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Multiplicity Results for Nonlinear
Neumann Problems

Michael Filippakis, Leszek Gasiński and Nikolaos S. Papageorgiou

Abstract. In this paper we study nonlinear elliptic problems of Neumann type driven by the p-Laplac-

ian differential operator. We look for situations guaranteeing the existence of multiple solutions. First

we study problems which are strongly resonant at infinity at the first (zero) eigenvalue. We prove

five multiplicity results, four for problems with nonsmooth potential and one for problems with a

C1-potential. In the last part, for nonsmooth problems in which the potential eventually exhibits a

strict super-p-growth under a symmetry condition, we prove the existence of infinitely many pairs of

nontrivial solutions. Our approach is variational based on the critical point theory for nonsmooth

functionals. Also we present some results concerning the first two elements of the spectrum of the

negative p-Laplacian with Neumann boundary condition.

1 Introduction

In this paper we study the following Neumann problem with nonsmooth potential:

(1.1)

{

−div
(

‖∇x(z)‖
p−2

RN ∇x(z)
)

∈ ∂ j
(

z, x(z)
)

for a.a. z ∈ Z
∂x
∂n

= 0 for z ∈ ∂Z,

with p ∈ (1,+∞). Here Z ⊆ R
N denotes a bounded domain with a C2-boundary

∂Z, n is the outward unit normal on the boundary and the boundary condition is in-

terpreted in the sense of trace. In the present work we are interested in multiplicity re-

sults for problem (1.1). In contrast to the Dirichlet problem, the Neumann problem

has not been studied so extensively and only recently there have been some multiplic-

ity results by Binding–Drabek–Huang [3] and Faraci [10]. We should also mention

the earlier works on ordinary differential equations by Harris [11] and Hart–Lazer–

McKenna [12]. In Binding–Drabek–Huang [3], the authors consider a particular

right-hand side nonlinearity of the form

f (z, ζ) = λa(z)|ζ|p−2ζ + β(z)|ζ|p∗−2ζ

(p∗ being the critical Sobolev exponent), while in Faraci [10], the nonlinearity has

the form

f (z, ζ) = a(z)g(ζ) − λ(z)|ζ|p−2ζ,
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with a ∈ L∞(Z)+, λ ∈ L∞(Z)+, λ(z) ≥ c > 0 for almost all z ∈ Z and N < p

(low dimensional problem). So both works exclude from their analysis the case of

strong resonance at infinity at the first (zero) eigenvalue of the negative p-Laplacian

with Neumann boundary condition. We recall that according to the terminology

coined by Bartolo–Benci–Fortunato [2], a problem is strongly resonant at the first

(zero) eigenvalue if for the right-hand side nonlinearity f (ζ) and the corresponding

potential function

F(ζ) :=

∫ ζ

0

f (r) dr,

we have f (ζ) → 0 as |ζ| → +∞ and limζ→±∞ F(ζ) = ξ± ∈ R
N . As will be-

come evident by our analysis, strongly resonant problems exhibit a certain lack of

compactness, which complicates things. We should also say that of the works on or-

dinary differential equations mentioned earlier, Harris [11] considers problems with

asymmetric nonlinearities, while Hart–Lazer–McKenna [12] assume a C1 nonlinear-

ity f (ζ) with a certain convenient behavior at ±∞ of f ′. We emphasize that in all the

aforementioned problems, the nonlinearity f (z, ζ) is at least a Caratheodory func-

tion, which of course means that corresponding potential function

F(z, ζ) :=

∫ ζ

0

f (z, r) dr

is C1 in ζ ∈ R (smooth problem). In contrast, in our problem the potential function

j(z, ζ) is only locally Lipschitz in ζ ∈ R (nonsmooth problem). So our tools are

different and are based on the nonsmooth critical point theory as this was developed

originally by Chang [5] and extended recently by Kourogenis–Papageorgiou [16].

Also in Section 3, we present some simple but nevertheless useful observations about

the spectrum of the negative p-Laplacian with Neumann boundary condition.

In the next section, for the convenience of the reader, we present some basic defini-

tions and facts from the subdifferential theory of locally Lipschitz functions, which is

the main analytical tool in the nonsmooth critical point theory, and also recall some

notions and results from the nonsmooth critical point theory, which we shall need in

the sequel. For further information on locally Lipschitz functions and their subdif-

ferential theory, we refer to Clarke [7] and Denkowski–Migórski–Papageorgiou [8].

2 Mathematical Background

Let X be a Banach space and X∗ its topological dual. By ‖ · ‖X we denote the norm

of X and by 〈 · , · 〉X the duality brackets for the pair (X,X∗). A function ϕ : X 7→ R

is said to be locally Lipschitz, if for every x ∈ X, we can find an open set U ⊆ X

with x ∈ U , and a constant kU > 0 depending on U , such that |ϕ(z) − ϕ(y)| ≤
kU‖z− y‖X for all z, y ∈ U . From convex analysis we know that a proper, convex and

lower semicontinuous function ψ : X 7→ R̄ := R ∪ {+∞} is locally Lipschitz in the

interior of its effective domain dom ψ := {x ∈ X : ψ(x) < +∞} (see Denkowski–

Migórski–Papageorgiou [8, Proposition 5.2.10, p. 532]). In particular, an R-valued,

convex and lower semicontinuous function is locally Lipschitz. Moreover, if X is
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finite dimensional, then every convex and R-valued function defined on X is locally

Lipschitz.

In analogy with the directional derivative of a convex function, we define the gen-

eralized directional derivative of a locally Lipschitz function ϕ : X → R at x ∈ X in

the direction h ∈ X by

ϕ0(x; h) := lim sup
x ′→x
tց0

ϕ(x ′ + th) − ϕ(x ′)

t
.

The function X ∋ h 7→ ϕ0(x; h) ∈ R is sublinear, continuous and by the Hahn–

Banach theorem it is the support function of a nonempty, convex and w∗-compact

subset of X∗, defined by

∂ϕ(x) := {x∗ ∈ X∗ : 〈x∗, h〉X ≤ ϕ0(x; h) for all h ∈ X}.

The multifunction X ∋ x 7→ ∂ϕ(x) ∈ 2X∗

\ {∅} is known as the Clarke (or gen-

eralized) subdifferential of ϕ at x. This multifunction is upper semicontinuous form

X with the norm topology into X∗ with the w∗-topology, i.e., for all w∗-closed sets

C ⊆ X∗, we have that ∂ϕ−(C) is strongly closed in X, where

∂ϕ−(C) = {x ∈ X : ∂ϕ(x) ∩C 6= ∅}

(see Denkowski–Migórski–Papageorgiou [8, p. 36, p. 407]). In particular, then Gr ∂ϕ
is closed in X × X∗

w∗ , where

Gr ∂ϕ = {(x, x∗) ∈ X × X∗ : x∗ ∈ ∂ϕ(x)}.

If ϕ, ψ : X 7→ R are two locally Lipschitz functions, then

∂(ϕ + ψ)(x) ⊆ ∂ϕ(x) + ∂ψ(x) ∀x ∈ X

and

∂(tϕ)(x) = t∂ϕ(x) ∀x ∈ X, t ∈ R.

If ϕ : X 7→ R is continuous, convex (thus locally Lipschitz as well), then for all x ∈
X, the generalized subdifferential introduced above coincides with the subdifferential

of ϕ in the sense of convex analysis, given by

∂ϕ(x) := {x∗ ∈ X∗ : 〈x∗, y − x〉X ≤ ϕ(y) − ϕ(x) for all y ∈ X}.

If ϕ is strictly differentiable at x (in particular if ϕ is continuously Gâteaux differen-

tiable at x), then ∂ϕ(x) = {ϕ ′(x)}.

A point x ∈ X is a critical point of the locally Lipschitz function ϕ : X → R, if

0 ∈ ∂ϕ(x). If x ∈ X is a critical point, the value c = ϕ(x) is a critical value of ϕ. It is

easy to check that, if x ∈ X is a local extremum of ϕ (i.e., a local minimum or a local

maximum), then 0 ∈ ∂ϕ(x) (i.e., x ∈ X is a critical point).

In the classical (smooth) theory, a compactness-type condition known as the

Palais–Smale condition plays the crucial role. In the present nonsmooth setting this

condition takes the following form:
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A locally Lipschitz function ϕ : X → R satisfies the nonsmooth Palais–Smale

condition at level c ∈ R (PSc-condition for short), if every sequence {xn}n≥1 ⊆
X such that ϕ(xn) → c as n → +∞ and

mϕ(xn) → 0 as n → +∞,

where

mϕ(xn) := min{‖x∗‖X∗ : x∗ ∈ ∂ϕ(xn)}

has a strongly convergent subsequence. If this is true for every level c ∈ R,

then we simply say that ϕ satisfies the nonsmooth Palais–Smale condition (PS-

condition for short).

We shall also use a more general version of this compactness-type condition:

A locally Lipschitz function ϕ : X → R satisfies the nonsmooth C-condition at

level c ∈ R (nonsmooth Cc-condition for short), if every sequence {xn}n≥1 ⊆ X

such that ϕ(xn) → c and

(1 + ‖xn‖)mϕ(xn) → 0 as n → +∞,

has a strongly convergent subsequence. If this is true for every level c ∈ R, then

we simply say that ϕ satisfies the nonsmooth C-condition.

Next we quote the result of Szulkin [18, Lemma 3.1, p. 81], which will be needed

in what follows.

Theorem 2.1 If X is a Banach space, χ : X → R̄ = R ∪ {+∞} is a convex lower

semicontinuous function with χ(0) = 0 and

−‖h‖X ≤ χ(h) ∀h ∈ X,

then there exists v∗ ∈ X∗ such that ‖v∗‖X∗ ≤ 1 and

〈v∗, h〉X ≤ χ(h) ∀h ∈ X.

Now, let us recall the following geometrical notion from critical point theory (see

Struwe [17, p. 116] and Denkowski–Migórski–Papageorgiou [9, p. 178]).

Definition 2.2 Let Y be a Hausdorff topological space and E1, D two nonempty

closed sets. We say that E1 and D link in Y , if

(a) E1 ∩ D = ∅,

(b) there exists a closed set E ⊇ E1 such that for any η ∈ C(E; Y ), with η|E1
= idE1

,

we have that η(E) ∩ D 6= ∅.

Finally, we recall the abstract minimax principle due to Kourogenis–Papageorgiou

[16, Theorem 5, p. 253]. In fact the result of Kourogenis–Papageorgiou [16] is more

general. However, the formulation that follows suffices for our purposes here.
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Theorem 2.3 If X is a reflexive Banach space, E1 and D are nonempty subsets of X

with D closed, E1 and D link in X, supE1
ϕ < infD ϕ, ϕ : X → R is locally Lipschitz,

satisfies the nonsmooth Cc-condition with

c := inf
η∈Γ

sup
v∈E

ϕ
(

η(v)
)

,

where

Γ := {η ∈ C(E; X) : η|E1
= idE1

}

and E ⊇ E1 is as in the definition of linking sets, then c ≥ infD ϕ and c is a critical value

of ϕ, i.e., there exists a critical point x0 ∈ X of ϕ such that ϕ(x0) = c. Moreover, if

c = infD ϕ, then x0 ∈ D.

3 Spectral Properties of the p-Laplacian

In this section we develop some results concerning the beginning of the spectrum of

the negative p-Laplacian with Neumann boundary condition. So we deal with the

following nonlinear eigenvalue problem:

(3.1)

{

−div
(

‖∇x(z)‖
p−2

RN ∇x(z)
)

= λ|x(z)|p−2x(z) for a.a. z ∈ Z
∂x
∂n

= 0 on ∂Z,

with p ∈ (1,+∞). We say that λ ∈ R
N is an eigenvalue of the p-Laplacian with

Neumann boundary condition (henceforth denoted by
(

−∆p,W
1,p(Z)

)

), provided

that problem (3.1) has a nontrivial solution, which is known as an eigenfunction

corresponding to the eigenvalue λ. From nonlinear regularity theory (see e.g. Anane

[1]), we know that every eigenfunction belongs to C1,β(Z̄) with β ∈ (0, 1). Remark

that λ = 0 is an eigenvalue with the constant functions as eigenfunctions. More

precisely we have the following Proposition.

Proposition 3.1 λ0 = 0 is the first eigenvalue of
(

−∆p,W
1,p(Z)

)

and is isolated

and simple.

Proof First we remark that problem (3.1) cannot have negative eigenvalues. Indeed,

if λ < 0 is an eigenvalue with a corresponding eigenfunction x, if we multiply with

x(z) and integrate on Z, via the Green identity, we obtain

‖∇x‖
p
p = λ‖x‖

p
p,

which cannot be true for λ < 0.

The simplicity of λ0 = 0 is a direct consequence of the fact that

0 = inf
x∈W 1,p (Z)

x 6=0

‖∇x‖
p
p

‖x‖
p
p

.
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Finally suppose that λ0 = 0 is not isolated. So we can find a sequence of nonzero

eigenvalues {λn}n≥1 such that λn ց 0 as n → +∞. Consider a sequence of associ-

ated eigenfunctions {xn}n≥1 ⊆ C1(Z̄) with ‖xn‖p = 1 for n ≥ 1. We have

λn =
‖∇xn‖

p
p

‖xn‖
p
p

= ‖∇xn‖
p
p ց 0 as n → +∞

and so the sequence {xn}n≥1 ⊆ W 1,p(Z) is bounded. By passing to a subsequence if

necessary, we may assume that

xn → x weakly in W 1,p(Z),

xn → x in Lp(Z),

with some x ∈ W 1,p(Z). We have that ‖x‖p = 1 and ‖∇x‖p = 0, so

x =
±1

|Z|
1
p

N

,

with | · |N denoting the Lebesgue measure on R
N . Using as a test function u ≡ 1, we

obtain
∫

Z

|xn(z)|p−2xn(z) dz = 0

and so by passing to the limit as n → +∞, we obtain
∫

Z

|x(z)|p−2x(z) dz = 0,

a contradiction.

Next we shall characterize the first nonzero element of the spectrum of
(

−∆p,

W 1,p(Z)
)

. Suppose that λ > 0 is a nonzero eigenvalue of (3.1) and u is an associate

eigenfunction. Integrating (3.1) and using the Green identity (see Kenmochi [15]

and Casas–Fernandez [4] or Hu–Papageorgiou [13, p. 884]), we obtain
∫

Z

|u(z)|p−2u(z) dz = 0.

So naturally, we are led to the consideration of the following set

C(p) :=
{

x ∈ W 1,p(Z) : ‖x‖p = 1

∫

Z

|x(z)|p−2x(z) dz = 0
}

.

More precisely, let ψp : W 1,p(Z) → R be the strictly convex C1-map, defined by

ψp(x) := ‖∇x‖
p
p ∀x ∈ W 1,p(Z)

and consider the following minimization problem:

(3.2) inf
x∈C(p)

ψp(x) = λ1(p).
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Proposition 3.2 Problem (3.2) has a solution λ1 = λ1(p) > 0 which is attained in

C(p).

Proof Consider a minimizing sequence {xn}n≥1 ⊆ C(p), i.e., ψp(xn) ց λ1. Evi-

dently the sequence {xn}n≥1 ⊆ W 1,p(Z) is bounded and so, passing to a subsequence

if necessary, we may assume that

xn → x weakly in W 1,p(Z),

xn → x in Lp(Z),

xn(z) → x(z) for a.a. z ∈ Z

|xn(x)| ≤ k(z) for a.a. z ∈ Z,

with k ∈ Lp(Z). Note that the sequence {|xn(·)|p−2xn(·)}n≥1 ⊆ Lp ′

(Z) (with 1
p

+
1
p ′ = 1) is bounded and

|xn(z)|p−2xn(z) → |x(z)|p−2x(z) for a.a. z ∈ Z.

So it follows that

|xn(·)|p−2xn(·) → |x(·)|p−2x(·) in Lp ′

(Z),

hence
∫

Z

|x(z)|p−2x(z) dz = 0 and ‖x‖p = 1,

i.e., x ∈ C(p). Also from the weak lower semicontinuity of the norm functional, we

have that ‖∇x‖
p
p ≤ λ1, hence

‖∇x‖
p
p = λ1.

Since x ∈ C(p), then x is a nonconstant element in W 1,p(Z) and so λ1 > 0.

An immediate consequence of Proposition 3.2, is the following Poincaré–Wir-

tinger type inequality.

Corollary 3.3 If x ∈ W 1,p(Z) and

∫

Z

|x(z)|p−2x(z) dz = 0,

then

λ1‖x‖
p
p ≤ ‖∇x‖

p
p.

In fact for p ≥ 2, we can show that λ1 > 0 is the first nonzero eigenvalue of
(

−∆p,W
1,p(Z)

)

.

Proposition 3.4 If p ≥ 2, then the number λ1 is the first nonzero eigenvalue of
(

−∆p,W
1,p(Z)

)

.

https://doi.org/10.4153/CJM-2006-004-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-004-6


Multiplicity Result for Nonlinear Neumann Problems 71

Proof Let x ∈ C(p) be a solution of problem (3.2). Then by virtue of the Lagrange

multiplier rule we can find a, b, c ∈ R, not all of them equal to zero, such that for all

v ∈ W 1,p(Z), we have

ap

∫

Z

‖∇x(z)‖
p−2

RN

(

∇x(z),∇v(z)
)

RN + bp

∫

Z

|x(z)|p−2x(z)v(z) dz

+ c(p − 2)

∫

Z

|x(z)|p−2v(z) dz + c

∫

Z

|x(z)|p−2v(z) dz = 0.(3.3)

Taking v ≡ c and recalling that
∫

Z
|x(z)|p−2x(z) dz = 0 (since x ∈ C(p)), we obtain

[c2(p − 2) + c2]

∫

Z

|x(z)|p−2 dz = 0,

so c = 0. Thus (3.3) becomes

a

∫

Z

‖∇x(z)‖
p−2

RN

(

∇x(z),∇v(z)
)

RN

+ b

∫

Z

|x(z)|p−2x(z)v(z) dz = 0 ∀v ∈ W 1,p(Z).

Suppose that a = 0. Then we have

b

∫

Z

|x(z)|p−2x(z)v(z) dz = 0 ∀v ∈ W 1,p(Z).

Taking v = x, we obtain

b‖x‖
p
p = 0,

hence b = 0, a contradiction to the fact that the Lagrange multipliers cannot be all

equal to zero. So a 6= 0 and without any loss of generality, we may assume that a = 1.

So we have
∫

Z

‖∇x(z)‖
p−2

RN

(

∇x(z),∇v(z)
)

RN

+ b

∫

Z

|x(z)|p−2x(z)v(z) dz = 0 ∀v ∈ W 1,p(Z).

Using as a test function v = x, we infer that b = −λ1. Then via the Green identity,

we conclude that x solves (3.1) with λ = λ1. Clearly from the definition of λ1 > 0,

we see that we cannot have an eigenvalue λ ∈ (0, λ1).

4 Multiple Solutions

In this section we prove two multiplicity results for problem (1.1), under conditions

of strong resonance at infinity at λ0 = 0 eigenvalue and without assuming any sym-

metry.

Our hypothesis on the nonsmooth potential function j(z, ζ) are the following:

H( j)1 j : Z × R → R is a function such that
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(i) for every ζ ∈ R, j(· , ζ) is measurable;

(ii) for almost all z ∈ Z, j(z, ·) is locally Lipschitz;

(iii) for almost all z ∈ Z, all ζ ∈ R and all u ∈ ∂ j(z, ζ), we have

|u| ≤ a(z) + c|ζ|r−1

with a ∈ Lr ′(Z)+, c > 0, r ∈ [1, p∗) and 1
r

+ 1
r ′

= 1;

(iv) there exist functions j± ∈ L1(Z) such that

lim
ζ→±∞

j(z, ζ) = j±(z) uniformly for a.a. z ∈ Z,

∫

Z

j±(z) dz ≤ 0

and if {xn}n≥1 ⊆ W 1,p(Z), {vn}n≥1 ⊆ Lr ′(Z) are sequences such that |xn(z)| →
+∞ a.e. on Z and vn(z) ∈ ∂ j

(

z, xn(z)
)

a.e. on Z, then
∫

Z
vn(z)xn(z) dz → 0 as

n → ∞;

(v) there exists δ > 0 such that

j(z, ζ) ≥ 0 for a.a. z ∈ Z and all |ζ| ≤ δ

and

j(z, ζ) ≤
λ1

p
|ζ|p for a.a. z ∈ Z and all ζ ∈ R.

We consider the nonsmooth energy functional ϕ : W 1,p(Z) → R, defined by

ϕ(x) :=
1

p
‖∇x‖

p
p −

∫

Z

j
(

z, x(z)
)

dz ∀x ∈ W 1,p(Z).

We know that ϕ is locally Lipschitz (see Hu–Papageorgiou [13, p. 313]).

The next proposition exhibits a characteristic feature of strongly resonant prob-

lems, namely the lack of compactness, i.e., the nonsmooth PS-condition is satisfied

only at certain levels.

Proposition 4.1 If hypotheses H( j)1 hold, then ϕ satisfies the nonsmooth Cc-condi-

tion for all c 6= −
∫

Z
j±(z) dz.

Proof Let c 6= −
∫

Z
j±(z) dz. Let us consider a sequence {xn}n≥1 ⊆ W 1,p(Z) such

that

ϕ(xn) → c and (1 + ‖xn‖)mϕ(xn) → 0.

Let x∗n ∈ ∂ϕ(xn) be such that mϕ(xn) = ‖x∗n‖(W 1,p (Z))∗ for n ≥ 1. The existence of

such elements follows from the fact that ∂ϕ(xn) ⊆
(

W 1,p(Z)
) ∗

is weakly compact

and the norm functional is weakly lower semicontinuous in a Banach space. We have

x∗n = A(xn) − u∗
n ∀n ≥ 1

with A : W 1,p(Z) →
(

W 1,p(Z)
) ∗

being the nonlinear operator defined by

〈A(x), y〉W 1,p (Z) :=

∫

Z

‖∇x(z)‖
p−2

RN

(

∇x(z),∇y(z)
)

RN dz ∀x, y ∈ W 1,p(Z)
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and u∗
n ∈ Lr ′(Z) with u∗

n (z) ∈ ∂ j
(

z, xn(z)
)

for almost all z ∈ Z (see Clarke [7, p. 80]

and Denkowski–Migórski–Papageorgiou [8, p. 617]). The operator A is monotone,

demicontinuous, thus maximal monotone (see Denkowski–Migórski–Papageorgiou

[9, p. 37]).

We claim that the sequence {xn}n≥1 ⊆ W 1,p(Z) is bounded. Suppose that this is

not true. Then by passing to a suitable subsequence if necessary, we may assume that

‖xn‖W 1,p (Z) → +∞.

Let us set

yn :=
xn

‖xn‖W 1,p(Z)

∀n ≥ 1.

Passing to a next subsequence if necessary, we can say that

yn → y weakly in W 1,p(Z),

yn → y in Lp(Z),

for some y ∈ W 1,p(Z). From the choice of the sequence {xn}n≥1 ⊆ W 1,p(Z), we

have

(4.1)
ϕ(xn)

‖xn‖
p

W 1,p (Z)

=
1

p
‖∇yn‖

p
p −

∫

Z

j
(

z, xn(z)
)

‖x‖
p

W 1,p (Z)

dz ≤
M1

‖xn‖
p

W 1,p(Z)

∀n ≥ 1,

for some M1 > 0. By virtue of hypothesis H( j)1(iv), we can find M2 > 0, such that

| j(z, ζ)| ≤ ϑ(z) + 1 for a.a. z ∈ Z and all |ζ| > M2,

with ϑ := max{ j+, j−} ∈ L1(Z). On the other hand by virtue of the mean value the-

orem for locally Lipschitz functions (see Clarke [7, p. 41] and Denkowski–Migórski–

Papageorgiou [8, p. 609]) and because of hypothesis H( j)1(iii), we have

| j(z, ζ)| = a(z)|ζ| + c|ζ|r ≤ β(z) for a.a. z ∈ Z and all |ζ| ≤ M2,

with β ∈ L1(Z)+(note that because of hypothesis H( j)1(v), we have that j(z, 0) = 0

for almost all z ∈ Z). So finally, we can say that

| j(z, ζ)| ≤ β1(z) for a.a. z ∈ Z and all ζ ∈ R,

with some β1 ∈ L1(Z)+. Therefore, if in (4.1) we use this bound, we have that

1

p
‖∇yn‖

p
p ≤

M1

‖xn‖
p

W 1,p(Z)

+
‖β1‖1

‖xn‖
p

W 1,p (Z)

,

so ‖∇y‖p = 0, i.e., y = ξ ∈ R.

If ξ = 0, then ‖∇yn‖p → 0 and so

yn → y = ξ = 0 in W 1,p(Z),
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a contradiction to the fact that ‖yn‖p = 1 for all n ≥ 1.

So ξ 6= 0 and first assume that ξ > 0. Then

xn(z) → +∞ for a.a. z ∈ Z.

From the choice of the sequence {xn}n≥1 ⊆ W 1,p(Z), we have

∣

∣

∣
〈A(xn), xn〉 −

∫

Z

u∗
n xn dz

∣

∣

∣
≤ εn, with εn ց 0.

Because of hypothesis H( j)1(iv), we have that
∫

Z
u∗

nxn dz → 0. So 〈A(xn), xn〉 =

‖Dxn‖
p
p → 0 as n → ∞. Since ϕ(xn) → c, given ε > 0, we can find n0 = n0(ε) ≥ 1

such that

|ϕ(xn) − c| ≤ ε ∀n ≥ n0

=⇒ c − ε ≤ ϕ(xn) =
1

p
‖Dxn‖

p
p −

∫

Z

j
(

z, xn(z)
)

dz ≤ c + ε.

Since xn(z) → +∞ a.e. on Z, by virtue of hypothesis H( j)1(iv) and the Lebesgue

dominated convergence theorem, we have that
∫

Z
j
(

z, xn(z)
)

dz →
∫

Z
j+(z) dz. So

in the limit as n → ∞, we obtain

c − ε ≤ −

∫

Z

j+(z) dz ≤ c + ε.

Because ε > 0 was arbitrary, we let εց 0 to conclude that

c = −

∫

Z

j+(z) dz,

a contradiction. Similarly, if we assume that ξ < 0, then we reach the contradic-

tion that c = −
∫

Z
j−(z) dz.

Therefore the sequence {xn}n≥1 ⊆ W 1,p(Z) is bounded and so, passing to a sub-

sequence if necessary, we may assume that

xn → x weakly in W 1,p(Z),

xn → x in Lp(Z).

for some x ∈ W 1,p(Z). Note that, because of hypothesis H( j)1(iii), the sequence

{u∗
n}n≥1 ⊆ Lr ′(Z) is bounded and so

∫

Z

u∗
n (z)(xn − x)(z) dz → 0.

From the choice of the sequence {xn}n≥1 ⊆ W 1,p(Z), we have

〈A(xn), xn − x〉W 1,p(Z) ≤ εn‖xn − x‖W 1,p (Z) +

∫

Z

u∗
n (z)(xn − x)(z) dz ∀n ≥ 1,
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with εn ց 0, so

lim sup
n→+∞

〈A(xn), xn − x〉W 1,p(Z) ≤ 0.

Because A is maximal monotone, it is generalized pseudomonotone (see Denkowski–

Migórski–Papageorgiou [9, p. 60]) and so

‖∇xn‖p = 〈A(xn), xn〉W 1,p(Z) → 〈A(x), x〉W 1,p (Z) = ‖∇x‖p.

Also recall that ∇xn → ∇x weakly in Lp(Z; R
N ). Since Lp(Z; R

N ) is uniformly

convex, it has the Kadec–Klee property (see Denkowski–Migórski–Papageorgiou [8,

p. 309]). Therefore

∇xn → ∇x in Lp(Z; R
N )

and so

xn → x in W 1,p(Z).

Using this Proposition, we can have the first multiplicity result for problem (1.1).

Theorem 4.2 If hypotheses H( j)1 hold, then problem (1.1) has at least two nontrivial

solutions.

Proof Let

U+ :=
{

x ∈ W 1,p(Z) :

∫

Z

|x(z)|p−2x(z) dz > 0
}

U− :=
{

x ∈ W 1,p(Z) :

∫

Z

|x(z)|p−2x(z) dz < 0
}

.

These are two nonempty, open cones in W 1,p(Z). Let

m+ := inf
U+

ϕ.

Recall that j(z, 0) = 0 for almost all z ∈ Z (see hypothesis H( j)1(v)) and so ϕ(0) =

0 ≥ m+.

If m+ = 0, then because of hypothesis H( j)1(v), we have that

ϕ(ξ) = 0 = m+ ∀ξ ∈ (0, δ]

(with δ > 0 as in hypothesis H( j)1(v)) and so, we have a continuum of nontrivial

minimizers of ϕ on U+, which implies that 0 ∈ ∂ϕ(ξ) (since U+ is open) and from

this we infer that these minimizers are solutions of (1.1).

If m+ < 0, then because of hypothesis H( j)1(iv) and Proposition 4.1, we have that

ϕ satisfies the nonsmooth PSm+
-condition.
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Let ϕ̂ : W 1,p(Z) → R̄ := R ∪ {+∞}, be defined by

ϕ̂(x) :=

{

ϕ(x) if x ∈ Ū+

+∞ otherwise.

Evidently ϕ̂ is lower semicontinuous and bounded below. Using the generalized Eke-

land variational principle (see Denkowski–Migórski–Papageorgiou [9, p. 97]), we

can find a sequence {xn}n≥1 ⊆ U+ such that

ϕ̂(xn) = ϕ(xn) ց m+ and ϕ̂(xn) ≤ ϕ̂(y) +
‖xn − y‖

n(1 + ‖xn‖)
∀y ∈ W 1,p(Z).

Let y = xn + λh, with λ > 0, h ∈ W 1,p(Z). Since xn ∈ U+, we can find δ1 > 0 such

that

y = xn + λh ∈ Ū+ ∀λ ∈ (0, δ1].

So, we have

−
λ‖h‖

n(1 + ‖xn‖)
≤ ϕ̂(xn + λh) − ϕ̂(xn) = ϕ(xn + λh) − ϕ(xn),

so

−
‖h‖

n(1 + ‖xn‖)
≤
ϕ(xn + λh) − ϕ(xn)

λ
∀λ ∈ (0, δ1]

and

−
‖h‖

n(1 + ‖xn‖)
≤ ϕ0(xn; h).

Invoking Theorem 2.1, we obtain v∗n ∈
(

W 1,p(Z)
) ∗

, with ‖v∗n‖(W 1,p (Z))∗ = 1, such

that

〈v∗n , h〉W 1,p(Z) ≤ n(1 + ‖xn‖)ϕ0(xn; h) ∀h ∈ W 1,p(Z),

so
1

n(1 + ‖xn‖)
v∗n ∈ ∂ϕ(xn).

From this it follows that (1 + ‖xn‖)mϕ(xn) ≤ 1
n

, hence (1 + ‖xn‖)mϕ(xn) → 0. So

xn → x in W 1,p(Z)

(see Proposition 4.1) for some x ∈ Ū+. Also ϕ(xn) → ϕ(x) and so ϕ(x) = m+.

If x ∈ ∂U+, then
∫

Z

|x(z)|p−2x(z) dz = 0

and because of hypothesis H( j)1(v) and Corollary 3.3, we have

0 > m+ = ϕ(x) =
1

p
‖∇x‖

p
p −

∫

Z

j
(

z, x(z)
)

dz

≥
1

p
‖∇x‖

p
p −

λ1

p
‖x‖

p
p ≥ 0,
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a contradiction. This means that x ∈ U+ and so x 6= 0. Moreover, x is a local

minimizer of ϕ, which means that 0 ∈ ∂ϕ(x).

Similarly, working on U−, we obtain y ∈ U− such that

ϕ(y) = m− = inf
U−

ϕ.

Then y ∈ W 1,p(Z) is a local minimizer of ϕ and so 0 ∈ ∂ϕ(y), y 6= x.

Let w = x or w = y. We have seen that 0 ∈ ϕ(w). We shall show that this implies

that w is a nontrivial solution of (1.1). From this inclusion we have that

(4.2) A(w) = u∗,

with u∗ ∈ Lr ′(Z), u∗(z) ∈ ∂ j
(

z,w(z)
)

for almost all z ∈ Z. So

〈A(w), ϑ〉W 1,p (Z) =

∫

Z

u∗(z)ϑ(z) dz ∀ϑ ∈ C∞
0 (Z).

Remark that

−div
(

‖∇w(·)‖
p−2

RN ∇w(·)
)

∈ W−1,p ′

(Z) =
(

W
1,p
0 (Z)

) ∗

(see Denkowski–Migórski–Papageorgiou [8, p. 362]). After integration by parts, we

have

〈

−div
(

‖∇w(·)‖
p−2

RN ∇w(·)
)

, ϑ
〉

W
1,p
0 (Z)

= 〈u∗, ϑ〉
W

1,p
0 (Z)

∀ϑ ∈ C∞
0 (Z).

Since the embedding C∞
0 ⊆ W

1,p
0 (Z) is dense, we obtain

(4.3) −div
(

‖∇w(·)‖
p−2

RN ∇w(·)
)

= u∗(z) ∈ ∂ j
(

z,w(z)
)

for a.a. z ∈ Z.

Using the Green identity (see Kenmochi [15] and Casas–Fernandez [4]), for all v ∈
W 1,p(Z), we have

∫

Z

‖∇w‖
p−2

RN

(

∇w(z),∇v(z)
)

RN dz +

∫

Z

div
(

‖∇w(z)‖
p−2

RN ∇w(z)
)

v(z) dz

=

〈 ∂w

∂np

, γ0(v)
〉

∂Z
,

where ∂w
∂np

(z) := ‖∇x(z)‖
p−2

RN

(

∇x(z), n(z)
)

RN , by 〈 · , · 〉∂Z , we denote the duality

brackets for the pair
(

W
1

p ′
,p

(∂Z),W
− 1

p ′
,p ′

(∂Z)
)

, and γ0 is the trace map. Using

(4.2) and (4.3), we obtain

〈 ∂w

∂np

, γ0(v)
〉

∂Z
= 0 ∀v ∈ W 1,p(Z).
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But γ0

(

W
1,p
0 (Z)

)

= W
− 1

p ′
,p ′

(∂Z) (see John–Kufner–Fučik [14]). So it follows that

∂w

∂np

= 0 on ∂Z,

i.e., w = x and w = y are two distinct nontrivial solutions of (1.1).

We can have another such multiplicity result by employing a modified version of

hypotheses H( j)1.

H( j) ′1 j : Z × R → R is a function such that

(i) for every ζ ∈ R, j(·, ζ) is measurable;

(ii) for almost all z ∈ Z, j(z, ·) is locally Lipschitz;

(iii) for almost all z ∈ Z, all ζ ∈ R and all u ∈ ∂ j(z, ζ), we have

|u| ≤ a(z) with α ∈ Lr ′(Z),
1

r
+

1

r ′
= 1, r ∈ [1, p∗);

(iv) there exist functions j± ∈ L1(Z) such that

lim
ζ→±∞

j(z, ζ) = j±(z) uniformly for a.a. z ∈ Z,

∫

Z

j±(z) dz ≤ 0;

(v) there exists δ > 0 such that

j(z, ζ) ≥ 0 for a.a. z ∈ Z and all |ζ| ≤ δ,

j(z, ζ) ≤
λ1

p
|ζ|p for a.a. z ∈ Z and all ζ ∈ R.

Proposition 4.3 If hypotheses H( j) ′1 hold, then ϕ satisfies the nonsmooth PSc-condi-

tion for c 6= −
∫

Z
j±(z) dz.

Proof As in the proof of Proposition 4.1 (keeping the notation introduced there), we

have

yn
w
→ y = ξ in W 1,p(Z), ξ ∈ R, ξ 6= 0.

Consider the direct sum decomposition W 1,p(Z) = R ⊕ V , with V = {v ∈
W 1,p(Z) :

∫

Z
v(z) dz = 0}. If x ∈ W 1,p(Z), then we can write in a unique way

x = x̄ + x̂ with x̄ ∈ R, x̂ ∈ V . From the choice of the sequence ‖xn‖n≥1 ⊆ W 1,p(Z),

we have

|〈A(xn), x̂n〉 −

∫

Z

u∗
n x̂n dz| ≤ εn‖x̂n‖,

⇒ ‖Dx̂n‖
p
p ≤ c1(1 + ‖x̂n‖

r) for some c1 > 0 (see hypothesis H( j) ′1(iii)).
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By virtue of the Poincaré–Wirtinger inequality (see Denkowski–Migórski–Papa-

georgiou [8, p. 357]) and since r < p, we infer that {xn}n≥1 ⊆ W 1,p(Z) is bounded.

So we may assume that

x̂n → x̂ weakly in W 1,p(Z),

x̂n → x̂ in Lp(Z),

x̂n(z) → x̂(z) a.e. on Z,

|x̂n(z)| ≤ k(z) a.e. on Z with k ∈ Lp(Z).

By the Egorov and Lusin theorems, given δ > 0, we can find Zδ ⊆ Z closed subset

with |Z \ Zδ|N < δ (by | · |N we denote the Lebesgue measure on R
N) such that

x̂n(z) → x̂(z) uniformly on Z and x̂|Zδ is continuous. By definition for almost all

z ∈ Z and all n ≥ 1, we have

un(z)x̂n(z) ≤ j0
(

z, xn(z); x̂n(z)
)

:= lim sup
wn→xn(z)
εց0

j
(

z,wn + εx̂n(z)
)

− j(z,wn)

ε
.

Since xn(z) → +∞ a.e. on Z, we have wn → +∞. Therefore given ε > 0, we can

find n0(ε) ≥ 1 such that for almost all z ∈ Zδ and all n ≥ n0, we have

j+(z) − ε2 ≤ j
(

z,wn + εx̂n(z)
)

≤ j+(z) + ε2,

j+(z) − ε2 ≤ j(z,wn) ≤ j+(z) + ε2.

Since for almost all z ∈ Z and all x, h ∈ R, we have j0(z, x;−h) = (− j)0(z, x; h), it

follows that

|u∗
n(z)x̂n(z)| ≤

2ε2

ε
= 2ε for a.a. z ∈ Zδ

=⇒ u∗
n (z)x̂n(z) → 0 uniformly for a.a. z ∈ Zδ

=⇒

∫

Zδ

|u∗
n (z)x̂n(z)| dz → 0.

On the other hand, since |u∗
n (z)x̂n(z)| ≤ α(z)k(z) = β(z) a.e. on Z, with β ∈

L1(Z), we can choose δ > 0 small enough that

∫

Z\Zδ

|u∗
n x̂n| dz ≤ ε for all n ≥ 1.

Since ε > 0 was arbitrary, finally we conclude that

∫

Z

|u∗
n x̂n| dz → 0
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and since ‖Dxn‖
p
p ≤ εn‖x̂n‖+

∫

Z
u∗

n x̂n dz, it follows that ‖Dxn‖p → 0 as n → ∞. The

rest of the proof is the same as the last part of the proof of Proposition 4.1.

So we can obtain the following existence theorem. The proof is the same as that

of Theorem 4.2, using this time the usual and not the generalized Ekeland variational

principle (see Denkowski–Migórski–Papageorgiou [9, p. 93]).

Theorem 4.4 If hypotheses H( j) ′1 hold, then problem (1.1) has at least two nontrivial

solutions.

If N = 1 (i.e., we have an ordinary differential equation with Z̄ = T = [0, b]),

then we can be more general and assume the following:

H( j) ′ ′1 j : T × R → R is a function such that

(i) for every ζ ∈ R, j(·, ζ) is measurable;

(ii) for almost all t ∈ T, j(t, ·) is locally Lipschitz;

(iii) for almost all t ∈ T, all ζ ∈ R and all u ∈ ∂ j(t, ζ), we have

|u| ≤ a(t) + c(t)|x|r−1

with a, c ∈ L1(T)+1 ≤ r <∞;

(iv) there exist functions j± ∈ L1(T) such that

lim
ζ→±∞

j(t, ζ) = j±(t) uniformly for a.a. t ∈ T, and

∫ b

0

j±(t) dt ≤ 0;

(v) there exists δ > 0 such that

j(t, ζ) ≥ 0 for a.a. t ∈ T and all |ζ| ≤ δ,

j(t, ζ) ≤
λ1

p
|ζ|p for a.a. t ∈ T and all ζ ∈ R.

In this case the energy functional ϕ : W 1,p(T) → R is given by

ϕ(x) =
1

p
‖x ′‖

p
p −

∫ b

0

j(t, x(t)) dt

Proposition 4.5 If hypotheses H( j) ′ ′1 hold, then ϕ satisfies the nonsmooth PSc-condi-

tion for all c 6= −
∫

Z
j±(z) dz.

Proof The proof is the same as that of Proposition 4.3. We remark that in this case no

appeal to Egorov and Lusin theorems is necessary, since {x̂n}n≥1 ⊆ C(T) is relatively

compact (recall that W 1,p(T) is embedded compactly in C(T)). So the pointwise

estimates are valid for all t ∈ T.
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So using this Proposition and as for Theorem 4.2, by means of the usual Ekeland

variational principle, we have the following multiplicity result for the ordinary dif-

ferential equation:

Theorem 4.6 If hypotheses H( j) ′ ′1 hold, then problem (1.1) (with Z̄ = T = [0, b])

has at least two nontrivial solutions.

We can guarantee the existence of at least three solutions, if we impose an extra

condition on j(z, ζ).

H( j)2 j : Z×R → R is a function satisfying hypotheses H( j)1 or H( j) ′1 or H( j) ′ ′1

(with Z̄ = T = [0, b]) without the condition that
∫

Z
j±(z) dz ≤ 0 and in addition

(vi) there exists ξ0 > 0 such that

0 >

∫

Z

j(z,±ξ0) dz >

∫

Z

j±(z) dz.

Theorem 4.7 If hypotheses H( j)2 hold, then problem (1.1) has at least three solutions.

Proof Arguing as in the proof of Theorem 4.2 (see also Theorems 4.4 and 4.6), we

can produce two nontrivial solutions located in U+ and U− respectively. Note that

now we have

m+ ≤ −

∫

Z

j(z, ξ0) dz < −

∫

Z

j+(z) dz,

m− ≤ −

∫

Z

j(z,−ξ0) dz < −

∫

Z

j−(z) dz.

So ϕ satisfies the nonsmooth PSm±-condition (see Propositions 4.1, 4.3 and 4.5).

Let

E := {y ∈ W 1,p(Z) : −ξ0 ≤ y(z) ≤ ξ0},

E1 := {±ξ0},

D :=
{

y ∈ W 1,p(Z) :

∫

Z

|y(z)|p−2 y(z) dz = 0
}

.

We claim that E1 and D link in W 1,p(Z) (see Definition 2.2). To this end note that

E1 ∩ D = ∅. Let

Γ :=
{

η ∈ C
(

E; W 1,p(Z)
)

: η|E1
= idE1

}

and let η ∈ Γ. Consider the function γp : W 1,p(Z) → R, defined by

γp(x) :=

∫

Z

|x(z)|p−2x(z) dz ∀x ∈ W 1,p(Z).
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Evidently γp is continuous. Let us set

γ̂p := γp ◦ η.

Then

γ̂p(−ξ0) < 0 < γ̂p(ξ0)

and so by the intermediate value theorem, we can find x ∈ E such that γ̂p(x) = 0.

Then η(x) ∈ D, which means that η(E) ∩ D 6= ∅ and so we conclude that E1 and

D link in W 1,p(Z). From Proposition 4.1, we know that ϕ satisfies the PSc-condition

with

c := inf
η∈Γ

sup
v∈E

ϕ
(

η(v)
)

.

Also, from hypothesis H( j)2(vi), we have that

−

∫

Z

j±(z) dz, sup
E1

ϕ < 0 = inf
D
ϕ ≤ c.

Thus we can apply Theorem 2.3 (the abstract minimax principle) and obtain w ∈
W 1,p(Z) such that

ϕ(w) ≥ inf
D
ϕ ≥ 0 > m±,

(m± are as in the proof of Theorem 4.2, so w 6= x, w 6= y where x and y are the

solutions obtained in Theorem 4.2) and

0 ∈ ∂ϕ(w).

From the last inclusion, as in the proof of Theorem 4.2, we conclude that w ∈
W 1,p(Z) is a third solution of (1.1) distinct from the other two.

5 Problems with Smooth Potential

In this section we prove a third multiplicity result based on the so called second de-

formation theorem (see Chang [6, p. 23]). Again it concerns problems which are

strongly resonant at infinity at the first (zero) eigenvalue of
(

−∆p,W
1,p(Z)

)

. How-

ever, since the second deformation theorem exists only for smooth (i.e., C1) energy

functionals, in this case we consider an elliptic problem with a Caratheodory right-

hand side nonlinearity. It is an interesting open problem to extend the second defor-

mation theorem to the case of nonsmooth, locally Lipschitz functions.

Let us start by recalling the statement of the second deformation theorem (see

Chang [6, p. 23]). In what follows for a Banach space X and ϕ ∈ C1(X), we introduce

the following sets:

Kϕ := {x ∈ X : ϕ ′(x) = 0},

the set of critical points of ϕ,

Kϕ
c := {x ∈ X : ϕ ′(x) = 0, ϕ(x) = c},
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the set of critical points of ϕ with critical value c, and

ϕc := {x ∈ X : ϕ(x) ≤ c},

the sublevel set of ϕ at c.

Theorem 5.1 If X is a Banach space, ϕ ∈ C1(X) satisfies the PSc-condition for every

c ∈ [a, d], a is the only critical value of ϕ on [a, d) and ϕ−1({a}) ∩ Kϕ
a consists of

isolated critical points, then there exists h ∈ C
(

[0, 1]X × (ϕd \ K
ϕ
d ),X

)

such that

(a) h(t, ·)|ϕa = idϕa for all t ∈ [0, 1],

(b) h(0, ·) = id,

(c) h(1, ϕd \ K
ϕ
d ) ⊆ ϕa.

In addition for all t < s and all x ∈ ϕd \ K
ϕ
d , we have ϕ

(

h(s, x)
)

≤ ϕ
(

h(t, x)
)

.

Remark 5.2 The conclusion of this theorem, implies thatϕa is a strong deformation

retract of ϕd \ K
ϕ
d . Also the last conclusion implies that h is ϕ-decreasing.

The problem that we study in this section is the following:

(5.1)

{

−div
(

‖∇x(z)‖
p−2

RN ∇x(z)
)

= f
(

z, x(z)
)

for a.a. z ∈ Z
∂x
∂n

= 0 on ∂Z,

with p ∈ (1,+∞). In what follows, we set

F(z, ζ) =

∫ ζ

0

f (z, r) dr,

the potential function corresponding to the nonlinearity f . Also p∗ is the Sobolev

critical exponent, defined by

p∗ :=

{

N p
N−p

if N > p,

+∞ if N ≤ p.

Our hypotheses on the nonlinearity f (z, ζ) are the following:

H( f ) f : Z × R → R is a function such that

(i) for every ζ ∈ R, f ( · , ζ) is measurable;

(ii) for almost all z ∈ Z, f (z, · ) is continuous;

(iii) for almost all z ∈ Z and all ζ ∈ R, we have

| f (z, ζ)| ≤ a(z) + c|ζ|r−1,

with a ∈ Lr ′(Z)+, c > 0, r ∈ [1, p∗), 1
r

+ 1
r ′

= 1;
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(iv) there exist functions F± ∈ L1(Z) such that

lim sup
ζ→±∞

F(z, ζ) ≤ F±(z),

uniformly for almost all z ∈ Z and

∫

Z

F±(z) ≤ 0;

(v) for almost all z ∈ Z and all ζ ∈ R, we have that

F(z, ζ) ≤
λ1

p
|ζ|p;

(vi) there exists ξ0 > 0 such that

∫

Z

F(z,±ξ0) dz > 0.

Remark 5.3 Compared with hypotheses H( j)1, we relax the asymptotic conditions

at ±∞ and we drop the local sign condition at ζ = 0. Instead, we employ the extra

condition from hypotheses H( j)2. The potential function which for ζ ∈ [−2, 2] has

the form F(r) = r2 − r satisfies hypothesis H( f )(vi), but does not satisfy the local

sign condition H( j)1(v).

Let ϕ : W 1,p(Z) → R be defined by

ϕ(x) :=
1

p
‖∇x‖

p
p −

∫

Z

F
(

z, x(z)
)

dz ∀x ∈ W 1,p(Z).

We know that ϕ ∈ C1
(

W 1,p(Z)
)

. Arguing as in the proof of Proposition 4.1, (in fact

the argument is simpler) we obtain the following result:

Proposition 5.4 If hypotheses H( f ) hold, then ϕ satisfies the PSc-condition for all

c < min{−
∫

Z
F+(z) dz,−

∫

Z
F−(z) dz}.

This proposition combined with Theorem 5.1, leads to a multiplicity result for

problem (5.1), which can be viewed as a partial extension of Theorem 4.2.

Theorem 5.5 If hypotheses H( f ) hold, then problem (5.1) has at least two nontrivial

solutions.

Proof By virtue of hypothesis H( f )(iv), ϕ is bounded below. Moreover, hypothesis

H( f )(vi) implies that

−∞ < m := inf
W 1,p(Z)

ϕ < 0.

https://doi.org/10.4153/CJM-2006-004-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-004-6


Multiplicity Result for Nonlinear Neumann Problems 85

So ϕ satisfies the nonsmooth PSm-condition (see hypothesis H( f )(iv) and Proposi-

tion 5.4). Hence, we can find x1 ∈ W 1,p(Z) such that

ϕ(x1) = m < ϕ(0) = 0 and ϕ ′(x1) = 0.

As before, we deduce that x1 ∈ W 1,p(Z) is a nontrivial solution of problem (5.1).

Now suppose that x1 and 0 are the only critical points of ϕ. Recall that

Br := {x ∈ W 1,p(Z) : ‖x‖W 1,p (Z) < r}.

From hypothesis H( f )(vi), we know that for r = ξ0|Z|
1/p
N (where |Z|N denotes the

Lebesgue measure of Z),we have

(5.2) β := sup
x∈∂Br∩R

ϕ(x) < 0.

On the other hand, if

D :=
{

x ∈ W 1,p(Z) :

∫

Z

|x(z)|p−2x(z) dz = 0
}

,

then because of hypothesis H( f )(v) and Corollary 3.3, we have

inf
D
ϕ = 0.

Let

S :=
{

η ∈ C
(

B̄r ∩ R; W 1,p(Z)
)

: η|∂Br∩R = id∂Br∩R

}

and consider the map η0 : B̄r ∩ R → W 1,p(Z), defined by

η0(x) :=

{

x1 if ‖x‖W 1,p (Z) <
r
2

h
( 2(r−‖x‖

W 1,p (Z)
)

r
, rx
‖x‖

W 1,p (Z)

)

if ‖x‖W 1,p (Z) ≥
r
2
,

where h(t, x) is the homotopy postulated by Theorem 5.1 for the interval [m, 0].

Since by hypothesis, x1 is the only minimizer of ϕ on W 1,p(Z) (recall that m < 0 =

ϕ(0)), we have that

η0(x) = h(1, 2x) ∀x ∈ Br ∩ R, ‖x‖W 1,p (Z) =
r

2
.

Remark that ‖2x‖W 1,p (Z) = r and so ϕ(2x) < 0, which by virtue of Theorem 5.1,

implies that

η0(x) = h(1, 2x) = x1.

This proves that η0 is continuous. Moreover,

(5.3) η0(x) = h(0, x) = x ∀x ∈ ∂Br ∩ R,
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i.e., η0|∂Br∩R = id∂Br∩R. Therefore η0 ∈ S and because h is ϕ decreasing (see Theo-

rem 5.1), we have

ϕ
(

h(s, x)
)

≤ ϕ
(

h(t, x)
)

∀t, s ∈ [0, 1], t < s, x ∈ ϕ0 \ {0},

so from (5.2) and (5.3), we see that

(5.4) ϕ
(

η0(x)
)

< 0 ∀x ∈ B̄r ∩ R.

Recall that ∂Br ∩ R and D link (see the proof of Theorem 4.7). So, we have that

η(B̄r ∩ R) ∩ D 6= ∅ ∀η ∈ S.

Since infD ϕ = 0, we have

(5.5) sup
x∈B̄r∩R

ϕ
(

η(x)
)

≥ 0 ∀η ∈ S

and

(5.6) sup
x∈B̄r∩R

ϕ
(

η0(x)
)

= ϕ
(

η0(x∗)
)

,

for some x∗ ∈ B̄r ∩ R. Comparing (5.4), (5.5) and (5.6), we reach a contradiction.

Therefore ϕ must have another critical point x2 6= x1, x2 6= 0. Since ϕ ′(x2) = 0 as

before, we infer that x2 is the second nontrivial solution.

Remark 5.6 If in hypotheses H( j)2(iii) and H( f )(iii), a ∈ L∞(Z)+, then from the

nonlinear regularity theory (see for example Anane [1]), the solutions obtained in

Theorems 4.2, 4.4, 4.6, 4.7 and 5.5 belong in C1,β
(

Z̄
)

(with 0 < β < 1), and so the

Neumann boundary condition can be interpreted in a pointwise sense.

6 Infinitely Many Solutions

Thus far the problems studied were strongly resonant, which roughly speaking means

that the growth of the potential function is very slow. In contrast, in this section

we examine problems with a potential exhibiting a strictly super-p-growth (i.e., it is

strictly superquadratic if p = 2 (semilinear case)). Imposing a symmetry condition,

we obtain an infinity of pairs (x,−x) of solutions of problem (1.1). This is done with

the help of the so called nonsmooth symmetric mountain pass theorem.

Let us recall the nonsmooth symmetric mountain pass theorem. It can be proved

as Theorem 4.4 of Szulkin [18, p. 95], using instead the nonsmooth deformation

theorem (see Chang [6] and Kourogenis–Papageorgiou [16, Theorem 4, p. 250]).

Theorem 6.1 Suppose X is a reflexive Banach space, ϕ : X → R is a locally Lipschitz

function satisfying the nonsmooth PS-condition, ϕ(0) = 0 and
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(a) there exist a subspace V of X of finite codimension and numbers ̺ > 0 and r > 0

such that

ϕ(x) ≥ ̺ ∀x ∈ V, ‖x‖X = r;

(b) there exists a finite dimensional subspace Y of X, dim Y > codim V , such that

ϕ(x) → −∞ as ‖x‖X → +∞, x ∈ X.

Then ϕ has at least dim Y − codim V distinct pairs (x,−x) of nontrivial critical points.

In particular, if condition (b) is replaced by

(b ′) for each integer k ≥ 1, there exists a subspace Y of X such that dim Y = k and it

satisfies condition (b),

then ϕ admits infinitely many distinct pairs (x,−x) of nontrivial critical points.

Our hypotheses on the nonsmooth potential function j(z, ζ) are the following:

H( j)3 j : Z × R → R is a function such that

(i) for every ζ ∈ R, j(· , ζ) is measurable and
∫

Z
j(z, 0) dz = 0;

(ii) for almost all z ∈ Z, j(z, ·) is locally Lipschitz and even;

(iii) for almost all z ∈ Z and all ζ ∈ R and all u ∈ ∂ j(z, ζ), we have

|u| ≤ a(z) + c|ζ|r−1

with a ∈ L∞(Z)+, c > 0, r ∈ [1, p∗) and 1
r

+ 1
r ′

= 1;

(iv) for almost all z ∈ Z and all ζ ∈ R, we have that

µ j(z, ζ) + c1|ζ|
s − c2 ≤ − j0(z, ζ ;−ζ),

with c1, c2 > 0, 1 < s ≤ p < µ;

(v) lim supζ→0
p j(z,ζ)

|ζ|p < 0 uniformly for almost all z ∈ Z;

(vi) there exists M > 0 such that for almost all z ∈ Z and all |ζ| ≥ M, we have

j(z, ζ) ≥ β(z)|ζ|ϑ,

with β ∈ L∞(Z)+, β 6= 0, ϑ > p.

As before we consider the locally Lipschitz energy functional ϕ : W 1,p(Z) → R,

defined by

ϕ(x) :=
1

p
‖∇x‖

p
p −

∫

Z

j
(

z, x(z)
)

dz ∀x ∈ W 1,p(Z).

Proposition 6.2 If hypotheses H( j)3 hold, then ϕ satisfies the nonsmooth PS-condi-

tion.
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Proof Let {xn}n≥1 ⊆ W 1,p(Z) be a sequence such that

|ϕ(xn)| ≤ M1 for some M1 > 0 and mϕ(xn) → 0.

Let x∗n ∈ ∂ϕ(xn) be such that mϕ(xn) = ‖x∗n‖(W 1,p (Z))∗ for n ≥ 1. We have

x∗n = A(xn) − u∗
n ∀n ≥ 1

with A : W 1,p(Z) →
(

W 1,p(Z)
) ∗

being the nonlinear maximal monotone operator

defined as in the proof of Proposition 4.1 and u∗
n ∈ Lr ′(Z) with u∗

n (z) ∈ ∂ j
(

z, xn(z)
)

for almost all z ∈ Z and all n ≥ 1. We have

|〈x∗n , xn〉W 1,p(Z)| =

∣

∣

∣
‖∇xn‖

p
p −

∫

Z

u∗
n(z)xn(z) dz

∣

∣

∣
≤ εn‖xn‖W 1,p (Z),

with εn ց 0, so

−‖∇xn‖
p
p +

∫

Z

u∗
n(z)xn(z) dz ≤ εn‖xn‖W 1,p(Z)

and so from the definition of j0, we have that

(6.1) −‖∇xn‖
p
p −

∫

Z

j0
(

x, xn(x);−xn(z)
)

dz ≤ εn‖xn‖W 1,p(Z) ∀n ≥ 1.

Also, we have that

(6.2)
µ

p
‖∇xn‖

p
p −

∫

Z

µ j
(

z, xn(z)
)

dz ≤ µM1 ∀n ≥ 1.

Adding (6.1) and (6.2), we obtain

( µ

p
− 1

)

‖∇xn‖
p
p −

∫

Z

(

µ j
(

z, xn(z)
)

+ j0
(

z, xn(z);−xn(z)
)

)

dz

≤ µM1 + εn‖xn‖W 1,p (Z).

From hypothesis H( j)3(iv), we get

( µ

p
− 1

)

‖∇xn‖
p
p + c1‖xn‖

s
s − c2|Z|N ≤ µM1 + εn‖xn‖W 1,p(Z).

Since 1 < s ≤ p < µ, we have

c3‖∇xn‖
s
p + c1‖xn‖

s
s ≤ c4,

for some c3, c4 > 0. Thus the sequence {xn}n≥1 ⊆ W 1,p(Z) is bounded (see Den-

kowski–Migórski–Papageorgiou [8, p. 361]).
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So, passing to a subsequence if necessary, we may assume that

xn → x weakly in W 1,p(Z),

xn → x in Lp(Z),

with some x ∈ W 1,p(Z). Continuing as in the last part of Proposition 4.1, we can

show that

xn → x in W 1,p(Z).

Now we can have the multiplicity result.

Theorem 6.3 If hypotheses H( j)3 hold, then there exist infinitely many distinct pairs

(x,−x), x ∈ W 1,p(Z), which solve problem (1.1).

Proof Let Y ⊆ W 1,p(Z) be a finite dimensional subspace, with Y ⊆ L∞(Z). Let γ >
M, where M > 0 is as in hypothesis H( j)3(vi). Recalling that since dim Y < +∞, all

norms on Y are equivalent, we introduce the quantity

ξ0 := inf
y∈Y

‖y‖∞=γ

∫

{|y(z)|>M}

β(z)|y(z)|ϑ dz,

where β and ϑ are as in hypothesis ( j)3(vi). For y ∈ Y , we have

ϕ(y) =
1

p
‖∇y‖

p
p −

∫

Z

j
(

z, y(z)
)

dz

≤ η‖y‖p
∞ −

∫

Z

j
(

z, y(z)
)

dz

= η‖y‖p
∞ −

∫

{|y(z)|>M}

j
(

z, y(z)
)

dz −

∫

{|y(z)|≤M}

j
(

z, y(z)
)

dz

≤ η‖y‖p
∞ −

∫

{|y(z)|>M}

β(z)|y(z)|ϑ dz + η1,(6.3)

for some η, η1 > 0 (since on Y all norms are equivalent). We have

∫

{|y(z)|>M}

β(z)|y(z)|ϑ dz =
‖y‖ϑ∞
γϑ

∫

{|y(z)|>M}

β(z)γϑ
(

|y(z)|

‖y‖∞

)ϑ

dz.

Since we shall send ‖y‖W 1,p (Z) to +∞, we have that ‖y‖∞ goes to ∞ and so we may

assume that ‖y‖∞ > γ. Therefore, we have

{z ∈ Z : |y(z)| > M} ⊇

{

z ∈ Z :
γ

‖y‖∞
|y(z)| > M

}
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and so

−

∫

{|y(z)|>M}

β(z)|y(z)|ϑ dz ≤ −

∫

{ γ
‖y‖∞

|y(z)|>M}

β(z)|y(z)|ϑ dz

= −
‖y‖ϑ∞
γϑ

∫

{ γ
‖y‖∞

|y(z)|>M}

β(z)γϑ
(

|y(z)|

‖y‖∞

)ϑ

dz

≤ −
ξ0‖y‖ϑ∞
γϑ

.

So returning to (6.3), we have

ϕ(y) ≤ η‖y‖p
∞ −

ξ0

γϑ
‖y‖ϑ∞ + η1

and from the facts that ϑ > p and all norms in Y are equivalent, we get that

ϕ(y) → −∞ as ‖y‖W 1,p (Z) → +∞.

So finally ϕ|Y is anticoercive.

On the other hand, by virtue of hypothesis H( j)3(v), for a given ε ∈ (0, 1), we can

find δ = δ(ε) > 0 such that

j(z, ζ) ≤ −
ε

p
|ζ|p for a.a. z ∈ Z and all |ζ| ≤ δ.

Also from the mean value theorem for locally Lipschitz functions (see Clarke [7,

p. 41] and Denkowski–Migórski–Papageorgiou [8, p. 609]), we know that for almost

all z ∈ Z and all |ζ| > δ, we have

j(z, ζ) ≤
(

a(z) + c|ζ|r−1
)

|ζ| + j(z, 0)

≤

(

a(z)

δr−1
+ c

)

|ζ|r + j(z, 0) ≤ γ(z)|ζ|µ + j(z, 0),

for some γ ∈ L∞(Z) and max{r, p} < µ < p∗. So finally, we can say that for almost

all z ∈ Z and all ζ ∈ R, we have

j(z, ζ) ≤ −
ε

p
|ζ|p + γ1(z)|ζ|µ + j(z, 0),

for some γ1 ∈ L∞(Z)+. Therefore, for x ∈ W 1,p(Z), we have that

ϕ(x) ≥
1

p
‖∇x‖

p
p +

ε

p
‖x‖

p
p − c5‖x‖µ

W 1,p (Z)
−

∫

Z

j(z, 0) dz

≥
ε

p
‖x‖

p

W 1,p (Z)
− c5‖x‖µ

W 1,p (Z)
,
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for some c5 > 0 (since
∫

Z
j(z, 0) dz = 0 and ε ∈ (0, 1)).

Because µ > p, from the above inequality, we see that if we choose r > 0 small

enough, we can have that

ϕ|∂Br
≥ ̺ > 0.

Because of these facts and Proposition 6.2, we can apply Theorem 6.1 and obtain the

infinite number of distinct pairs (x,−x) of nontrivial critical points of ϕ. As before,

we check that each such pair is a pair of nontrivial solutions of problem (1.1).

Remark 6.4 The nonsmooth, locally Lipschitz function j : R → R, defined by

j(ζ) :=

{

−|ζ|s if |ζ| < 1
1
µ |ζ|

µ − |ζ|s − 1
µ if |ζ| ≥ 1,

with p∗ > r > µ > ϑ > p ≥ s > 1, satisfies hypotheses H( j)3.
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