Workshop Report

Risk of iron overload in carriers of genetic mutations associated with hereditary haemochromatosis: UK Food Standards Agency workshop

Mamta Singh1*, Margaret Ashwell2, Peter Sanderson1, Janet Cade3, Jennifer Moreton3, Susan Fairweather-Tait4, Mark Roe4, Joannes J. M. Marx5, Mark Worwood6 and James D. Cook7

1Food Standards Agency, Aviation House, 125 Kingsway, London WC2B 6NH, UK
2Ashwell Associates, Ashwell Street, Ashwell, Hertfordshire SG7 5PZ, UK
3Leeds University, Centre for Epidemiology and Biostatistics, 30–32 Hyde Terrace, Leeds LS2 9JT, UK
4Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK
5Eijkman-Winkler Institute for Microbiology, Infections Diseases and Inflammation, University Medical Centre, Utrecht, the Netherlands
6University of Wales College of Medicine, Cardiff CF14 4XN, UK
7University of Kansas Medical Centre, Kansas City, KS 66160, USA

(Received 6 May 2006 – Revised 23 May 2006 – Accepted 23 May 2006)

The UK Food Standards Agency convened a group of expert scientists to review current research investigating diet and carriers of genetic mutations associated with hereditary haemochromatosis. The workshop concluded that individuals who are heterozygous for the C282Y mutation of the HFE gene do not appear to respond abnormally to dietary Fe and therefore do not need to change their diet to prevent accumulation of body Fe.

Iron overload: Hereditary haemochromatosis: Food Standards Agency workshops

Background

The UK Food Standards Agency (FSA) convened a workshop on 12 November 2003 on the nutritional implications of mutations of the gene linked to haemochromatosis. The results from recently completed studies were presented, both FSA- and non-FSA funded, and the workshop was chaired by Professor Jim Cook.

Introduction

Hereditary haemochromatosis is a common, autosomally recessive, genetic disorder of Fe metabolism. It is characterised by excessive Fe absorption, resulting in the accumulation of high levels of Fe body stores. If left untreated it can have serious consequences, including diabetes, arthritis and cirrhosis of the liver (Bothwell & MacPhail, 1998).

Mutation of the HFE gene, which is involved in Fe absorption and storage, has been identified as the major cause of haemochromatosis (Feder et al. 1996). Two mutations of the HFE gene, C282Y and H63D, have been linked with the disease. In the UK, most patients with haemochromatosis are homozygous for the C282Y mutation of the HFE gene (The UK Haemochromatosis Consortium, 1997), although the majority of homozygotes in the population do not develop clinical symptoms leading to a diagnosis of haemochromatosis (McCune et al. 2002). In a minority of cases, there may be mutations in the genes encoding transferrin receptor 2, ferroportin-1, haemojuvelin and hepcidin (Roetto et al. 2003; Swinkels et al. 2006).

Mutations in the HFE gene are common in populations of European origin (Merryweather-Claire et al. 2000). In a study of blood donors in the UK, 15 % were heterozygous, and 0.7 % homozygous, for C282Y, while 25 % were heterozygous, and 2 % homozygous, for the H63D mutation (Jackson et al. 2001). Fe stores (as measured by transferrin saturation (TS), serum ferritin (sFn) concentration and serum Fe binding capacity) were observed to increase in the order: wild types, H63D heterozygotes, C282Y heterozygous women than in wild types. If these increases in TS and sFn truly reflect increases in tissue Fe levels, subjects carrying HFE mutations may be at increased risk of disease.

Abbreviations: FSA, Food Standards Agency; sFn, serum ferritin; TIR, serum transferrin receptor; TS, transferrin saturation.

* Corresponding author: Ms Mamta Singh, fax +44 20 7276 8906, email mamta.singh@foodstandards.gsi.gov.uk
Assessment of body tissue iron

Professor Jim Cook described a technique for measuring body tissue Fe, either the surplus of storage Fe or the deficit of tissue Fe, which uses the serum transferrin receptor (TfR):sFn ratio (Cook et al. 2003). A low TfR:sFn ratio indicates high Fe stores. The method was demonstrated to estimate the body Fe content of healthy subjects (Cook et al. 2003). The method provides individual values for storage Fe and also permits a substantial reduction in the number of subjects needed to assess response to an intervention study. The use of this method to compare different studies will not be possible, however, until the assay has been standardised.

The hepatic protein, hepcidin, found in urine and blood, is thought to regulate dietary Fe uptake and its distribution in the body by controlling the concentration of ferroportin, an Fe exporter present on the surface of absorptive enterocytes, macrophages and hepatocytes (Nemeth et al. 2004). Hepcidin might serve as a useful indicator of body tissue Fe in future studies (Kemna et al. 2005).

Genetic influence on iron status: morbidity and mortality

Professor Mark Worwood presented epidemiological evidence of morbidity and mortality outcomes associated with hereditary haemochromatosis. A study in the USA observed no increase in the risk of the most common symptoms of haemochromatosis in subjects homozygous for C282Y, or heterozygotes for both H63D and C282Y, relative to wild-type subjects (Beutler et al. 2002). The frequency was only higher for C282Y homozygotes reporting liver problems or with an increased aspartate transaminase activity. A study in Wales of haemochromatosis patients observed that only 1.2% of adults homozygous for C282Y had been diagnosed with Fe overload (McCune et al. 2002); furthermore, the frequency of homozygosity for C282Y is not under-represented in old age (Willis et al. 1999; Coppin et al. 2003).

Several prospective studies have suggested that heterozygotes for C282Y may be at increased risk of CVD (Roest et al. 1999; Tuomainen et al. 1999; Rasmussen et al. 2001); however, other prospective studies have observed no association between HFE mutations and CVD risk (Gunn et al. 2004; Ellervik et al. 2005).

The iron hypothesis of atherosclerosis

Professor Joe Marx presented evidence on the hypothesis that body Fe stores are associated with CVD risk (Sullivan, 1981). Several prospective studies have observed an association between increased sFn concentrations and increased carotid atherosclerosis (Kiechl et al. 1997; Wolff et al. 2004) and CVD (Salonen et al. 1992; van der A et al. 2005). Ferritin is an acute-phase protein, which is increased in inflammation. Chronic inflammation (for example, as assessed by plasma C-reactive protein concentrations) is associated with an increased risk of CVD (Danesh et al. 1998). One study, which adjusted for C-reactive protein concentrations, found an association between sFn concentrations and ischaemic stroke risk in postmenopausal women (van der A et al. 2005). Other prospective studies, however, have found little or no evidence that sFn concentrations are a risk factor for CVD (Danesh & Appleby, 1999; Knuiman et al. 2003).

TS has not been associated with CVD risk (Sepos et al. 1994; Reunanen et al. 1995; Danesh & Appleby, 1999; van der A et al. 2005), although the TR:sFn ratio was associated with increased CVD risk in one study (Tuomainen et al. 1998). The results from epidemiological studies, therefore, remain equivocal.

In plasma, Fe is normally bound to transferrin, making it less reactive. If Fe is in a labile and reactive form in plasma, unbound to transferrin, it can react with cells and molecules. Non-transferrin-bound Fe has been found in the plasma of patients with Fe-overload conditions (Grootveld et al. 1989), homozygotes and heterozygotes for C282Y (de Valk et al. 2000) and in patients with end-stage renal disease (Kooistra et al. 2002). Non-transferrin-bound Fe has also been shown to increase the expression of adhesion molecules in cultured endothelial cells and monocytes, representing an early phase of atherosclerosis (Kartikasari et al. 2004). These studies provide some support for the Fe hypothesis; however, a recent prospective study found no association between CVD risk and plasma non-transferrin-bound Fe concentrations in postmenopausal women (van der A et al. 2006).

The effects of diet on iron absorption and iron stores in HFE genotypes

Regulation of Fe absorption is affected by mutations in the HFE gene. The consequences for C282Y heterozygotes, however, are not clear. One study suggested that absorption from diets of high bioavailability may be increased in heterozygotes (Lynch et al. 1989), but these findings were not replicated in another study (Hunt & Zeng, 2004).

Professor Sue Fairweather-Tait presented results from an FSA-funded project that measured Fe absorption from a diet containing highly bioavailable Fe (high meat, fish and poultry, high vitamin C, low phytate) extrinsically labelled with 57Fe-enriched ferrous sulfate and a diet of fortified cereal products enriched with 54Fe-enriched ferrous sulfate, over a 5 d period in C282Y heterozygotes (n 15), C282Y/H63D compound heterozygotes (n 5), and wild-type men (n 15). An erythrocyte incorporation technique was used to evaluate the effects of high dietary Fe on Fe homeostasis. Overall, the differences in Fe absorption between the various genotypes were small and genotype did not affect Fe absorption (Roe et al. 2005). There was no association between genotype and sFn concentrations.

The relationship between habitual diet and body Fe stores (Hb, sFn, TS, TfR) in C282Y heterozygote (n 46) and wild-type (n 92) men aged 40 years and over was also assessed, to determine the extent to which diet modulates Fe accumulation. A positive association was found between haem-Fe intake and sFn concentration. The C282Y heterozygotes had slightly higher TS, but genotype only accounted for 5% of the variation in TS and there was no difference in other measures of Fe stores.

Professor Janet Cade presented results from another FSA-funded project where 2531 women, from the UK Women’s Cohort Study (aged 35–69 years at baseline), were genotyped for C282Y and H63D mutations and assessed for Fe intake and stores. Although C282Y homozygotes (n 31) had higher
sFn concentrations, there was no difference between heterozygotes for C282Y or H63D (n 726) and wild types (n 1774). Heterozygotes for C282Y did have slightly higher TS concentrations than wild-type subjects (Greenwood et al. 2005).

Dietary assessment showed that sFn concentration was positively associated with haem-Fe intake. Women heterozygous for the C282Y mutation responded to haem Fe similarly to normal women with regard to their sFn concentrations. A strong interaction between genotype, haem-Fe intake and raised sFn concentrations was observed, however, primarily in postmenopausal women who were homozygous for C282Y (Cade et al. 2005).

Overall, these studies confirm previously published reports that C282Y heterozygotes have a slightly higher TS compared with wild-type controls, but do not have a higher sFn concentration (Jackson et al. 2001; Beutler et al. 2002). Absorption of Fe, and Fe stores, do not appear to be significantly higher in C282Y heterozygotes than in wild types.

Discussion

Individuals who are heterozygous for the C282Y mutation of the HFE gene appear to respond normally to dietary Fe and do not need to alter their diet to avoid increased levels of stored Fe.

The following research recommendations were identified:

(1) Standardisation of the serum TIR assay to encourage its use as a marker of body Fe content, in conjunction with sFn, in clinical and population studies;
(2) Adjustment for inflammation and infection in studies associating chronic disease with sFn concentrations;
(3) Prospective studies to explore the possible link between penetrance of HFE mutations in relation to dietary patterns and other factors associated with Fe metabolism and risk of chronic disease.

Participants

Professor James Cook, University of Kansas Medical Center, USA; Professor Joe J. M. Marx, University Medical Centre, Utrecht, The Netherlands; Professor Mark Worwood, University of Wales College of Medicine; Professor Sue Fairweather-Tait, Institute of Food Research; Dr Janet Cade, Leeds University; Dr Mark Roe, Institute of Food Research; Dr Birgit Teucher, Institute of Food Research; Dr Tim Key, Scientific Advisory Committee on Nutrition (SACN); Professor Peter Aggett, SACN; Dr Kathryn Robson, John Radcliffe Hospital, Oxford; Dr Alison Merryweather Clark, John Radcliffe Hospital, Oxford; Dr Hélène Coppin, INSERM U563, CHU Purpan, Toulouse; Dr Marie Paule Roth, INSERM U563, CHU Purpan, Toulouse; Dr Gavin Willis, Norfolk & Norwich University; Dr Jennifer Moreton, Leeds University; Dr Anne McCune, Gloucestershire Royal Hospital; Dr Margaret Ashwell, FSA Programme Adviser; Dr Alison Tedstone, FSA; Rachel Elsom, FSA; Mamta Singh, FSA; Cheryl White, FSA.

References


