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It is sometimes desirable to know in what circumstances a measurable set-
valued function admits a measurable selector; this problem occurs regularly
in the theory of optimal control (see for example (3) and (7)). In this paper
we demonstrate the existence of measurable selectors in two particular cases
where the choice of selector has a simple geometrical interpretation, namely
that of being a " nearest-point " selector, as is explained in detail below. This
work derives in part from that of C. Castaing, particularly from Theoreme 3.4
of (2), of which this is an extension.

Following (1), (2), (6) and (8), we define a function F from a measurable
space S (that is, a set on which is defined a c-algebra of subsets called " measur-
able ") into the non-empty subsets of a topological space X to be measurable
if and only if for each closed set F in X the set

is measurable. F is described as a " measurable multifunction from S into
X ". A function/from S into X is called a selector for F if/(/) e T(t) for all
t in S; / i s measurable if and only if f~i(F) is measurable for every closed
subset F of X.

If F is a measurable multifunction from S into X, and if B is any closed set
in X, then we define the refinement ofT by the set B to be the multifunction FB,
where

TB(t) = r(t)nB for (er"(B)
and

FB(0 = F(0 otherwise.
FB is measurable, since if C is a closed subset of X,

FB-(C) = (F-(BnC))u(r-(C)\F-(B)),
which is clearly measurable (see also (8)).

Consider now a descending sequence (Fn) of closed-valued measurable
multifunctions from S into X. Then in order to show that the multifunction
F = (~)rn, defined by

r(t) = f) Fn(0 for each t in S,
n = 1

is also measurable, it is sufficient to show that we have
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for each closed set A in X. Conditions which ensure this, and also that F(t) be
non-empty for each t, are

(i) for each t, Tn(t) is compact for some n
or (ii) X is a complete metric space, and for each / the diameter of the set rn(/)

converges to zero as «->oo.
If condition (ii) holds, then T(t) contains but a single point y(t); y is therefore

a measurable selector for r \ . We shall make use of these facts in what follows.

Lemma. Let S be a measurable space and (X, d) a metric space. Let
r : S-> Xbe a measurable multifunction with values compact and non-empty, and
let x0 be a (fixed) point of X. For each t, let

y. d(x0, x) = d(x0, r(0)}
the set of all points ofT(t) at shortest distance from x0. Then A is also a measur-
able multifunction.

Proof. We note first that the function x^>d(x, x0) is continuous and so
attains its minimum on T(t). Hence, for all t, A(t) is compact and non-empty.

Arrange the non-negative rationals in a sequence (/•„) and let

Bn = {xeX: d(x,xo)^rn}.

Write Fo = r and define Tn recursively so that Tn is the refinement of rn_x

by the closed set Bn. Then the sequence (Tn) satisfies condition (i) mentioned
above, and so f]Tn is a measurable multifunction. The proof of the lemma will
be complete when we have shown that

A(0= 0 r-(0 ("0
n = 1

for all t.
To see this, if x e A(r), then d(x, x0) = d(x0, r(t)), It follows by induction

on n that x e Fn(t) for all n. Conversely, suppose that x e Tn(t) for all n. Then
rm ^ d(x, x0) ^ d(x0, T(0) for every rational rm greater than d(x0, TO))- (For
if rm ^ d(x0, r(0), then Bm meets T(t). Hence Tp{t)^Bm for p ^ m, and so
x 6 Bm.) Therefore d(x, x0) = d(x0, T(t)) and so x e A(t). This proves (iii) and
completes the proof of the Lemma.

The problem of finding a selector in a metric (or metrisable) space is now
reduced to that of finding a selector for A. If A contains a single point 8(t)
for all t, then we need look no further. This happens in a wide class of normed
spaces when T(t) is assumed to be convex.

A normed linear space E is said to be rotund (or strictly convex) if for any
two distinct elements x, y in E such that || x \\ = 1 and \\ y \\ — 1, then

A normed linear space E is said to be strictly normable if it has an equivalent
strictly convex norm (for a discussion of strict convexity, see (4) p. 342 et seq).
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In particular it is known that every reflexive Banach space is strictly normable;
this is proved in (5).

Theorem 1. Let S be a measurable space, and E a strictly normable space.
Then every measurable multifunction T from S into E with values which are
non-empty, convex and compact has a measurable selector.

Proof. Using the notation of the Lemma, let x0 = 0, the zero element; we
may assume that the norm on E is strictly convex. Then

and A is measurable, by the Lemma; moreover A(t) is compact, convex and
non-empty for each t. Also A(?) contains just one point 5{t); for if x e A(/)
and ye A(t), then $(x+y)e A(t). Since the norm is strictly convex, x # y
would imply || i(x+y) || < || x || strictly, which contradicts the definition of A.

Thus 5 is the required measurable selector.
A normed linear space is said to be uniformly convex if it always follows from

II xn || ^ 1, || yn || ^ 1 and lim || xn + yn || = 2 that lim || xn-yn || = 0.
n-*oo n-* oo

A normed linear space is said to be uniformly normable if it has an equivalent
uniformly convex norm. Uniform convexity is discussed in (4), Section 26.
In particular the standard Banach spaces /" and LP are uniformly convex for
1 < / > < O O . We note the following: if (An) is a sequence of convex sets in a
uniformly convex space and (/?„) a sequence of non-negative real numbers, with
limit a, such that for each n

a^llxll^ft. for all xeAn,
then the diameter of An tends to zero as n->oo.

Proof. This is obvious if a = 0; otherwise if xn, yn e Bn where /}„!)„ = An,
then || xn || ^ 1, || yn || ^ 1 and

II *(*„ + *,,) II ££->!•
Pn

Therefore || xn — yn ||->0, so diam (5n)->0, and so diam (An)->0.

Theorem 2. Let S be a measurable space, and E a uniformly normable
Banach space. Then every measurable multifunction from S into E with values
closed, convex and non-empty has a measurable selector.

Proof. We consider E with a uniformly convex norm; E is a Banach space
with respect to this norm. We proceed as in the proof of the Lemma. The
proof will be complete when we have shown that the sequence (Fn) obtained by
this method satisfies the second of the two conditions discussed in the introduc-
tion. That is, it is sufficient to prove that for each t in 5

diam (rn(0)-»0 as n->oo.
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This follows from the preceding remark: take An = rn(t), a = d(0, T(t)) and
define (/?„) recursively as follows:

Pn = min ()?„_!, rn) if a g rn,
and

/?„ = /?„_! otherwise, for n> 1.

We take /?! to be equal to rk, where k is the first integer such that rk ^ a. Then
/?„ satisfies the required condition for n ^ k.

Hence A(t) contains just one point y(t), and y is the required selector.
It is possible to relax the conditions on E in the " nearest-point " problem

at the expense of placing greater restrictions on S. In (1), the authors have
relaxed the uniform convexity condition, by restricting S to be a locally compact
Hausdorff space in which every compact subset is metrisable and also by modi-
fying the definition of measurability.

Acknowledgements

I am grateful to the Science Research Council, who have provided the
financial support necessary for this work, and also to Professor A. P. Robertson
for his helpful criticisms and suggestions.

REFERENCES

(1) C. J. HIMMELBERG, M. Q. JACOBS and F. S. VAN VLECK, Measurable multi-
functions, selectors, and Filippov's implicit functions lemma, / . Math. Anal. Appl. 25
(1969), 276-284.

(2) C. CASTAING, Sur les multiapplications mesurables, Rev. Francaise Informat.
Richerche Operationelle 1 (1967), 91-126.

(3) A. F. FILIPPOV, On certain questions in the theory of optimal control, SIAMJ.
Control 1 (1962), 76-84.

(4) G. KOTHE (tr. D. J. H. GARLING), Topological Vector Spaces I (Springer-
Verlag, Berlin, 1969).

(5) J. LINDENSTRAUSS, On nonseparable reflexive Banach spaces, Bull. Amer.
Math. Soc. 72 (1966), 967-970.

(6) R. T. ROCKAFELLAR, Measurable dependence on convex sets and functions on
parameters, / . Math. Anal. Appl. 28 (1969), 4-25.

(7) E. J. MCSHANE and R. B. WARFIELD Jr., On Filippov's implicit functions lemma,
Proc. Amer. Math. Soc. 18 (1967), 4147.

(8) A. P. ROBERTSON, On measurable selections, Proc. Roy. Soc. Edinburgh
(Sect. A) 71 (1973).

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF WESTERN AUSTRALIA
NEDLANDS
WESTERN AUSTRALIA 6009

https://doi.org/10.1017/S0013091500010270 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500010270

