INTERSECTION IRREDUCIBLE IDEALS OF A
NON-COMMUTATIVE PRINCIPAL IDEAL DOMAIN

EDMUND H. FELLER

Introduction. Let R always denote a fixed non-commutative principal
ideal domain. A right (left) ideal aR (Ra) is termed right (left) M irreducible
provided it is not the intersection of two right (left) ideals that properly in-
clude it. In this case, the element a is called right (left) M irreducible.

Since R satisfies the 4.C.C. for right ideals every right ideal aR can be
written in the form eR = a1R M asR M ... M a,R, where a;R properly in-
clude aR and is right M irreducible, 7 = 1, 2, ..., n. We shall investigate pro-
perties (including primary properties) of right /M irreducible one-sided and
two-sided ideals of R. These properties will depend on the results given in (1)
and (2, chapter 11).

An element a is srreducible if it is not zero or a unit and has no proper fac-
tors. In this case aR (Ra) is a maximal right (left) ideal.

1. Right M irreducible one-sided ideals. From Theorem 2 of (2, p. 31)
it follows that the zero ideal is right and left M irreducible. This is also trivially
true for R. The special case where a is irreducible will be discussed briefly in
§3. Hence in this paper, unless otherwise stated, the ideals aR mentioned
will not be 0, R or maximal.

TurorEM 1.1. For aR C R the following statements are equivalent:
1. a is right M irreducible.
2. aR is contained in a unique minimal right overideal not equal to R.
3. Ra is contained in a unique maximal left ideal.
4. If @ = bc = b'¢c’ where ¢’ and ¢ are irreducible then Rc = Rc'.
5. If a = bc = b'c’ where ¢’ and ¢ are irreducible then 8R = b'R.

Proof. 1 < 2. Let @ be right N irreducible. From Theorem 1 of (2, p. 31)
we have that every right ideal has at least one minimal overideal. If 8R and
dR are distinct minimal overideals of aR then aR = bR M dR—a contradic-
tion. Conversely, let bR be the unique minimal overideal of aR. Suppose aR =
dR M eR where dR and ¢R properly include a¢R. Hence bR C dR and bR C eR
and aR C bR C dR M eR—a contradiction.

In order, we now show that 2 -3 —4 — 5 — 2. To show that 2 — 3 let
bR be the unique minimal overideal of aR. Then @ = bc where ¢ is irreducible
(2, p. 34). Hence Ra C Rc. Suppose Ra C Rc¢’ where R¢’ is a maximal left
ideal. Then ¢ = d¢’ and aR C dR. Therefore, 8R C dR, that is, b = dk.
Hence a = d¢’ = dkc which implies ¢’ = kc. Thus k is a unit and R¢’ = Re.
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3 — 4. Let Rc¢ be the unique maximal left ideal containing Ra. If a = b'c’ =
b’¢’”” where ¢’ and ¢’ are irreducible, then Ra C R¢’ and Rae C R¢”’. Hence
Rc = Rc' = R(¢".

4 —35. Leta = b'c’ = b"c"" where ¢’ and ¢’ are irreducible. By 4 we have
R¢’ = Rc”. Hence there exists a unit # such that ¢’ = uc¢”’. Therefore,
a = buc’ = b"’c"”. Thus d’u = b’ and 8'R = b"'R.

5 — 2. Suppose bR and &'R are minimal overideals of aR. Then a = bc = ¥'¢c’
where ¢ and ¢’ are irreducible. By 5 we can conclude that 6R = 4'R.

From 3 of this theorem the following corollary is immediate.

CoroLLARY 1.1. Let aR be right M trreducible. If Ra C Rd; C Rds C ... C
Rd, C R is a composition series where Rd, is the unique maximal left ideal con-
tatming Ra, then diy 1 = 1,2, ..., n, is right (M irreducible.

From the corollary we have

COROLLARY 1.2. Let a be right (M irreducible. If a = kd = k'd’ where Rd = Rd’
then a = kbc = k'b'c’ where bR = b'R.

STATEMENT 1.1. Let a be right M\ irreductble. If bR is the unique minimal
overideal of aR and a = bc then

cR = {aR|b}, = {x|bx € aR,x € R}.

Proof. Certainly ¢R C {aR|b},. If d € {aR|b}, then bd = am = bcm.
Hence d = ¢m and d € cR.

‘From (2, p. 34) we know that every element may admit several factoriza-
tions as a product of irreducible elements. Part 4 of Theorem 1.1 tells us that a
isright M irreducible if and only if for any two factorizationse = aas . . .a, =
bibs . .. b, where the a,'s and b,'s are irreducible we have Ra, = Rb,.

2. Primary properties. The ring R can be considered as an 4 — K
module as defined in (1) by taking as A the ring of left multiplications and as
K the ring of right multiplications. By Theorems 2.1. and 2.2. of (1) we have
the following.

Let aR be right M irreducible. The normalizer (centralizer) B of aR is
{blba € aR}. Then P = {x|x" € aR, x € B} is a completely prime two-sided
ideal of Band cx € aRforc € B,x ¢aRimpliesc € P.

Since aR is a right ideal we may consider R — aR as an R module. Let us
now apply Theorem 1 of (3, p. 25) to this R module. Since R 5 1, the module
R — aR is cyclic. Then I = {x|Tx = 0, x € R} is a right ideal of R where
1 and 0 denotes the cosets of 1 and 0 in R — aR. Certainly I = aR. Since
R > 1theideal K = {k|kR C aR,k € B} = aR. Applying the theorem above
we have the ring of endomorphisms C of R — aR is B/aR.

Since a # 0 the module R — aR satisfies both chain conditions for sub-
modules. Since aR is right M irreducible certainly R — @R is indecomposable.
Applying Theorem 3 of (2, p. 57) then the ring of endomorphisms of R — aR,
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which is B/aR, is completely primary, that is, if P = {x|x" € aR, x € B} then
(B/aR)/(P/aR) = B/P is a division ring. Hence P is a maximal right ideal
of B and we have proved

TaeEOREM 2.1. If aR s right M trreducible and B the normalizer of aR in
R, then the radical P of aR in B is a maximal right ideal and B/P is a division
ring.

LeMMA 2.1. Let aR be right (M irreducible and P the radical of aR in B. If
bR is the unique minimal overideal of aR then xbR C aR for x € P.

Proof. If x € P then «" € aR for some integer #. If # = 1 the statement is
obviously true. Assume # > 1 and x" € aR, ! § aR. Since x"' § aR then
bR C " 1R 4 aR. Hence b = x""'g; + ags, xb = x"g1 + xag.. Since x € B
and x® € aR we have xb € aR. Hence xR C aR.

STATEMENT 2.1. Let aR be right (M trreducible and P be the radical of aR in its
normalizer B. If bR is the unique minimal overideal of aR then P = {aR|b}, =
{x|xd € aR, x € R}.

Proof. By Lemma 2.1 certainly P C {aR|b},. If x € {aR|b}, then xb € aR
and xbR C aR. Since aR C bR certainly x € B. From the discussion at the
beginning of this section and since xb € aR, x € B, b §aR then x € P.

3. Summary. In the commutative case for a principal ideal domain an
ideal aR is M irreducible if and only if aR = ¢"R where ¢ is irreducible. Here
aR C ¢R, c is irreducible, ¢R is maximal and ¢R is called the radical (aR)% of
aR. (Read (4, chapter 1).)

In the non-commutative case the radical P of aR in B has many of the
properties of the radical in the commutative case. These are: (1) if x & P
then " € aR. (2) P is maximal in B. (3) P = {aR|b}, by Statement 2.1.
(4) If xd € aR,x€ B,d ¢aR then x € P.

If Rc is the unique maximal left ideal containing Ra then ¢ has many of the
properties of the element which generates the radical in the commutative case.
These are: (1) Rc and ¢R are maximal. (2) ¢ is irreducible. (3) ¢ is right factor
of a. (4) ¢cR = {aR|b}, by Statement 1.1.

We shall now consider the case where a is irreducible. Since aR is a maximal
right ideal certainly aR is M irreducible. By the corollary of (3, p. 26) we have
that B/aR is a division ring where B is the normalizer of aR. Hence in this
case aR = P, the radical of aR in B.

4. Intersection irreducible two-sided ideals. Suppose a*R = Ra* is
a two-sided ideal of R which is right M irreducible. The normalizer B of
a*R is R. Hence the radical P of a*R in R is a two-sided ideal of R and R/P
is a division ring. Therefore, the unique maximal left ideal Rc* which contains
a*R is equal to P and is a two-sided ideal. Thus Rc* = ¢*R = P. Certainly
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c¢*R is a unique maximal right ideal containing ¢*R. Hence by Theorem 1.1
a*R is also left M irreducible. We have proved

TuEOREM 4.1. If a*R = Ra* is right (" irreducible then a*R is left irreducible.
In addition if P is the radical of a*R in R then R/P is a division ring and P =
c¢*R = Rc* where c* is irreducible.

STATEMENT 4.1. If p*R = Rp* where p* is irreducible then (p*)"R =
R(p*)" 1s right M 1rreducidle for all integers n.

Proof. If n = 1 this is obvious. For n > 1 then (p*)"R C p*R and assume
(p*)"R C Rc where ¢ is irreducible and p*R # Rc. Then (p*)* € Rc for some
integer k. If 2 = 1 then p*R = Rc — contradiction. If 2 > 1 and (p*)*-! ¢
Re, then R = Rc 4+ R(p*)*! and thus 1 = dic + d2(p*)*~1. Multiplying on
the left by p* we have p* = p* dic + p*d2(p*)*~!. But p*d. = dzp* and
(p*)* = dsc. Then p* = p*dic 4+ dsdsc. Hence p* € Rc and p*R = Rc—a
contradiction. Since the assumption that p*R # Rc¢ always leads to a contra-
diction, we can only conclude that p*R = Rc. Thus (p*)"R is contained in a
unique maximal left ideal and is, therefore, right M irreducible.

From Theorem 2.1 of (1) it follows that ¢*R = Ra* is primary in the sense
that ¢cd € a*R implies ¢" € a*R if d § a*R and d" € a*R if ¢ § a*R.

THEOREM 4.2. A two-sided ideal a*R = Ra* is right (" irreducible if and only
if a* = u(p*)" for some integer n, where u s a unit of R, p*R = Rp*, and p*
s wrreductble.

Proof. Suppose a*R is right M irreducible. Then a*R C ¢*R where ¢* is
irreducible and (¢*)" € a*R for some integer #n. If a* = bc* and if ¢* ¢ a*R
then & € ¢*R and b = dc*, a* = d(c*)% This process continues until ¢ =
k(c*)* = ea. Thena = kea and k is a unit. The converse follows from Statement
4.1.

5. An application. If R is real closed field then a polynomial f(x) in
R(+/—1)[x] is N irreducible if and only if f(x) = u(x — 7)* where u is a
unit and 7 € R(+/1—). Thus in this case all the roots of f(x) are equal.

Let Q be the ring of quaternions over a real closed field. From the discussion
given in (2, p. 36) a polynomial f(x) inQ[x], where ax = xa for a € Q, is
irreducible if and only if it is linear. In addition 7 is a right-hand root of f(x)
if and only if f(x) = ¢(x) (x — 7).

TreEOREM 5.1. A polynomial f(x) € Qfx], where Q denotes the ring of
quaternions over a real closed field, is right M irreducible if and only if all its
right-hand roots are equal.

Proof. Let ryand 7, be right-hand roots of f(x) which is right M irreducible.
Then f(x) = ¢i(x) (x — 1) = ¢q2(x) (x — 72). From Theorem 1.1 then
u(x — r;) = (x — 72) where « is a unit. Hence r; = 7,.
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Conversely suppose all the right-hand roots of f(x) are equal and let f(x) =
gi(x) (ax + b) = g2(x) (cx + d). Then a='b = ¢~'d. Hence ca !(ax + b) =
(¢cx 4+ d) and by Theorem 1.1 we have f(x) is right M irreducible.

If the coefhicients of f(x) are in the centre of Q and f(x) is right M irreducible
we conclude from this section and §4 that f(x) = u(x — )" where % is a unit
and 7 € Q.
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