 and there is an x0 ∈ (0, 1) such that T1 = T |[0,x0), T2 = T |[x0,1] and

T1 : [0, x0)
onto
−−−→ [0, 1), T2 : [x0, 1]

onto
−−−→ [0, 1];

• T1 is C1 on [0, x0], T1 is C2 on (0, x0] and T2 is C2 on [x0, 1];
• T ′(0)= 1 and T ′(x) > 1 for x ∈ (0, x0); |T ′(x)| ≥ β > 1 for x ∈ (x0, 1);
• T1 and T ′1 have the form

T1(x)= x + x1+α
+ x1+αδ0(x),

T ′1(x)= 1+ (1+ α)xα + xαδ1(x),

where, 0< α < 1 and δi (x)→ 0 as x→ 0 for i = 0, 1 with δ′0(x)≥ 0.
It is well known that T admits a unique invariant density f ∗ [14, 19, 22, 24] and the
system (I, T, f ∗ · λ) exhibits a polynomial mixing rate [14, 19, 24]. Moreover, it is well
known [14, 19, 24] that the T -invariant density, f ∗, is not an L∞-function. In particular,
near x = 0, f ∗(x) behaves like x−α . Despite this difficulty, we will show that, for any
x ∈ (0, 1], one can obtain rigorous pointwise approximation of f ∗(x).

3.2. Strategy and the statement of the main result. Recall that α ∈ (0, 1). We first define
a suitable Banach space that contains f ∗. More precisely, let B denote the set of continuous
functions on (0, 1] with the norm

‖ f ‖B = sup
x∈(0,1]

|x1+α f (x)|.
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When equipped with the norm ‖ · ‖B , B is a Banach space†. The fact that f ∗ ∈ B follows
from [14, Lemma 3.3]. Our strategy for obtaining a pointwise approximation of f ∗ consists
of the following steps.
(1) We first induce T on 1⊂ I and obtain a T̂ which satisfies the assumptions of §2.1.
(2) On 1, we use Theorem 2.1 to say that f̂m , the invariant density of the discretized

operator Pm := Qm ◦ L̂, defined in equation (2.3), provides a uniform approximation
of f̂ the T̂ -invariant density.

(3) Next we write f ∗ in terms of f̂ , and define a function fm as the ‘pullback’ of f̂m .
(4) Finally, we use steps (2) and (3) to prove that ‖ f ∗ − fm‖B ≤ C∗((ln m)/m), and

deduce a pointwise approximation of f ∗.

3.2.1. The induced system We induce T on 1 := [x0, 1]. For n ≥ 0 we define

xn+1 = T−1
1 (xn).

Set
W0 := (x0, 1) and Wn := (xn, xn−1), n ≥ 1.

For n ≥ 1, we define
Zn := T−1

2 (Wn−1).

Then we define the induced map T̂ :1→1 by

T̂ (x)= T n(x) for x ∈ Zn . (3.1)

Observe that
T (Zn)=Wn−1 and τZn = n,

where τZn is the first return time of Zn to 1. An example of the map T and its induced
counterpart T̂ are shown in Figures 1 and 2 respectively. It is well known (see, for
instance, [24]) that the T̂ defined in (3.1) satisfies the assumptions of §2.1, and, by
Theorem 2.1, one can obtain a rigorous uniform approximation of its invariant density
f̂ . Moreover, by [3, Lemma 3.3], f ∗, the invariant density of T , can be written in terms
of f̂ :

f ∗(x)=


cτ f̂ (x) for x ∈1,

cτ
∞∑

n=1

(
f̂ (T−1

2 T−(n−1)
1 x)

|DT (n)(T−1
2 T−(n−1)

1 x)|

)
for x ∈ I\1,

(3.2)

where f̂ is the T̂ -invariant density, c−1
τ =

∑
∞

k=1 τZk µ̂(Zk), and µ̂= f̂ · λ̂.

3.2.2. The approximate density and the statement of the main result. Set

fm(x)
def
:=


cτ,m f̂m(x) for x ∈1,

cτ,m
∞∑

n=1

(
f̂m(T

−1
2 T−(n−1)

1 x)

|DT (n)(T−1
2 T−(n−1)

1 x)|

)
for x ∈ I\1,

(3.3)

† In what follows, we only use the metric properties of B. In particular, the completeness of B is not needed in
our proofs.
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FIGURE 1. A typical example of a map T which belongs to the family defined in §3.1.
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FIGURE 2. This figure shows the induced map T̂ corresponding to the map T of Figure 1.
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where f̂m = Pm f̂m , and Pm is the Markov discretization of L̂ defined in (2.3), c−1
τ,m =∑

∞

k=1 τZk µ̂m(Zk), and µ̂m = f̂m · λ̂. The next result shows that the function fm defined in
(3.3) provides a rigorous pointwise approximation of f ∗.

THEOREM 3.1. For any m ∈ N we have

‖ f ∗ − fm‖B ≤ C∗
ln m

m
,

where

C∗ = Ĉ

(
1+

x1+α
0

β
+ M(1+ α)

)
C4;

in particular, Ĉ is the computable constant of Theorem 2.1,

M :=
C1+α

1 e2C0C2α
1

β
,

C0 :=
α(1+ α)

2
[1+ 2δ0(x0)+ δ

2
0(x0)], C1 := (2[21/α

− 1])1/α,

C4 := 1+ C3

(
CLY

1− γ
+

1
|1|

)
, C3 :=

1
β
+

C2

β|1|

(
α +

2− α
1− α

)
,

and

C2 =
1− x0

x1+α
0

21+(1/α)
[21/α

− 1]1+(1/α).

As a direct consequence of Theorem 3.1 we obtain the required pointwise approximation
of f ∗.

COROLLARY 3.2. For any x ∈ (0, 1] we have

| f ∗(x)− fm(x)| ≤
C∗

x1+α

ln m

m
.

Proof. For x ∈ (0, 1], we have

| f ∗(x)− fm(x)| =
1

x1+α |x
1+α( f ∗(x)− fm(x))|

≤
1

x1+α ‖ f ∗ − fm‖B ≤
1

x1+α C∗
ln m

m
. 2

4. Proofs
4.1. Technical lemmas. We first introduce notation of certain functions which appear in
the proof of Theorem 3.1. For x ∈ I\1, set

g(x) :=
(T1x/x)1+α

T ′1(x)
,

G1(x) :=
x1+α

|T ′2(T
−1

2 x)|
and for n ≥ 2, Gn(x) :=

x1+α

|DT (n)(T−1
2 T−(n−1)

1 x)|
.
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LEMMA 4.1. For x ∈ I\1, we have

[1+ xα + xαδ0(x)]
1+α
≤ 1+ (1+ α)[xα + xαδ0(x)] +

α(1+ α)
2

[xα + xαδ0(x)]
2.

Proof. Let

φ1(x) := [1+ xα + xαδ0(x)]
1+α

and

φ2(x) := 1+ (1+ α)[xα + xαδ0(x)] +
α(1+ α)

2
[xα + xαδ0(x)]

2.

Note that φ1(0)= φ2(0)= 1. Therefore, to prove the lemma, it is enough to prove that
φ′1(x)≤ φ

′

2(x). We have

φ′1(x)= (1+ α)(1+ ξ(x))
αξ ′(x),

φ′2(x)= (1+ α)(1+ αξ(x))ξ
′(x),

where ξ(x) := xα + xαδ0(x)≥ 0†. Notice that ξ ′(x)≥ 0. Thus, we only need to show that

(1+ ξ(x))α ≤ (1+ αξ(x)). (4.1)

Indeed, (4.1) holds because (1+ ξ(0))α = (1+ αξ(0))= 1 and

[(1+ ξ(x))α]′ =
α

(1+ ξ(x))1−α
ξ ′(x)≤ αξ ′(x)= [1+ αξ(x)]′. 2

LEMMA 4.2. For x ∈ I\1, we have g(x)≤ 1+ C0x2α , where

C0 =
α(1+ α)

2
[1+ 2δ0(x0)+ δ

2
0(x0)].

Proof. Using Lemma 4.1, we have

g(x) =
(T1x/x)1+α

T ′1(x)
=
[1+ xα + xαδ0(x)]1+α

1+ (1+ α)xα + xαδ1(x)

≤
1+ (1+ α)[xα + xαδ0(x)] + (α(1+ α)/2)[xα + xαδ0(x)]2

1+ (1+ α)xα + xαδ1(x)

=
1+ (1+ α)[xα + xαδ0(x)]

1+ (1+ α)xα + xαδ1(x)
+
(α(1+ α)/2)[xα + xαδ0(x)]2

1+ (1+ α)xα + xαδ1(x)

≤ 1+
α(1+ α)

2
[xα + xαδ0(x)]

2

= 1+
α(1+ α)

2
(1+ 2δ0(x)+ δ

2
0(x))x

2α
≤ 1+ C0x2α. 2

LEMMA 4.3. Let xn = T−n
1 x0. For n ≥ 1, we have xn ≤ C1n−1/α, where C1 = (2[21/α

−

1])1/α.

† It is obvious that ξ(0)= 0 and for x > 0, ξ(x) > 0.
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Proof. Observe that C1 > 1≥ T−1
1 (x0)= x1. Therefore, the lemma is true for n = 1. Next,

for n ≥ 2, we suppose that xn−1 ≤ C1(n − 1)−1/α, and prove that xn ≤ C1n−1/α. If it is
false, that is xn > C1n−1/α, then by our inductive statement on xn−1, we have

C1(n − 1)−1/α
≥ xn−1 = T1(xn) > C1n−1/α

[1+ Cα
1 n−1

+ Cα
1 n−1δ0(C1n−1/α)].

This is equivalent to

n

[(
1+

1
n − 1

)1/α

− 1
]
> Cα

1 [1+ δ0(C1n−1/α)].

By convexity of the function z1/α,

n

n − 1
[21/α

− 1]> Cα
1 [1+ δ0(C1n−1/α)],

that is,
Cα

1 <
n

n − 1
[21/α

− 1]/[1+ δ0(C1n−1/α)]< 2[21/α
− 1] = Cα

1 .

This represents a contradiction, and therefore, xn ≤ C1n−1/α . This completes the proof of
the lemma. 2

LEMMA 4.4. For x ∈ I\1, we have

G1(x)≤
x1+α

0

β
,

and for n ≥ 2,
Gn(x)≤ M(n − 1)−(1+(1/α)),

where M = (C1+α
1 e2C0C2α

1 )/β.

Proof. For n = 1, it is easy to see that

G1(x)≤
x1+α

0

β
.

For n ≥ 2, we have

Gn(x) =
x1+α

|DT (n)(T−1
2 T−(n−1)

1 x)|

=
x1+α

|D(T1 ◦ T1 ◦ · · · ◦ T1 ◦ T2)(T
−1

2 T−(n−1)
1 x)|

=
x1+α

T ′1(T
−1

1 x) · T ′1(T
−2

1 x) · · · T ′1(T
−(n−1)
1 x) · |T ′2(T

−1
2 T−(n−1)

1 x)|

=
(x/T−1

1 x)1+α

T ′1(T
−1

1 x)
·
(T−1

1 x/T−2
1 x)1+α

T ′1(T
−2

1 x)
· · ·

(T−(n−2)
1 x/T−(n−1)

1 x)1+α

T ′1(T
−(n−1)

1 x)

·
(T−(n−1)

1 x)1+α

|T ′2(T
−1

2 T−(n−1)
1 x)|
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= g(T−1
1 x) · g(T−2

1 x) · · · g(T−(n−1)
1 x) ·

(T−(n−1)
1 x)1+α

|T ′2(T
−1

2 T−(n−1)
1 x)|

≤ g(T−1
1 x) · g(T−2

1 x) · · · g(T−(n−1)
1 x) ·

(T−(n−1)
1 x)1+α

β
. (4.2)

By Lemmas 4.2 and 4.3, for any k ≥ 1, x ∈ [0, x0), we have

g(T−k
1 (x)) ≤ 1+ C0(T

−k
1 (x))2α ≤ 1+ C0(T

−k
1 (x0))

2α

= 1+ C0(xk)
2α
≤ 1+ C0C2α

1 k−2. (4.3)

Therefore, using (4.2) and (4.3), for n ≥ 2, we obtain

Gn(x) ≤
n−1∏
k=1

g(T−k
1 (x)) ·

(T−(n−1)
1 (x))1+α

β

≤

n−1∏
k=1

(1+ C0C2α
1 k−2) ·

C1+α
1 (n − 1)−(1+(1/α))

β

= exp
{n−1∑

k=1

ln(1+ C0C2α
1 k−2)

}
·

C1+α
1 (n − 1)−(1+(1/α))

β

≤ exp
{n−1∑

k=1

C0C2α
1 k−2

}
·

C1+α
1 (n − 1)−(1+(1/α))

β

≤ exp
{

C0C2α
1

(
2−

1
n − 1

)}
·

C1+α
1 (n − 1)−(1+(1/α))

β

≤ M(n − 1)−(1+(1/α)). 2

Finally we estimate the difference between the normalizing constants appearing in
equations (3.2) and (3.3).

LEMMA 4.5.
∞∑

n=1

n · λ̂(Zn)≤ C3,

where

C3 =
1
β
+

C2

β(1− x0)

(
α +

2− α
1− α

)
and

C2 =
1− x0

x1+α
0

21+(1/α)
[21/α

− 1]1+(1/α).

Proof. By Lemma 4.3, we have

λ(Wn) = xn−1 − xn = T1(xn)− xn =
1− x0

x1+α
0

x1+α
n

≤
1− x0

x1+α
0

C1+α
1 n−(1+(1/α)) = C2n−(1+(1/α)).

Pointwise approximations of invariant densities 1037

https://doi.org/10.1017/etds.2013.91 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2013.91


Since T2(Zn)=Wn−1, we have

∞∑
n=1

n · λ(Zn) ≤ λ(Z1)+

∞∑
n=2

n ·
λ(Wn−1)

β

≤
1− x0

β
+

∞∑
n=2

n(xn−2 − xn−1)

β

=
1− x0

β
+

∞∑
n=1

(n + 1)(xn−1 − xn)

β

=
1− x0

β
+

∞∑
n=1

n(xn−1 − xn)

β
+

∞∑
n=1

(xn−1 − xn)

β

≤
1− x0

β
+

∞∑
n=1

C2

β
n−1/α

+

∞∑
n=1

C2

β
n−(1+(1/α))

≤
1− x0

β
+

C2

β

(
1+

∫
∞

1
x−1/αdx

)
+

C2

β

(
1+

∫
∞

1
x−(1+(1/α)) dx

)
=

1− x0

β
+

C2

β

(
α +

2− α
1− α

)
= (1− x0) · C3.

This completes the proof of the lemma since λ̂(·)= λ(·)/(1− x0). 2

LEMMA 4.6. We have

|cτ,m − cτ | ≤ C3 · Ĉ
ln m

m
.

Proof. Using the fact that cτ ≤ 1, cτ,m ≤ 1 and Theorem 2.1, we have

|cτ,m − cτ | ≤

∣∣∣∣ 1∑
∞

k=1 τZk µ̂m(Zk)
−

1∑
∞

k=1 τZk µ̂(Zk)

∣∣∣∣
=

∣∣∣∣ ∑
∞

k=1 k[µ̂(Zk)− µ̂m(Zk)]∑
∞

k=1 τZk µ̂m(Zk) ·
∑
∞

k=1 τZk µ̂(Zk)

∣∣∣∣
≤

( ∞∑
k=1

k
∫

Zk

| f̂ − f̂m | dλ̂

)

≤ ‖ f̂ − f̂m‖∞

( ∞∑
k=1

kλ̂(Zk)

)
≤ Ĉ

ln m

m
· C3.

In the last estimate, we have used Lemma 4.5. 2

We now have all our tools ready to prove Theorem 3.1.
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Proof of Theorem 3.1. Using (3.2) and (3.3), we have

‖ f ∗ − fm‖B = sup
x∈(0,1]

|x1+α( f ∗(x)− fm(x))|

≤ sup
x∈I\1

|x1+α( f ∗(x)− fm(x))| + sup
x∈1
|x1+α( f ∗(x)− fm(x))|

= sup
x∈I\1

∣∣∣∣ ∞∑
n=1

x1+α

DT (n)(T−1
2 T−(n−1)

1 x)
(cτ f̂ (T−1

2 T−(n−1)
1 x)

− cτ,m f̂m(T
−1

2 T−(n−1)
1 x))

∣∣∣∣
+ sup

x∈1
|x1+α(cτ f̂ (x)− cτ,m f̂m(x))|. (4.4)

Notice that for x ∈ I\1, and n ≥ 1, zn := T−1
2 T−(n−1)

1 x ∈1. Then using the fact that
cτ ≤ 1, cτ,m ≤ 1, Theorem 2.1, Lemma 4.6, and (4.4), we obtain

‖ f ∗ − fm‖B ≤ sup
x∈I\1

∣∣∣∣ ∞∑
n=1

x1+α

DT (n)(T−1
2 T−(n−1)

1 x)

∣∣∣∣ · sup
zn∈1

|(cτ f̂ (zn)− cτ,m f̂m(zn)|

+ sup
x∈1
|cτ f̂ (x)− cτ,m f̂m(x)|

≤ sup
x∈I\1

∣∣∣∣ ∞∑
n=1

x1+α

DT (n)(T−1
2 T−(n−1)

1 x)

∣∣∣∣
×

(
sup

zn∈1

| f̂ (zn)− f̂m(zn)| + |cτ − cτ,m | sup
zn∈1

| f̂ (zn)|

)
+ sup

x∈1
| f̂ (x)− f̂m(x)| + |cτ − cτ,m | sup

x∈1
| f̂ (x)|

≤ Ĉ
ln m

m

(
sup

x∈I\1

∞∑
n=1

|Gn(x)|(1+C3 sup
zn∈1

| f̂ (zn)|)+(1+C3 sup
x∈1
| f̂ (x)|)

)
.

(4.5)

Since f̂ ∈ BV (1), we have supx∈1 | f̂ (x)| ≤ V1 f̂ + (1/(1− x0))‖ f̂ ‖1,1. Therefore,
using the Lasota–Yorke inequality (2.1), we obtain supx∈1 | f̂ (x)| ≤ CLY/(1− γ )+
1/(1− x0). Using Lemma 4.4 and (4.5), we obtain

‖ f ∗ − fm‖B ≤ C4Ĉ
ln m

m

(
1+

x1+α
0

β
+

∞∑
n=2

M(n − 1)−(1+(1/α))
)

= C4Ĉ
ln m

m

(
1+

x1+α
0

β
+ M

∞∑
n=1

n−(1+(1/α))
)

≤ C4Ĉ

(
1+

x1+α
0

β
+ M(1+ α)

)
·

ln m

m
. 2

5. Algorithm and feasibility
Given a map T satisfying the conditions of §3.1, and x∗ ∈ (0, 1], we provide an algorithm
based on Corollary 3.2 that can be used to approximate f ∗(x∗), the T -invariant density at
the point x∗, up to a pre-specified approximation error R.
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5.1. Algorithm and output.
(1) Compute the constants β, M, C4 which appear in Theorem 3.1.
(2) Compute an upper bound on the constant Ĉ which appears in Theorem 2.1.
(3) Then use (1), (2) to compute C∗ which appears in Theorem 3.1.
(4) Find m∗, number of bins, such that

ln m∗

m∗
≤

x∗1+α

C∗
·

R

3
.

(5) Compute an approximate fixed point†. ˜̂fm > 0 of Pm so that ‖ ˜̂fm − f̂m‖∞ ≤ ε on
1, where ε is chosen such that

| f̃m(x
∗)− fm(x

∗)| ≤
R

3
,

where

f̃m(x)= c̃τ,m
∞∑

n=1

( ˜̂fm(T
−1

2 T−(n−1)
1 x)

|DT (n)(T−1
2 T−(n−1)

1 x)|

)
,

c̃−1
τ,m :=

∑
∞

k=1 k ˜̂µm(Zk) and ˜̂µ= ˜̂fm · λ̂.
(6) Find N∗ such that∣∣∣∣c̃τ,m(N∗) N∗∑

n=1

( ˜̂fm(T
−1
2 T−(n−1)

1 x∗)

|DT (n)(T−1
2 T−(n−1)

1 x∗)|

)
− f̃m(x

∗)

∣∣∣∣≤ R

3
,

where c̃−1
τ,m(N

∗) :=
∑N∗

k=1 k ˜̂µm(Zk).
(7) The approximate value of f ∗(x∗) is given by‡:

f̃m,N∗(x
∗) := c̃τ,m(N

∗)

N∗∑
n=1

( ˜̂fm(T
−1

2 T−(n−1)
1 x∗)

|DT (n)(T−1
2 T−(n−1)

1 x∗)|

)
.

5.2. Feasibility.
• For (1), once the map T is given, the constants β, M, C4 can be computed

analytically.
• For (2), the constant Ĉ appears in the approximation done on the induced system (see

Theorem 2.1). The induced system is a uniformly expanding map. The computation
of Ĉ can be done following the ideas of [2], which is based on the spectral stability
result of [16].

• (3) is a consequence of (1) and (2).

† Recall that f̂m is the fixed point of the finite rank operator Pm defined in (2.3). Here ˜̂fm is the computer
approximation of f̂m , i.e. (5) of the Algorithm takes care of the computer roundoff errors in computing the

fixed point of Pm . Since f̂m > 0, we also ask in this computation that ˜̂f m > 0. Note that the strict positivity
of f̂m follows from the fact that the induced map T̂ is a piecewise onto map, which implies that the matrix
representation of P is irreducible, and consequently its Perron eigenvector is strictly positive (see Perron–
Frobenius theorem [17]).
‡ It is very important to notice that the approximation f̃m,N∗ (x

∗) is a finite sum.
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• Once C∗ is computed in (3), with m := m∗ we know, from Corollary 3.2, that
| fm(x∗)− f ∗(x∗)| ≤ R/3.

• For (5) we should find out how small ε should be to ensure

| f̃m(x
∗)− fm(x

∗)| ≤
R

3
.

We propose the following method. To work out explicitly all the constants needed
in verifying (5), we suppose x∗ ∈Wk , and T1(x)= x + 2αx1+α . In the following
estimates (5.2), (5.3) and (5.4), we prepare the ingredients to achieve our job. Firstly,
following exactly the argument of [3, Lemma 5.2], for x∗ ∈Wk ,

|DT (n)(T−1
2 T−(n−1)

1 x∗)| ≥ β

(
n + k

k + 2

)ηk

, (5.1)

where

ηk =
d(k + 2)
k + 2+ d

, d = (1+ α)2α
[

1

2(1+ α)1/α
+ d1

]α
> 1,

and

d1 =
1

2(α)1/α
−

1

2(1+ α)1/α
.

Consequently, ηk > 1, and for x∗ ∈Wk ,

∞∑
n=1

1

|DT (n)(T−1
2 T−(n−1)

1 x∗)|
≤

1
β

(
k + 2

k

)ηk k

ηk − 1
. (5.2)

Secondly, using the same argument as that in the proof of Lemma 4.6, we have

|c̃τ,m − cτ,m | ≤ C3 · ‖
˜̂f m − f̂m‖∞. (5.3)

Thirdly, it is well known† that for g ∈ BV (1) we have V1Qm g ≤ g, where Qm is
the discretization defined in §2.2. Therefore, Pm satisfies the same Lasota–Yorke
inequality (2.1) as L̂. In particular, this implies that f̂m , the Pm fixed point, satisfies:

‖ f̂m‖∞ ≤
CLY

1− γ
+

1
|1|

. (5.4)

Consequently, using (5.2)–(5.4) and that c̃τ,m ≤ 1, we obtain

| f̃m(x
∗)− fm(x

∗)|

≤ ‖
˜̂f m − f̂m‖∞ ·

1
β

(
k + 2

k

)ηk k

ηk − 1

[
1+ C3

(
CLY

1− γ
+

1
|1|

)]
. (5.5)

Thus, to ensure | f̃m(x∗)− fm(x∗)| ≤ R/3, ˜̂f m should be computed to a precision
that satisfies

‖
˜̂f m − f̂m‖∞

≤
1

(1/β)((k + 2)/k)ηk (k/(ηk − 1))[1+ C3(CLY/(1− γ )+ 1/|1|)]
·

R

3
.

† See, for instance, [9, Lemma 2.3]
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• For (6), as in (5), we also suppose x∗ ∈Wk , and T1(x)= x + 2αx1+α . Firstly, by
(5.1), each term in the sum

∞∑
n=1

( ˜̂fm(T
−1
2 T−(n−1)

1 x∗)

|DT (n)(T−1
2 T−(n−1)

1 x∗)|

)
(5.6)

is bounded above by

sup
y∈1

˜̂f m(y) ·
1
β

(
k + 2
n + k

)ηk

.

Since ηk > 1, the tail of the sum, starting from N∗1 + 1, in (5.6) can be approximated
as follows.

Choose N∗1 such that

sup
y∈1

˜̂f m(y) ·
(N∗1 + k)−ηk+1

ηk − 1
· (k + 2)ηk ≤

R

6
. (5.7)

Secondly, using
∑
∞

k=1 k ˜̂µm(Zk)≥ 1, and recalling that α ∈ (0, 1) and infy∈1
˜̂f m(y) > 0, we have

|c̃τ,m − c̃τ,m(N
∗

2 )| =

∑
∞

N∗2+1 k ˜̂µm(Zk)∑
∞

k=1 k ˜̂µm(Zk) ·
∑N∗2

k=1 k ˜̂µm(Zk)

≤ sup
y∈1

˜̂f m

∑
∞

N∗2+1 kλ̂(Zk)∑N∗2
k=1 k ˜̂µm(Zk)

≤ sup
y∈1

˜̂f m

∑
∞

N∗2+1(C2/β) · k · k−1−(1/α)

infy∈1
˜̂f m · λ̂(Z1)

≤
supy∈1

˜̂f m

infy∈1
˜̂f m · λ̂(Z1)

C2

β
·

N∗2
(−1/α)+1

(1/α)− 1
. (5.8)

Thirdly, using (5.2) and (5.8), we have

|c̃τ,m − c̃τ,m(N
∗

2 )| f̃m,N∗2
(x∗)

≤

(
supy∈1

˜̂f m

infy∈1
˜̂f m · λ̂(Z1)

C2

β
·

N∗2
(−1/α)+1

(1/α)− 1

)
f̃m(x

∗)

≤
supy∈1

˜̂f
2

m

infy∈1
˜̂f m · λ̂(Z1)

C2

β2 ·
N∗2

(−1/α)+1

(1/α)− 1

(
k + 2

k

)ηk k

ηk − 1
. (5.9)

Choose† N∗2 such that the right-hand side of (5.9) is not greater than R/6. Finally,
choose N∗ =max{N∗1 , N∗2 }. This will lead to the desired estimate | f̃m(x∗)−
f̃m,N∗(x∗)| ≤ R/3.

† In our analysis we verified many items of the Algorithm analytically. Many of these steps may be verified
iteratively using a computer. For instance, N∗2 may be found iteratively using a computer. Simply keep∑N∗2

k=1 k ˜̂µm (Zk ) in the denominator on the right-hand side of (5.9) instead of replacing it by infy∈1
˜̂f m · λ̂(Z1).

The iterative method may find a smaller value of N∗2 that achieves the job.
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• For (7), using the above six steps, we obtain

| f ∗(x∗)− f̃m,N∗(x
∗)| ≤ | f ∗(x∗)− fm(x

∗)| + | fm(x
∗)

− f̃m(x
∗)| + | f̃m(x

∗)− f̃m,N∗(x
∗)| ≤ R;

i.e. the finite sum

f̃m,N∗(x
∗) := c̃τ,m(N

∗)

N∗∑
n=1

( ˜̂f m(T
−1

2 T−(n−1)
1 x∗)

|DT (n)(T−1
2 T−(n−1)

1 x∗)|

)
is a rigorous approximation of f ∗(x∗) up to the pre-specified error R.
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