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Abstract

This study investigated how alcohol intoxication and negative mood affect decision-making in the lowa Gambling
Task (IGT) in a high-risk sample of adults who regularly drink alcohol. Using a 2x2 between-subjects design
(N=160), we experimentally manipulated alcohol intoxication (target BrAC=.06% vs. .00%) and mood (negative
vs. neutral) and employed computational modeling to identify underlying mechanisms. Results showed that alcohol
intoxication impaired IGT performance, with intoxicated participants selecting fewer cards from advantageous
decks (estimate=—8.12, 95% CI=[-12.83, —3.23]). Evidence for an effect of negative mood was moderate
but inconclusive (estimate=—4.82, 95% CI=[-9.66, 0.02]). Computational modeling revealed that both alcohol
(estimate=.13, 95% CI=[.05, .21]) and negative mood (estimate=.12, 95% CI=[.04, .20]) increased reward learning
rates without affecting punishment learning rates. No interaction effects were observed. These findings suggest that
impaired decision-making during alcohol intoxication and negative mood states stems from heightened sensitivity
to immediate rewards rather than diminished sensitivity to punishments but these effects do not appear to be
additive, providing novel insights into the computational mechanisms underlying alcohol-related decision-making
deficits.

1. Introduction

The Iowa Gambling Task (IGT) is a widely used paradigm for assessing decision-making under
uncertainty, where participants must learn through experience to select from advantageous versus
disadvantageous decks of cards (Bechara et al., 1994, 2000). Success on the IGT requires individuals
to learn from patterns of rewards and punishments to identify which decks yield favorable long-term
outcomes. Specifically, participants must distinguish between decks with different reward-punishment
structures: two decks (A and B) offer high immediate rewards but larger penalties (varying in size
and frequency), yielding net losses in the long run, while two decks (C and D) provide more modest
immediate rewards but smaller penalties (also varying in size and frequency), yielding net gains in the
long run. The ability to effectively weigh immediate rewards against potential negative consequences,
as measured by the IGT, is fundamental to adaptive decision-making across numerous contexts (Dayan
and Daw, 2008; Dora and Inzlicht, 2025; Joyner et al., 2019; Wichers et al., 2015).
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Research using the IGT has consistently demonstrated that decision-making processes can be
disrupted in various clinical populations. For instance, individuals with alcohol use disorder (AUD)
tend to make more selections from disadvantageous decks compared to controls (Grant, 2000; Kovacs
et al.,, 2017; Logge et al.,, 2023). Similar decision-making impairments on the IGT have been
documented in individuals with major depressive disorder (Han et al., 2012; Wang et al., 2024),
eating disorders (Guillaume et al., 2015), and gambling disorders (Kovacs et al., 2017). These findings
highlight that both addiction-related conditions and affective disorders are associated with alterations in
how individuals process and learn from reward and punishment information in the context of decision-
making.

While these between-group comparisons have established important associations between clini-
cal conditions and IGT performance, they are limited in their ability to elucidate the underlying
mechanisms of decision-making impairments. Furthermore, they cannot address how decision-making
processes are affected by transient states, such as acute alcohol intoxication or temporary mood
fluctuations, which may be particularly relevant for understanding momentary decision-making vul-
nerabilities. Moving beyond trait-level comparisons to examine state-level effects offers an opportunity
to directly test causal mechanisms underlying decision-making alterations.

Alcohol consumption is known to significantly alter cognitive processes that are essential for
adaptive decision-making. Alcohol myopia theory (Steele and Josephs, 1990) provides a framework
for understanding these effects, proposing that alcohol narrows attentional focus to the most salient
cues in the environment while diminishing the processing of more peripheral or distal information.
This attentional narrowing may have implications for how individuals process reward and punishment
information during decision-making tasks. Laboratory studies have demonstrated that alcohol
consumption leads to increased risk-taking and altered information processing (Dora et al., 2025;
George et al., 2005; McMullin et al., 2022; Neilson et al., 2024; Steele and Josephs, 1990; Van
Ravenzwaaij et al., 2012). However, the specific computational mechanisms through which alcohol
affects the processing of rewards versus punishments remain poorly understood.

The IGT provides a structured context to examine these cognitive mechanisms in detail, as it
requires integrating both immediate reward information and long-term punishment consequences,
which are precisely the types of processes that might be differentially affected by alcohol according
to myopia theory. Despite the established effects of alcohol on various domains of decision-making
and information processing, surprisingly, no studies to date have directly examined how acute alcohol
intoxication affects IGT performance and its underlying computational processes. Understanding these
effects would provide valuable insights into the specific decision mechanisms disrupted during alcohol
intoxication.

Similarly, emotional states are thought to influence decision-making (Blanchette and Richards, 2010;
Shenhav, 2024), as stress and negative emotions have been found to influence how people evaluate
risk (Clark et al., 2001), make judgments (Clore and Huntsinger, 2007), invest effort (Byrne et al.,
2023), and make alcohol-related decisions (Bresin et al., 2018; Dora et al., 2023a, 2024). Laboratory
studies examining the effects of negative mood and stress inductions on IGT performance have found
that people tend to perform worse when experiencing negative emotional states or stress (Ben Hassen
et al., 2023; Buelow and Suhr, 2013; Chrusciel et al., 2024; De Vries et al., 2008; Molins et al., 2025;
Simonovic et al., 2017; Van Den Bos et al., 2009; Wemm and Wulfert, 2017), though occasionally
null results have also been reported (Buelow et al., 2013; Clark et al., 2001; Shukla et al., 2019). Like
alcohol, negative affect may change how individuals allocate attention to and process different aspects
of decision-relevant information (Bishop and Gagne, 2018).

Further, investigating the potential interaction between alcohol intoxication and negative emotional
states on decision-making processes is theoretically important for several reasons. First, both states
may independently affect similar attentional and information processing mechanisms but potentially
through different pathways. Second, their co-occurrence might be a unique decision-making context as
people frequently cite negative emotions as a major motivation for alcohol use (Cooper et al., 1995;
Hammarberg et al., 2017; Kuntsche et al., 2008), though it is unclear whether people regularly drink
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alcohol in response to negative affect (Dora et al., 2023b). From a theoretical perspective, alcohol’s
attentional narrowing effects may interact with negative mood’s influence on information processing
in ways that could either compound or counteract each other. For high-risk drinkers, understanding
this interaction could provide insights into how these states might alter the ability to appropriately
weigh immediate rewards against potential negative consequences, a process that may contribute to
problematic drinking patterns.

Traditional IGT scoring, which simply counts deck selections, provides limited insight into the
specific decision-making processes involved. For example, poor IGT performance could result from
heightened sensitivity to rewards, diminished sensitivity to punishments, or both, distinctions that
have significant theoretical implications but remain undetectable with conventional scoring methods.
Computational modeling approaches, such as the Outcome-Representation Learning model (ORL;
Haines et al., 2018; Sullivan-Toole et al., 2022), address this limitation by explicitly modeling different
decision strategies and learning parameters. The ORL model explicitly accounts for four key cognitive
strategies observed in IGT performance. Expected value maximization involves learning that decks C
and D yield better long-term outcomes than decks A and B, despite A and B offering larger immediate
rewards; the model captures this through separate expected value learning for each deck using distinct
reward and punishment learning rates. Gain-loss frequency sensitivity captures the strong preference
many participants show for decks B and D (which win on 90% of trials) over decks A and C (which win
on only 50% of trials), even when this preference is disadvantageous; the model tracks this through a
separate expected frequency component that monitors how often each deck provides wins versus losses.
Choice perseveration reflects whether participants tend to stick with recently chosen decks or switch
away from them, regardless of the outcomes received; the model includes a perseveration component
that weights recently chosen options more heavily in future decisions. Reversal learning involves
quickly changing deck preferences after experiencing unexpected large losses, such as switching away
from deck B after encountering its large punishment; the model accomplishes this by updating gain-loss
frequency expectations for unchosen decks based on outcomes observed from chosen decks.

Two particularly important parameters in the ORL model are the reward learning rate and
punishment learning rate. These parameters reflect how much participants update their expectations
about a deck after receiving positive versus negative outcomes. For example, a participant with a high
reward learning rate would quickly develop strong preferences for decks that provide several wins in a
row, rapidly updating their expectations upward after each positive outcome. Conversely, a participant
with a high punishment learning rate would quickly learn to avoid decks after experiencing losses,
substantially updating their expectations downward after negative outcomes. A participant who shows
poor IGT performance due to chasing immediate rewards might have a high reward learning rate but
low punishment learning rate; they quickly learn to like decks that give frequent wins but are slow to
learn from the large losses that eventually follow. Conversely, a participant with a high punishment
learning rate but low reward learning rate would quickly learn to avoid decks after experiencing
losses but be slow to develop preferences for consistently rewarding options, potentially leading to
overly cautious decision-making that misses good opportunities. In their paper validating the ORL,
(Haines et al., 2018) found that individuals with a history of heroin use showed lower punishment
learning rates than controls, suggesting reduced sensitivity to negative outcomes, while cannabis users
demonstrated increased reward learning rates. These parameter-level insights go beyond traditional
scoring approaches to reveal specific computational mechanisms underlying impaired decision-making.

1.1. Current study

Building on this literature, the current study aims to investigate the individual and combined effects
of alcohol administration and a negative mood induction on IGT performance in a sample of adults
who drink heavily. By experimentally manipulating both alcohol intoxication and negative mood
in a controlled setting and applying computational modeling to the resulting data, we can identify
specific decision-making processes affected by these states. This approach allows us to test competing
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theoretical accounts: Does alcohol primarily enhance reward sensitivity, diminish punishment
sensitivity, or affect both? Does negative mood operate through similar or different computational
mechanisms? And critically, do these states interact in ways that might be particularly relevant for
understanding decision-making in high-risk drinkers?

We hypothesized that both alcohol intoxication and negative mood will result in fewer choices
from the winning decks, with potential interactive effects when combined. We further predicted that
these manipulations would affect reward and punishment learning rates as captured by the ORL model,
with alcohol and negative mood increasing reward sensitivity while decreasing punishment sensitivity,
providing insight into the computational mechanisms underlying decision-making under uncertainty.

2. Methods
2.1. Transparency

We preregistered design, hypotheses, sample size, modeling, and statistical analyses prior to data
collection. All subsequently described decisions were preregistered in detail unless noted otherwise.
Our preregistration, experimental materials, anonymized data, and analysis scripts are available on the
Open Science Framework (osf.io/ky3aj/).

2.2. Participants and design

We determined our sample size through an a priori power analysis, which indicated that data from 160
participants (40 per condition) would provide 87.86% power to detect a medium-sized interaction effect
(177=.06) for our 2x2 between-subjects design. An overview of participant demographics can be found
in Table 1. The median Alcohol Use Disorder Identification Test score of the sample was 8 (mean=9.38,
SD=4.58, range=2-22), indicating that this can be considered a high-risk drinking sample. We recruited
adults from the Seattle community via advertisement in public places and online ads. Participants
were compensated at a rate of $25/hour. Participants had to be 21-50 years old and report regular
alcohol use (>1 drinking episode/week and >1 binge episode [i.e., 4/5 drinks for women/men in one
occasion]/month). We excluded individuals who were currently pregnant or trying to become pregnant,
had current/prior alcohol treatment, had past or current diagnosis of an anxiety disorder, or had medical
conditions or took medications that contraindicate alcohol use. The study procedures were reviewed
and approved by the University of Washington Institutional Review Board.

2.3. Procedure

2.3.1. Laboratory session

Upon responding to advertisements, participants completed an online screening survey to check eligi-
bility criteria, which was confirmed via phone. Eligible participants were randomly assigned to one of
four conditions using block randomization: alcohol and negative mood, no alcohol and negative mood,
alcohol and neutral mood, or no alcohol and neutral mood. All sessions started between 2:00pm and
5:00pm. Participants first provided informed consent, were breathalyzed to ensure their Breath Alcohol
Concentration (BrAC) was .00%, and confirmed that they did not consume any calories for three
hours prior to the laboratory session. Participants assigned female sex at birth completed a pregnancy
test if necessary, as determined by screening questions administered by a female research assistant to
ensure both medical necessity and respect for gender identity, and all participants were weighed. The
total laboratory lasted approximately 45—-60 minutes consisting of beverage administration (9 minutes
consumption + 825 minutes for BrAC monitoring), mood induction (~5 minutes), and the Iowa
Gambling Task (5—10 minutes). Participants completed the laboratory session following this sequence:

1. Beverage administration: All participants were seated in a room simulating a bar environment,
including a wet bar, bar stools, liquor bottles, and bar paraphernalia. Participants randomly assigned
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Table 1. Participant characteristics split by experimental condition.

No alcohol/neutral ~ No alcohol/negative  Alcohol/neutral Alcohol/negative
mood mood mood mood
Age M=30.08, SD=7.97 M=30.18,SD=7.19 M=32.30,SD=7.33 M=31.43, SD=8.02
Sex 27.5% female, 60.0% female, 25.0% female, 62.5% female,
72.5% male 40.0% male 75.0% male 37.5% male
Gender 21.1% cisgender 57.5% cisgender 25.0% cisgender  55.0% cisgender
woman, woman, woman, woman,
76.3% cisgender 35.0% cisgender 70.0% cisgender  37.5% cisgender
man, man man man,
2.6% 7.5% 5.0% gender- 7.5% gender-
gender-expansive gender-expansive expansive expansive
Race/ethnicity 12.5% Asian, 17.5% Asian, 7.5% Asian, 20.0% Asian,
25.0% Black/African 5.0% Black/African 20.0% 2.5%
American, American, Black/African Black/African
American, American,
45.0% white 52.5% white, 35.0% white, 50.0% white,
5.0% multiracial; 15.0% multiracial,; 12.5% multiracial; 15.0% multiracial;
12.5% 10.0% 20.0% 12.5%
Hispanic/Latino Hispanic/Latino Hispanic/Latino Hispanic/Latino
Sexuality 22.5% LGBQ, 44.7% LGBQ, 15.4% LGBQ, 29.7% LGBQ,
77.5% straight 55.3% straight 84.6% straight 70.3% straight
Student status  10.0% students 20.5% students 18.4% students 22.5% students
Employment  32.5% unemployed, 15.0% unemployed, 15.0% 20.0%
unemployed, unemployed,
30.0% part-time, 35.0% part-time 37.5% part-time,  27.5% part-time,
37.5% full-time 50.0% full-time 47.5% full-time 52.5% full-time
AUDIT M=9.59,SD=4.84  M=10.10, SD=4.63 M=9.81, SD=4.28 M=8.08, SD=4.46

Note: Gender-expansive includes transgender men, transgender women, and non-binary participants. LGBQ includes gay, lesbian, bisexual,
pansexual, asexual, queer, and questioning/not sure participants.

to the alcohol condition were informed that they would receive alcohol and administered 100-proof
Vodka mixed with orange juice (1:3 ratio) to induce a breath alcohol concentration (BrAC) of
.06% (based on Widmark’s formula). The protocol involved consuming three equal portions of the
beverage over 9 minutes total, with 3 minutes allocated per cup and pacing instructions provided by
the research assistant to prevent rapid consumption. BrAC. Participants in the no alcohol condition
were informed that they would not receive alcohol and administered water mixed with orange
juice (1:3 ratio). Following beverage consumption, all participants completed a standardized mouth-
rinsing protocol (5 mouth rinses followed by 1 gargle) to ensure accurate breathalyzer readings by
removing residual alcohol from the mouth. Participants were then breathalyzed every 5 minutes
until reaching peak BrAC. Each participant in the no alcohol condition was yoked to a participant
in the alcohol condition, spending the same amount of time in the bar laboratory and completing
the same number of breath tests. All participants reported their subjective intoxication (1="not at all
intoxicated’, 10="extremely intoxicated’) immediately prior to leaving the bar laboratory.

2. Mood induction: Participants were moved to a different room and asked to look at 20 photographs
for 10 seconds each from the International Affective Picture Set (IAPS; Lang et al., 2020). They
were instructed to try to become aware of and feel the emotions they experience while looking at the
pictures as vividly as possible. Participants in the negative mood condition viewed photographs with
a mood valence rating of <2.5 and arousal rating of <6. Those in the neutral mood condition viewed
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photographs with a mood valence rating between 4.5 and 5.5 and an arousal rating of <6. Participants
rated their mood (1=‘extremely unhappy’, 10="extremely happy’) and stress level (1=‘not at all
stressed’, 10="extremely stressed’) before and after the mood induction procedure.

3. Iowa Gambling Task: Participants completed the original (computerized) version of the IGT. For
100 trials, they freely drew from one of four decks, trying to maximize their earnings. Cards from
each deck yielded a monetary gain and sometimes a monetary loss. Each deck had a different
and fixed payout distribution, with two decks (A+B) being disadvantageous and two (C+D) being
advantageous in the long run.

2.4. Analysis plan

2.4.1. Computational modeling
To compute reward and punishment learning rates, we fitted the ORL model (Haines et al., 2018) to the
IGT data via the hBayesDM package (Ahn et al., 2017). The ORL model assumes separate learning
rates for positive and negative outcomes, with reward learning rate and punishment learning rate
estimated across trial-level computations for both expected value and expected frequency of outcomes,
as follows:

Expected value is computed as follows:

For positive outcomes (when x(t) > 0):

EVi(1y = EVigy + Apew * (x(2) = EVj(y))
For negative outcomes:
EVj(1) = EVi(y + Apun * (x(6) = EV())

where EVj is the expected value of deck j on trial t, and x(t) is the experienced outcome. A, and
Apyn (both bounded between 0 and 1) are learning rates for rewards and punishments, respectively, that
are estimated across the trial-level computations for EV and EF (see below).

Expected win frequency for the chosen deck is computed as follows:

For positive outcomes (when x(t) > 0):

EF}'(H]) = EF}'(I) + Arew * (Sgn (x(t)) - EF}(t))
For negative outcomes:
EF}(H]) = EF}(t) +Apun * (Sgn (x(t)) - EF}(t))

where EFy) is the expected win frequency of the chosen deck j on trial t, and sgn(x(t)) returns 1, 0,
or —1 for positive, zero, or negative outcome values on trial t, respectively. Expected frequency is also
updated across all unchosen decks using a reversal learning computation (Haines et al., 2018).

The model also includes a perseverance component PS that captures the tendency to repeat or switch
away from the previous deck choice, regardless of outcome:

where the chosen deck is D) = j:

1
Pliwn = 13g
And for the unchosen decks as
j
Phen = 17

where K = 3% — 1, and K’ is a parameter controlling memory decay for the history of choices made.
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The combined value of each deck is determined by

Vitry = EViary + EFji1y * BF + PSj1) * BP
where V() is the value of deck j on trial t, SF is the win frequency sensitivity parameter (higher values
indicate greater preference for decks with higher win frequency), and SP is the perseveration tendency
parameter (higher values indicate greater choice consistency). These values are then entered into a
softmax function to generate choice probabilities:

eVi

24
Vi (1)

k=1¢

P[(D@y) =] =

where D(t) represents the chosen deck on trial t.

In summary, the ORL model has five free parameters: the reward learning rate Ay and punishment
learning rate A,y reflect the rate at which an individual updates EV and EF for a given deck following
gains and losses, respectively; the win frequency sensitivity SF reflects the preference for decks with a
higher win frequency over equivalent decks that win less often; the perseveration tendency BP reflects
a preference to stick with a previous choice; and the memory decay K reflects the extent to which an
individual forgets their own history of choices.

2.4.2. Statistical models

For all hypotheses, we fitted Bayesian models using the brms package (Biirkner, 2017) with weakly
informative priors. We confirmed that the models converged via Rhat statistics, effective sample sizes,
and by inspecting trace plots. We made sure that models fitted the data via posterior predictive checks.
We fitted three preregistered models:

1. A linear model including main effects for alcohol intoxication and mood induction and their
interaction predicting the choice of winning decks in the IGT (using the final 60 trials; Gansler et al.,
2011).

2. A linear model including main effects for alcohol intoxication and mood induction and their
interaction predicting the reward learning rate.

3. A linear model including main effects for alcohol intoxication and mood induction and their
interaction predicting the punishment learning rate.

We preregistered two sensitivity analyses. First, we repeated our analyses excluding participants
who did not respond to the mood induction as expected (less than 3-point decrease in the negative
mood condition, at most 2-point change in either direction in the neutral mood condition). Second, we
repeated our analyses with default brms priors.

2.4.3. Inference criteria

We report the full posterior distribution for each parameter of interest. For H1, we defined a region of
practical equivalence (ROPE) (Kruschke, 2018) as a difference of +3 good draws. For H2 and H3, as
we had no a priori expectation about meaningful effect sizes for the ORL parameters, we interpret any
95% CI that excludes 0 as evidence for an effect of our experimental manipulations.

3. Results
3.1. Descriptive statistics

On average, participants drew 35.33 cards from the two winning decks in the final 60 trials (SD=13.11).
Across all 100 trials, participants chose least often from Deck A (17.2%), followed by Deck C (24.9%),
Deck D (28.8%), and Deck B (29.0%). Figure | shows the evolution of deck selections over the course

https://doi.org/10.1017/jdm.2025.10022 Published online by Cambridge University Press


https://doi.org/10.1017/jdm.2025.10022

8 Jonas Dora et al.

No alcohol Alcohol
3
Deck C =4
s
3
o
Selection
DeCk A ....D pmbgbsimy
é 0.4
[a] 0.3
0.2
0.0
4
1)
=
)
]
<%

1 2 3 4 5 1 4
Trial block (20 trials per block)
Decks A and B are disadvantageous; C and D are advantageous

Figure 1. Heatmap of deck preference evolution by experimental condition.

of the task split by experimental condition. As expected, reward learning rate was negatively correlated
with performance (+=-0.32), and punishment learning rate was positively correlated with performance
(7=0.50).

3.2. Manipulation check

3.2.1. Alcohol intoxication

Target BrAC (.06% in alcohol conditions, .00% in no alcohol conditions) was confirmed via breath-
alyzer just prior to the mood induction. Participants in the alcohol conditions achieved actual BrACs
very close to the target, with those in the alcohol/negative mood condition reaching a mean BrAC of
.060% (SD = .006, range = .052—.072) and those in the alcohol/neutral mood condition reaching a
mean BrAC of .058% (SD = .006, range = .049—.072). Participants in the alcohol conditions reported
higher subjective intoxication (M=4.96, SD=1.85, range=1-9; Cohen’s d=2.93) than participants in the
no alcohol conditions (M=1.06, SD=0.33, range=1-3; Figure 2a).

3.2.2. Mood

Following the mood induction, participants in the negative mood conditions reported a decrease
in mood (M=-3.19, SD=1.76, range=—8-1; Cohen’s d=2.04) and an increase in stress (M=4.05,
SD=2.26, range=—1-8; Cohen’s d=1.88), while mood and stress levels remained stable in the
neutral mood conditions (Manood=—0.01, SDaAMood=1.32, rangeamood=—4—5, Figure 2b; Masiress=0.35,
SDAStress=1.62, rangep syress=—6-5, Figure 2¢).
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Figure 2. Manipulation checks. (a) Self-reported intoxication. (b) change in self-reported mood. (c)
change in self-reported stress. Error bars represent standard errors.

3.3. Preregistered analyses

3.3.1. Behavioral data

To test whether alcohol intoxication and negative mood affect IGT performance, we predicted the
number of draws from winning decks in the final 60 trials. Our Bayesian model estimated that
intoxicated participants on average draw 8.12 fewer cards from winning decks compared to sober
participants (95% CI=[—-12.83, —3.23]). As the interval falls entirely outside of our preregistered region
of practical equivalence, we conclude that there is clear evidence in the data for a detrimental effect of
alcohol intoxication on performance. The posterior distribution for the main effect of negative mood
had a mean of —4.82 (95% CI=[-9.66, 0.02]). This can be considered moderate but inconclusive
evidence for an effect of negative mood on performance, as 23.1% of the posterior draws fell within
the ROPE. There was no evidence for an interaction between alcohol intoxication and negative mood
(estimate=6.09, 95% CI=[-0.41, 12.64]; Figure 3a). The results were robust to the exclusion of
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Figure 3. Behavioral data and computational parameters. (a) Number of draws from winning decks
(C+D) in the final 60 trials. (b) Reward learning rate derived from ORL model. (c) Punishment learning
rate derived from ORL model. Error bars represent standard errors.

participants who did not respond to the mood induction, the use of default brms priors, and were not
affected when controlling for sex differences across conditions'.

3.3.2. Computational modeling parameters

To validate that the ORL model provided a meaningful account of participants’ choice behavior, we
compared model fit to a baseline random choice model using Leave-One-Out Information Criterion
(LOOIC). The ORL model demonstrated substantially superior fit compared to random choice
(ALOOIC = 228,693.6), with better individual-level fit for 159 out of 160 participants (99.4%). This
indicates that the ORL model captures systematic patterns in decision-making behavior rather than
noise, providing a valid foundation for interpreting the computational parameters. We predicted the
reward and punishment learning rate derived from the ORL model. The parameters by experimental

I These results are summarized in a RMarkdown and html document on the OSF project page.
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Table 2. ORL model parameters by experimental condition.

Condition Reward learning rate Punishment learning rate
M (SD) M (SD)

No alcohol/neutral mood 0.167 (0.175) 0.091 (0.058)

No alcohol/negative mood 0.307 (0.215) 0.095 (0.061)

Alcohol/neutral mood 0.324 (0.198) 0.103 (0.110)

Alcohol/negative mood 0.345 (0.212) 0.088 (0.042)

condition are summarized in Table 2. Our Bayesian model estimated that both alcohol (estimate=.13,
95% CI=[.05, .21]) and negative mood (estimate=.12, 95% CI=[0.04, .20]) predicted an increased
reward learning rate, but there was no evidence for an interaction between the two (estimate=—.08, 95%
CI=[-.19, .03]; Figure 3b). Neither alcohol (estimate=.01, 95% CI =[-.02, .04]) nor negative mood
(estimate=.00, 95% CI=[-.03, .04]) or their interaction (estimate=—.02, 95% CI=[-.06, .03]; Figure 3c)
predicted the punishment learning rate. These results were robust to our three sensitivity analyses.

4. Discussion

The current study examined how alcohol intoxication and negative mood, both independently and in
combination, affect decision-making processes during the lowa Gambling Task in a high-risk sample
of regularly drinking adults. Our findings provide novel insights into the computational mechanisms
underlying decision-making while intoxicated and in a negative mood.

Our results demonstrated a clear detrimental effect of moderate alcohol intoxication on IGT
performance, with intoxicated participants making fewer selections from winning decks compared to
sober participants. This finding can be interpreted through the lens of alcohol myopia theory (Steele
and Josephs, 1990), which posits that alcohol narrows attention which results in the amplification
of immediate, salient cues while diminishing the processing of more peripheral cues. Based on our
computational modeling results, it seems that in the context of the IGT alcohol increases the sensitivity
to immediate rewards without decreasing the sensitivity to large infrequent punishments. The fact that
alcohol appears to affect the reward learning rate but not punishment learning rate may help explain
why intoxicated individuals may appear ‘myopic’ during decision-making; they are not necessarily less
sensitive to negative consequences, but rather disproportionately influenced by immediate rewards.
These results extend previous behavioral observations by providing a computational mechanism
through which decision-making is impaired when intoxicated.

Our behavioral findings align with earlier studies that showed that people tend to make riskier
choices following alcohol administration (George et al., 2005, 2009), though those studies could not
distinguish whether risk-taking was due to changes in the processing of rewards, or punishment, or both.
Our computational approach provides this mechanistic insight. They also align with neurobiological
evidence that consuming alcohol promotes the release of dopamine in brain regions involved in the
processing of rewards (Boileau et al., 2003; Gilman et al., 2008). The specific effect on reward learning
rate without corresponding changes in punishment learning reveals a more nuanced picture of alcohol’s
impact on decision processes than previously understood.

Our study suggests moderate but inconclusive evidence for an effect of negative mood on IGT
performance. While participants in the negative mood conditions tended to make fewer selections
from advantageous decks, the wide credible interval reflects substantial uncertainty in this estimate.
This inconclusiveness mirrors the mixed literature on negative mood and IGT performance, where
some studies report detrimental effects (Ben Hassen et al., 2023; Buelow and Suhr, 2013; Chrusciel
et al., 2024; De Vries et al., 2008; Molins et al., 2025; Simonovic et al., 2017; Van Den Bos et al.,
2009; Wemm and Waulfert, 2017) while others reported null results (Buelow et al., 2013; Clark et al.,
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2001; Shukla et al., 2019). Despite this behavioral ambiguity, our computational modeling provided
clearer evidence, showing that negative mood, like alcohol intoxication, increased reward learning rates
without affecting punishment learning rates.

Our design does not allow us to infer conclusively why the results for alcohol intoxication and
negative mood are so similar. One potential explanation is that the parallel computational effects
of alcohol and negative mood on reward learning, despite their distinct physiological mechanisms,
might suggest a potentially shared information processing pathway. Both states may influence attention
allocation in ways that heighten the salience of immediate rewards relative to potential future
punishments. (Bishop and Gagne, 2018)’s computational framework helps contextualize these findings,
as they propose that affective states influence which outcomes are mentally sampled during decision
processes. Our results suggest that both alcohol and negative mood may alter this sampling process
in similar ways, specifically by increasing the weight given to reward information during expectation
updating, without necessarily diminishing punishment sensitivity.

Our findings show agreement with Laycock et al. (2024), who also used the ORL model and
similarly found that negative states resulted in decreased behavioral performance and increased
sensitivity to rewards but not punishment through computational modeling. Our results also align
conceptually with Lane et al. (2006), who used the Expectancy-Valence model. They found no
difference in their unvalenced learning rate parameter, which collapses across both positive and
negative outcomes, but did find that alcohol increased sensitivity to gains while decreasing sensitivity
to losses through their motivation parameter. This aligns with our finding of increased reward learning
rates when intoxicated, suggesting that both computational approaches may be capturing similar
underlying mechanisms, alcohol’s enhancement of positive outcome processing, but through different
parameterizations. The alignment occurs with their motivation parameter rather than learning parameter
because their unvalenced learning rate would mask the reward-specific learning effects that our separate
reward and punishment learning parameters can detect. However, our findings contrast with those of
Gullo and Stieger (2011), who also used the Expectancy-Valence model but reported that anticipatory
stress improved IGT performance in regular alcohol drinkers. Their computational modeling showed
that stress increased attention to losses, whereas we found that negative mood increased reward learning
rates without affecting punishment learning rates. The discrepancy between our behavioral findings and
those of Gullo and Stieger is puzzling, given that our study and theirs used similar inclusion criteria
and our manipulation resulted in increased stress in addition to decreased mood.

Our data were not in line with our prediction that alcohol and negative mood would have synergistic
effects on decision-making. We found no evidence for an interaction between these manipulations on
either behavioral IGT performance or computational parameters. This finding is particularly interesting
given that both manipulations independently produced similar computational effects. The absence of
an interaction suggests that alcohol and negative mood may affect reward sensitivity in similar but non-
additive ways, potentially reaching ceiling effects on the same underlying cognitive mechanisms.

While our study provides novel insights into how alcohol intoxication and negative mood affect
decision-making, several limitations should be acknowledged. First, our study used a single moderate
dose of alcohol (target BrAC of .06%), which may not capture the full range of alcohol’s effects
on decision-making. Future studies could examine dose-dependent relationships between alcohol and
computational parameters (Sher and Walitzer, 1986), including testing the interaction with negative
mood at higher intoxication levels. Second, our sample consisted of adults who drink regularly but
have no AUD diagnosis. It would be interesting to compare such a group to either individuals who
drink less regularly and/or individuals with AUD, as previous work has shown baseline differences
in IGT performance in this population (Kovacs et al., 2017). Further, it would be valuable to explore
whether our experimental manipulations affect IGT performance and learning rates in different ways
across these groups.

Third, our mood induction procedure has inherent limitations. The IAPS-based mood induction
used low-to-moderate arousal negatively valenced images, and such mood effects might be short-lived.
However, our experimental design was optimally configured temporally; participants completed the
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IGT immediately following the mood induction (within 5 minutes), and BrAC measurements confirmed
participants remained at peak intoxication both before and after the IGT. Nevertheless, the transient
nature of low-arousal mood manipulations, combined with our moderate alcohol dose, may explain
why we observed no additive effects of alcohol and negative mood on reward learning rates. Future
studies should consider more sustained mood manipulations or higher-arousal negative states that might
produce longer-lasting effects.

Fourth, it is unclear whether the results are contingent on the timing on the BAC curve. Past studies
have reported differential effects of alcohol intoxication on related constructs such as risk taking,
executive control, and memory on the ascending versus descending limb (Davis et al., 2009; Jones,
1973; Pihl et al., 2003). Therefore, it is possible that alcohol can affect decision-making more or less
than is reported here depending on whether a person is on the ascending or descending limb. Our
findings at peak BAC represent the maximum pharmacological effect, but future research examining
decision-making across different phases of the alcohol curve could provide additional insights into the
temporal dynamics of alcohol’s effects on reward and punishment processing.

Fifth, and importantly, this laboratory-based study has limited ecological validity. While the IGT
is widely used to assess decision-making, there is limited evidence that performance on this task
reflects real-world decision-making processes. The task involves artificial rewards and punishments
in a controlled setting, which may not generalize to complex real-world decisions that involve
stronger emotions, contextual influences, and more meaningful consequences. Future research should
bridge this gap by combining laboratory tasks with more naturalistic approaches, such as ecological
momentary assessment of decision-making in daily life, to better understand how alcohol and negative
mood influence decisions in contexts with higher ecological validity. An alternative would be to
assess connections between IGT performance and self-reported alcohol-related attitudes or real-world
drinking behaviors, which would help us to understand how laboratory-based decision-making might
translate to actual alcohol use patterns or problems.

In conclusion, our study suggests that decision-making involving a tradeoff between rewards and
punishment is most likely impaired when one is intoxicated at a BrAC of .06%, possibly impaired
when in a negative mood, but unlikely to be further impaired by both intoxication and negative
mood. By demonstrating that both alcohol intoxication and negative mood specifically increase reward
sensitivity without affecting punishment sensitivity, our study has an important practical implication:
decision-making vulnerabilities during drinking may stem from amplified attraction to immediate
rewards rather than inability to learn from negative consequences. A promising avenue for the future
is to examine whether these computational signatures can predict real-world risky alcohol-related
decision-making.
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