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Introduction. Let R always denote a fixed non-commutative principal 
ideal domain. A right (left) ideal aR (Ra) is termed right (left) C\ irreducible 
provided it is not the intersection of two right (left) ideals that properly in­
clude it. In this case, the element a is called right (left) C\ irreducible. 

Since R satisfies the A.C.C. for right ideals every right ideal aR can be 
written in the form aR = a,\R C\ a2R r\ . . . r\ anR, where atR properly in­
clude aR and is right C\ irreducible, i = 1,2, . . . ,n. We shall investigate pro­
perties (including primary properties) of right Pi irreducible one-sided and 
two-sided ideals of R. These properties will depend on the results given in (1) 
and (2, chapter in) . 

An element a is irreducible if it is not zero or a unit and has no proper fac­
tors. In this case aR (Ra) is a maximal right (left) ideal. 

1. Right C\ irreducible one-sided ideals. From Theorem 2 of (2, p. 31) 
it follows that the zero ideal is right and left C\ irreducible. This is also trivially 
true for R. The special case where a is irreducible will be discussed briefly in 
§3. Hence in this paper, unless otherwise stated, the ideals aR mentioned 
will not be 0, R or maximal. 

THEOREM 1.1. For aR C R the following statements are equivalent: 
1. a is right C\ irreducible. 
2. aR is contained in a unique minimal right overideal not equal to R. 
3. Ra is contained in a unique maximal left ideal. 
4. If a = be = b'c' where c' and c are irreducible then Re = Re'. 
5. If a = be = b'c' where c' and c are irreducible then bR = b'R. 

Proof. 1 «-» 2. Let a be right P\ irreducible. From Theorem 1 of (2, p. 31) 
we have that every right ideal has at least one minimal overideal. If bR and 
dR are distinct minimal overideals of aR then aR = bR H\ dR—a contradic­
tion. Conversely, let bR be the unique minimal overideal of aR. Suppose aR — 
dR C\ eR where dR and eR properly include aR. Hence bR C dR and bR CZ eR 
and aR C bR C dR P\ eR—a contradiction. 

In order, we now show that 2-^3—-» 4 —̂  5 —> 2. To show that 2 —» 3 let 
bR be the unique minimal overideal of aR. Then a = be where c is irreducible 
(2, p. 34). Hence Ra C Re. Suppose Ra C Re' where Re' is a maximal left 
ideal. Then a = dc' and aR C dR. Therefore, bR Ç dR, that is, b = dk. 
Hence a = dc' = dkc which implies c' = kc. Thus k is a unit and Re' = Re. 
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3 —> 4. Let Re be the unique maximal left ideal containing Ra. If a = b'd = 
b"c" where d and d' are irreducible, then Ra C Rd and Ra C Rd'. Hence 
Re = Rd = Rd'. 

4 —» 5. Let a = b'd — b"d' where d and c" are irreducible. By 4 we have 
Rd = ifc". Hence there exists a unit w such that d = wc". Therefore, 
a = & W = Ô'V. Thus ô'w = 6" and VR = 6"i?. 

5—^2. Suppose bRand b'Rare minimal overideals of aR. Then a = be = 6 V 
where £ and d are irreducible. By 5 we can conclude that bR — bfR. 

From 3 of this theorem the following corollary is immediate. 

COROLLARY 1.1. Let aR be right C\ irreducible. If Ra C Rdi C Rd2 C • • • C 
Rdn C R is a composition series where Rdn is the unique maximal left ideal con­
taining Ra, then du i = 1, 2, . . ., n, is right P\ irreducible. 

From the corollary we have 

COROLLARY 1.2. Let a be right C\ irreducible. If a = kd = k'df where Rd = Rd' 
then a = kbc — k'b'd where bR = b'R. 

STATEMENT 1.1. Let a be right C\ irreducible. If bR is the unique minimal 
overideal of aR and a = be then 

cR = {aR\b}r = {x\bx £ aR, x G R}. 

Proof. Certainly cR C {aR\b}r. If d 6 {aR\b}r then bd = am = bcm. 
Hence d = cm and d G cR. 

From (2, p. 34) we know that every element may admit several factoriza­
tions as a product of irreducible elements. Part 4 of Theorem 1.1 tells us that a 
is right C\ irreducible if and only if for any two factorizations a = a\a^ . . . an = 
b\bi. . . bn where the az's and 6/s are irreducible we have Ran = Rbn. 

2. Primary properties. The ring R can be considered as an A — K 
module as denned in (1) by taking as A the ring of left multiplications and as 
K the ring of right multiplications. By Theorems 2.1. and 2.2. of (1) we have 
the following. 

Let aR be right C\ irreducible. The normalizer (centralizer) B of aR is 
[b\ba G aR}. Then P = {x\xn G aR, x Ç B] is a completely prime two-sided 
ideal of B and ex G aR for c G B, x $ aR implies c G P. 

Since aR is a right ideal we may consider R — aR as an i? module. Let us 
now apply Theorem 1 of (3, p. 25) to this R module. Since R 3 1, the module 
R — aR is cyclic. Then / = {x\lx = Ô, x G R} is a right ideal of R where 
T and D denotes the cosets of 1 and 0 in R — aR. Certainly / = aR. Since 
R 3 1 the ideal K = {k\kR C aR, k G B] = aR. Applying the theorem above 
we have the ring of endomorphisms C of R — aR is B/aR. 

Since a ^ O the module i^ — aR satisfies both chain conditions for sub-
modules. Since aR is right Pi irreducible certainly R — aR is indecomposable. 
Applying Theorem 3 of (2, p. 57) then the ring of endomorphisms of R — aR, 
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which is B/aR, is completely primary, that is, if P = {x\x11 G aR, x G B} then 
(B/aR)/ (P/aR) = B/P is a division ring. Hence P is a maximal right ideal 
of B and we have proved 

THEOREM 2.1. If ai? is ngfe P\ irreducible and B the normalizer of aR in 
R, then the radical P of aR in B is a maximal right ideal and B/P is a division 
ring. 

LEMMA 2.1. Let aR be right P\ irreducible and P the radical of aR in B. If 
bR is the unique minimal overideal of aR then xbR Ç aRfor x G P. 

Proof. If x G P then xn G aR for some integer n. If n = 1 the statement is 
obviously true. Assume n > 1 and xn (z aR, xn~l $ ai?. Since xw-1 (jf ai? then 
bR C xw_1P + ai?. Hence 6 = xw_1gi + agi, #6 = xwgi + xagz. Since x G B 
and xw G ai? we have xb G ai?. Hence xbR C ai?. 

STATEMENT 2.1. Le£ ai? 6e n'gfej P\ irreducible and P be the radical of aR in its 
normalizer B. If bR is the unique minimal overideal of aR then P = {aR\b\ t = 
{x|x£ G ai?, x G P } . 

Proof. By Lemma 2.1 certainly P Ç {aP|6} z. If x G {ai?|Z>}j then x& G ai? 
and xbR C ai?. Since ai? C Ji? certainly x G JB. From the discussion at the 
beginning of this section and since xb G aR, x G B, b QaR then x G P . 

3. Summary. In the commutative case for a principal ideal domain an 
ideal aR is Pi irreducible if and only if aR = cwi? where c is irreducible. Here 
aR C ci?, c is irreducible, ci? is maximal and cR is called the radical (aR)* of 
ai?. (Read (4, chapter i).) 

In the non-commutative case the radical P of aR in B has many of the 
properties of the radical in the commutative case. These are: (1) if x Ç P 
then xwG aR. (2) P is maximal in B. (3) P = \aR\b\ i by Statement 2.1. 
(4) If xd G ai?, x G B, d ( aR then x G P . 

If Re is the unique maximal left ideal containing Ra then c has many of the 
properties of the element which generates the radical in the commutative case. 
These are: (1) Re and cR are maximal. (2) c is irreducible. (3) c is right factor 
of a. (4) cR = {ai?|6}r by Statement 1.1. 

We shall now consider the case where a is irreducible. Since aR is a maximal 
right ideal certainly aR is P\ irreducible. By the corollary of (3, p. 26) we have 
that B/aR is a division ring where B is the normalizer of aR. Hence in this 
case aR = P , the radical of aR in i?. 

4. Intersection irreducible two-sided ideals. Suppose a*P = Pa* is 
a two-sided ideal of P which is right P\ irreducible. The normalizer P of 
a*P is P . Hence the radical P of a*P in P is a two-sided ideal of P and P / P 
is a division ring. Therefore, the unique maximal left ideal Pc* which contains 
a^R is equal to P and is a two-sided ideal. Thus Pc* = c*P = P . Certainly 
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c*R is a unique maximal right ideal containing a*R. Hence by Theorem 1.1 
a*R is also left P\ irreducible. We have proved 

THEOREM 4.1. If a*R = Ra* is right C\ irreducible then a*R is left irreducible. 
In addition if P is the radical of a*R in R then R/P is a division ring and P = 
c*R = Re* where c* is irreducible. 

STATEMENT 4.1. / / p*R = Rp* where p* is irreducible then (p*)nR = 
R(p*)n is right C\ irreducible for all integers n. 

Proof. If n = 1 this is obvious. For n > 1 then (p*)nR C P*R and assume 
(p*)nR C Re where c is irreducible and p*R ^ Re. Then (p*)k £ Re for some 
integer k. If k = 1 then p*R = Re - contradiction. If k > 1 and {p*)k~l i 
Re, then R = Re + R(p*)k~l and thus 1 = dxc + d2ip*)k~l. Multiplying on 
the left by p* we have p* = p* dxc + p*d2{p*)k-\ But p*d2 = dzp* and 
(p*y = d,c. Then p* = p*dYc + dzdAc. Hence p* £ Re and ^*i^ = Re—a 
contradiction. Since the assumption that p*R 9e Re always leads to a contra­
diction, we can only conclude that p*R = Re. Thus (p*)nR is contained in a 
unique maximal left ideal and is, therefore, right Pi irreducible. 

From Theorem 2.1 of (1) it follows that a*R = Ra* is primary in the sense 
that cd e a*R implies cn G a*R if d $ a*R and dn Ç. a*R if c $ a*R. 

THEOREM 4.2. A two-sided ideal a*R = Ra* is right C\ irreducible if and only 
if a* = u(p*)n for some integer n, where u is a unit of R, p*R = Rp*, and p* 
is irreducible. 

Proof. Suppose a*R is right C\ irreducible. Then a*R C c*R where c* is 
irreducible and (c*)n G a*R for some integer n. If a* = be* and if c* $ a*R 
then b £ c*R and b = de*, a* = d(c*)2. This process continues until a = 
k(c*)n = ea. Then a = kea and k is a unit. The converse follows from Statement 
4.1. 

5. An application. If R is real closed field then a polynomial f(x) in 
R(\/—l)[x] is O irreducible if and only if f(x) = u(x — r)n where u is a 
unit and r Ç i ^ ( V l ~ ) • Thus in this case all the roots of f(x) are equal. 

Let Q be the ring of quaternions over a real closed field. From the discussion 
given in (2, p. 36) a polynomial f(x) inQ[x], where ax = xa for a G Q, is 
irreducible if and only if it is linear. In addition r is a right-hand root of f(x) 
if and only if f(x) = q{x) (x — r). 

THEOREM 5.1. A polynomial f(x) Ç Q[x], where Q denotes the ring of 
quaternions over a real closed field, is right P\ irreducible if and only if all its 
right-hand roots are equal. 

Proof. Let r\ and r2 be right-hand roots olf(x) which is right P\ irreducible. 
Then fix) = Qiix) (x — ri) = q2{x) (x — r2). From Theorem 1.1 then 
u(x — ri) = (x — r2) where u is a unit. Hence r± = r2. 
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Conversely suppose all the right-hand roots of f(x) are equal and let/(x) = 
g_i(x) (ax + b) = q<i(x) (ex + d). Then arlb = e~ld. Hence car1 (ax + b) = 
(ex + d) and by Theorem 1.1 we have f(x) is right P\ irreducible. 

If the coefficients olf(x) are in the centre of Q and/(x) is right r\ irreducible 
we conclude from this section and §4 tha t / (x) = u(x — r)n where u is a unit 
and r £ Q. 
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