
J. Functional Programming 5 (1): 65-80, January 1995 © 1995 Cambridge University Press 65

Strong normalisation for the
linear term calculus

P. N. BENTONt
Computer Laboratory, University of Cambridge, New Museums Site,

Pembroke Street, Cambridge CB2 3QG, UK
(e-mail: Nick.Benton@cl.cam.ac.uk,)

Abstract

We prove a strong normalisation result for the linear term calculus of Benton, Bierman,
Hyland and de Paiva. Rather than prove the result from first principles, we give a translation
of linear terms into terms in the second-order polymorphic lambda calculus (X2) which allows
the result to be proved by appealing to the well-known strong normalisation property of X2.
An interesting feature of the translation is that it makes use of the X2 coding of a coinductive
datatype as the translation of the !-types (exponentials) of the linear calculus.

Capsule Review

The author proves that reduction in a linear term calculus introduced elsewhere is strongly
normalising. The result is obtained by interpreting the types and the terms of the linear term
calculus as types and terms of the second-order A-calculus 12. This proof is quite astute, and
the verifications that the translation works are rather involved. This is a nice result.

1 Introduction

The Linear Term Calculus (LTC) is the term assignment system for propositional
intuitionistic linear logic (ILL) which was introduced by Benton, Bierman, Hyland
and de Paiva (1992a; 1992b; 1993). LTC arises via the propositions-as-types analogy
from a natural deduction formulation of ILL in the same way that the simply-
typed lambda calculus arises from propositional intuitionistic logic (Howard, 1980;
Girard et al, 1989). Just as in the familiar non-linear case, normalisation steps on
the natural deduction proofs (removing the 'detours' which occur when a logical
connective is introduced and then immediately eliminated) induce /^-reduction steps
on the associated terms.

From a computer science perspective, the linear term calculus is interesting for
several reasons. Linear terms make resource usage very explicit; for example, /?-
reduction shows exactly how copying and discarding (garbage collection) proceed
recursively on the structure of the object in question. This suggests that a linear

f Research supported by a SERC Fellowship.

https://doi.org/10.1017/S0956796800001246 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001246

66 P. N. Benton

functional language could be of value either as a source language, giving the
programmer greater control over resource usage, or as an intermediate language,
allowing a compiler to express resource-based optimisations. This is currently an
active field of research (see Chirimar et al., 1993, for example), though much remains
to be done, particularly as regards the differences between term and graph rewriting.
The linear term calculus is also an appropriate metalanguage for reasoning about
some programming language features which are not particularly resource-like, such
as the relationship between call-by-value and call-by-name.

This paper concerns the important proof-theoretic question, which was left open
in the above-cited work of Benton et al., of whether or not the normalisation process
on derivations in the natural deduction formulation of the logic (or, equivalently,
the induced ^-reduction of terms) always terminates. Here we answer that question
in the affirmative, showing that that there are no infinite /J-reduction sequences from
well-typed linear terms.f

The literature contains many strong normalisation proofs for various systems,
many of which use variants of Tait's (1967) reducibility argument. Strong normali-
sation for the linear term calculus can be proved this way (see Bierman, 1993), but
here we take a somewhat different approach. If we wish to prove strong normal-
isation for a language L\, and we already know strong normalisation holds for a
language L2 (by a reducibility argument, for example), then it suffices to exhibit a
translation t*-* f from L\ to L2 with the property that if s —>i t in L\ then s° —*\ t°
in L2 (where —»i,—»2 are the one-step reduction relations in L\ and L2, respectively,
and —*2 is transitive closure of —>2). For, given such a translation, if there were an
infinite reduction sequence:

to —M t\ —>i ti - > i • • •

in Li, it would induce an infinite sequence:

to + ,0 + to +
t 0 —>2

 r l ~~*2 l2 ~*2

of reductions in L2, contradicting strong normalisation for that language. This
is the technique which we shall use here, with L\ the linear term calculus and
L2 the Girard/Reynolds second-order polymorphic lambda calculus (Girard, 1972;
Reynolds, 1974).

1.1 The linear term calculus

The types of LTC are given by the following grammar, where G ranges over some
given collection of base types:

A : := G | / | A®A \ A&A \A®A\ A^A | \A

The term-formation rules of LTC are recalled in Fig. 1, and the associated /?-
reductions are shown in Fig. 2, where, for example:

discard e, in u

t LTC ^-reduction is also confluent (Bierman, 1993).

https://doi.org/10.1017/S0956796800001246 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001246

Strong normalisation for the linear term calculus 67

is an abbreviation for

discard e\ in discard e-i in . . . discard en in u

The one-step reduction relation —> is defined by augmenting the /? axioms with
inference rules making —> into a congruence, which can be summarised by the rule:

C[e] -» C[e']

The version of LTC which we are using here is an extension of that considered in
Benton et al. (1992a), in that we have included the additives & and ©. The additive
units have been omitted as no ^-reductions are associated with either of them. This
conveniently avoids the need to discuss some rather unpleasant syntax. Even for the
binary versions of the additive connectives, however, there is some choice as to how
the natural deduction proof rules and the associated syntax should be formulated.
We have picked the simplest and most obvious version, but there are reasons why
one might favour a formulation in which, for example, the introduction rule for &
looks like:

Ai h ei : Ai • • • An I- en : An x, : A, h / : B yt : A, h g : C

Ai,..., An I- use eu...,en as xi,...xn in / o ry u . . . , y n in g : B&C

Further discussion can be found in Bierman (1993), but for now we merely remark
that the choice makes no real difference to the strong normalisation proof.

It should be noted that in Benton et al. (1992a) we also considered a secondary
form of reduction rule: the so-called commuting conversions. We shall not consider
such conversions here, and at present we do not have a proof that -> ĵC is strongly
normalising for LTC.

1.2 The second-order polymorphic lambda calculus

The types of the second-order lambda calculus (also known as System F or XT) are
given by the following grammar, where G ranges over a given set of base types and
X over a set of type variables:

A ::= G \ X \ A x • • • x A \ A + A \ A -> A \ VX.A

Note that, for notational convenience in what follows, we have presented the system
with n-ary product and binary coproduct types. These are not strictly necessary, as
they can both be coded within the V -» fragment in the usual way (Girard et al,
1989). The term-formation rules for 12 are recalled in Fig. 3. We will frequently
omit type annotations in terms when they are clear from context. We shall need the
following trivial fact about typing derivations in XI:

Lemma 1

If T f- e : A and x £ T then T,x : B \-e : A. D

https://doi.org/10.1017/S0956796800001246 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001246

68 P. N. Benton

x:A\- x:A (jtfx)

r,x:A\-e:B T\-e:A-°B
() (-o/)

r,Ahe/:B

T\-e:A A h / :/

T,Ah let /be * \ne :A

T\-e:A A\-f:B T\-e:A®B A,x:A,y:B h f:C

T,A\-e®f:A®B T,A h letebex®y i n / : C

T\-e:A T\-f:B

T\-(e,f):A&B

T\-e:A&B T\-e:A&B
(&,_,) (&,_2)

rhfste:^ Thsnde:B

T\-e:A T\-e:B

r h \n\B{e):A®B T \-\nr A(e): A ® B

r\-e:A®B A,x:Ah f:C A,y:B\-g:C

r , A h c a s e e of inl(x) = > / | inr(y) => g : C

- e , : W , ••• An\-en:\An xl:\Al,...,xn:\An\-f:B

A i , . . . , A n h p r o m o t e c i , . . . , e B f o r x i , . . . , x n i n / : \B

T\-e:\A A,x: \A,y: \A h f : B

• Promotion

r , A h c o p y e a s x . y \nf:B
Contraction

T\-e:\A Ahf:B T h e: \A
Weakening Dereliction

r,A h discard e \nf:B T\- derelict(g):/4

Fig. 1. The Linear Term Calculus (LTC).

The reduction rules for XI consist of the following /? axioms:

(ix:A.e)f -> e[f/x]
Ui{eu...,en) - » • e t

caseinlB(e) of inl(x) => / | ini{y) => g -»• /[c/x]
caseinrA(e) of inl(x) => / | i/J^) => g - » • g[e/y]

together with the following axiom for reduction on types:

(AX*) A -> e[A/X]

and a collection of inference rules extending -» to a congruence. The important fact
about reduction of terms in XI is that it always terminates:

https://doi.org/10.1017/S0956796800001246 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001246

Strong normalisation for the linear term calculus 69

(Ax:A.t)e

let * be * in e

lete®t bexgvy in u

fst(e,/)

snd(ej)

case inlfl(e) of inl(x) => / | inr(y) => g

case inryt(e) of inl(x) => / | inr(>>) => g

derelict(promote e, for x, in t)

discard (promote e,- for x, in t) in u

copy (promote e, for x,r in t) as y, z in u

-» t[e/x]

—» e

-»• u[e/x,t/y]

—• e

- /

- /[e/x]

- • g[e/y]

-> t[e,/x,]

-* discard e, in u

—• copy e, asx|,x" in
w[promote x| for x, in t/y,

promote x" for x, in t/z]

Fig. 2. ̂ -reductions for the linear term calculus.

r

r

r
h

h

T,x : / l h e

r h (Ax : A.e) :

h e l : A l ••• T

(e,,...,e.>:A,

T h e : ^

r h M/B(e) : /

The :A + B

T,x :A\-

:B

A->B

t-en:An

X • • • X An

l + B

T,x :A\-)

F h casee of inl(x) =>

r\-e:A
Y

AX.e : VX.A
$FTV(T)

x :A

T h e

r

r
r :C

The/ :B

\- e : A\ x • • • x

T \- n,e : A,

T h e :B

' h //Jr^(e) : A -f

T,y : B h g

/ | iniiy) => g : C

T h e : VX.A

F h e B :/4[B/J

h / : A

A.

B

C

Fig. 3. The second-order polymorphic lambda calculus (X2).

https://doi.org/10.1017/S0956796800001246 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001246

70 P. N. Benton

Theorem 2
All well-typed terms of XI are strongly normalising.

Proof
The original proof is in Girard (1972). A good discussion may be found in Gallier
(1990). •

2 Coding coinductive datatypes in X2

The way in which inductive datatypes such as finite lists, trees and natural numbers
may be coded in XI is well-known. The dual codings of coinductive types are perhaps
less familiar, so we give a brief account here.

Let O(X) be a X2 type in which the free type variable X appears positively. Then
the greatest fixed point of O is given by:

v* = 3X.{X -* <&(*)) x X

where:

3X.Ad= VY.(VX.A -> 7) -> Y

Expanding this out and currying gives:

v* =f V7.(VX.{X -» O(X)) -> X -> Y) -> 7

Note that O(X) is functorial in X as X occurs positively. This means that given
f:A -»• B we can define a term <£[/"]: O(,4) -*• <b(B) by induction on the structure of
d>.

Terms of type V<D are built using:

build* : VX.{X -» O(X)) -> X -» v*

=f AX.lf.lx.AClh.(hXfx)

and associated destructor is:

out* : Vd> —• $(vd>)

d= Xm.m ®(v«) (AX.Xf.Xx.(Q [build* X f] (f x)))

The relationship between build and out is given by the following easily verified
reduction:

out* {build* Xfx) ->+ ®[build*Xf](fx)
The categorically-motivated reader will note that the equality implied by the previous
reduction is expressed by the commutativity of:

out*

build* Xf ~~v*

https://doi.org/10.1017/S0956796800001246 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001246

Strong normalisation for the linear term calculus 71

which characterises (v<j>, out®) as a weakly terminal $-coalgebra. It is strongly
terminal in models satisfying appropriate parametricity conditions—see Plotkin and
Abadi (1993), for example.

3 The translation

3.1 The translation of types

Given a LTC type A, the X2 type A° is defined by induction on the structure of A
as follows:

X)->X

G°

(A-oB)°

{A®B)°

1°

(A&B)°

(A 0 B)°

(\A)°

d>Bmd=(vz.z

def

def

def

def

def

def

def

->z

G

A°
r (AO . DO

VX.X -^ X

A°

A°

V(j,

) X

xB°

+ B°

4°

B x (yz.(x
where:

Note that the translations of ® and / use directly the 12 encodings of binary
products and the unit type, as these turn out to be technically more convenient.
Similarly, OB(X) can be thought of as:

lxBx(X xX)

and thus v ŝ is essentially the type of infinite binary trees with nodes labelled by
elements of B. This translation of exponentials is motivated by, apart from the fact
that it works, the linear logic treatment of \A as satisfying:

and also by more operational concerns. The types L4,- of the promoted terms e, in
promotee, forx, in / are not apparent in the type IB of the whole term, but when
the promoted term is broken apart by a reduction, they become revealed. Thus the
translation of !B needs to be an abstract datatype which 'hides' the (translations
of the) types \Ai, which can be achieved by the use of an existential type (Mitchell
and Plotkin, 1988). See Section 5 for further discussion of the intuition behind the
translation of !.

Iff: A -> B is a XI term, then Oc[f]:<S>c(A) -» OC(B) is given by:

9c\f] = X
AZ.Xh.B -> B ->• Z.(7t3w)Z (kx:A.Xy:A.h(Jx)(/y)))

https://doi.org/10.1017/S0956796800001246 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001246

72 P. N. Benton

3.2 The translation of terms

From a derivation II of the judgement F \- e : A in the linear term calculus, we
now define a derivation n° in kl which proves T° \- e° : A° by induction on Ft. Of
course, since terms code derivations uniquely (in both systems), the translation is
really from terms to terms. It is, however, easier to present it using derivations as
that makes the partitioning of linear contexts more explicit. For the rules which do
not explicitly involve exponentials, the translation is straightforward:

• If n is

x : A\- x : A

then 11° is

x:A°\-x:A°

• If Ft ends in
r,x:A\-e:B

r h (kx : A.e) : A-oB
then by induction there is a derivation of F°, x : A° \- e° : B° so we can form

F° ,x :AoY-e° :B°

F° h (Ax : A°.e°) : A° -+ B°

• If II ends in
T h e : A - o B A \ - f : A

r , A h (e /) : B
then by induction there are derivations of

F° h e° : A° - B°

and

A° h f° : A"

By Lemma 1, this means that there are derivations of

r°,A°h-e° :A° -> B°

and

r o , A o h / ° :A°

so that we can form
(F, A)0 h e° : A° - • B° (F, A)° h f° : A°

if n is
h* :/

then IP is
x :X\-x :X

\- {kx : X.x) : X -> X

h (AX.kx : X.x) : VX.X -* X

https://doi.org/10.1017/S0956796800001246 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001246

Strong normalisation for the linear term calculus 73

If n ends in
A t - / : / r\-e:A

T,A\- le t /be * ine : A
then by induction and Lemma 1 we can form

(r,A)°i-/0 :vx.x-+x
(r, A)° h (f° A0) :A° -+A° (r, A)° h e° : A°

(T,A)o\-(f°Ao)e° :A°

• Similarly, if n ends in
T\-e:A A\-f:B

r , A h e<g>f :A®B
then ITO is the obvious derivation of

(r, A)° h AX.Xh :A° -> B° -» X.(he°)f° : VX.(A° -» B° -> X) -> X

• If IT ends in
T\-e:A®B A,x :A,y: B h / : C

r , A Mete bex®)* in / :C
then n° is the derivation of

(F, A)° h (e° C°)(Ax : A°.Xy : B°.f°) : C°

The additives are particularly easy to deal with, so we just give the term-to-term
translations:

• (fst e)° = n\(e°) and similarly for snd e.
• (inlB(e))°d= inlB,(e°) and similarly for \r\rA(e).
• (case e of inl(x) => / | inr(y) => g)° =f casee° of inl(x) => f° \ ini{y) => g°.

The case of dereliction is dealt with as follows:

• If n ends with
T\-e:\A

rhderelict(e) : A
then by induction there is a derivation of T° \- e° : v ^ so that we can form
11° as follows:

T° h outv : v ^ -> ^ " (v ^) r° h e° : v^

: (VZ.Z - Z) x A" x (VZ.(v^ -» v ^ -• Z) ^ Z)

To simplify the presentation of the translations of the remaining three rules for
the exponentials, it is helpful to define the following abbreviations for X2 terms:

discard*-0 einf d= {n^out^B e))Cf

copy8'0 e asx,y in f = (ni(out^B e))C(Xx : v&.Xy : v&.f)

https://doi.org/10.1017/S0956796800001246 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001246

74 P. N. Benton

• If n ends in
r\-e:\A A\-f:B

r,A h discarde in/ : B
then by induction and Lemma 1 we have derivations of

(r,A)°he° r v ^

(r ,A)°h/° :B°

from which it is easy to check that we can form 11° proving

(r, A)° h discard4''8' e° inf° : B°

• If II ends with
T\-e:\A A , x : \ A , y : \ A t - f : B

F , A I- c o p y e a s x , y \ n f : B
then there are derivations of

r° h e° : v^-

A°,x : v<pA°,y : v , ^ \- f : B°

from which we can form FI° proving

(r, A)° h copy4'-8' e° asx,yinf° : B°

• If II ends in

A i h e i :\Ai ••• A n h en :\An x i : \ A u . . . , x n : \ A n \ - f : B

A i , . . . , A n h p r o m o t e e u . . . , e n f o r x u . . . , x n i n / :\B

t h e n w e f o r m 11° p r o v i n g
n

(Ai An)° \- builds HVAif hx:(\B)°
i = l

where

x = {e\,...,e°n)

h = Xp:J{(\A{f.{a,b,c)

a = AZ.Xz : Z.discard4*1'2 n\pin ... discard4"2 nnp inz

b = (Ax, :V.Aiy...Axn:(\An)°.n(nlp)...(nnp)

and

c = AZ.Xg : Y[(\A,y -* HV-AiT -• Z.cop/--2 n,p asx7,,^ in .

... cop/--2 nnP asx'n,x"n in(g (x^,...,x'n) (x'{,...,xj»

Note that the translation of terms is compositional (i.e. a congruence):

Lemma 3
For all appropriately typeable terms t and s of LTC, (t[s/x])° = t°[s°/x]. •

https://doi.org/10.1017/S0956796800001246 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001246

Strong normalisation for the linear term calculus 75

4 Reduction

Having given the translation, we now show that it behaves well with respect to
reduction:

Theorem 4
If F h e\: A in the linear term calculus and e\ —* e2 then e\ —>+ e\ in 12.

Proof
By induction on the derivation of e\ —* ej. We omit the verification of the cases of
the congruence rules, as these all follow trivially from the compositional nature of
the translation. For the /? axioms, we give a few cases:

• In the case of a ® introduction/elimination pair we have a derivation of

Tu r2, A h let e®f be x®y in u: C

where

Ti\-e:A

T2hf:B

A,x:A,y:B \-u:C

The translation of this redex is

(AXM: A° -* B° -> X.h e° f°) C° {Xx: Aly :B.u°)

which reduces in four steps to

(u°[e°/x\)\r/y]

which is

u°[e°/x,f°/y]

as the free variables of u, e and / are all distinct and this is inherited by their
translations. As (—)° is a congruence, this is in turn equal to

(u[e/x,f/y])°

as required.
• In the case of promotion followed by dereliction we have

A),...,An I- derelict(promotee, forx, in/):B

where

Aiher.lAt

and

xl:lAu...,xn:lAn\-f : B

The translation of this redex is

(builds Y[(\Ai)°hx))

https://doi.org/10.1017/S0956796800001246 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001246

76 P. N. Benton

with h and x as before. This reduces to

n2(®
B° [builds* YlV-AiYh] (hx))

which is

7r2((Aw: OB°([](W,)°).(jri w, 7r2w,...)) (ft x))

and this reduces to

n2{hx)

Expanding h and x, this is

n2((Ap:Y[V.Ai)°.(a,b,c))(e°1,...,e°n))

which reduces to

b[(e\,...,e°n)/p]

The expansion of this last term then reduces to

which is

(f[et/xi])°
as required.
In the case of promotion followed by weakening we have

A i , . . . , A n , F h discard (p romo tee ; f o r x , i n /) in u:C

where

T\-u:C

Ai\-et:\A,

xi:\Au...,xn:\An\-f : B

This LTC redex translates to

{builds JJilAi)0 hx)) C° u°

which reduces to

ni(<DB° [builds- Y[(\Ai)° h] (h x)) C° u°

which is

7t,((Aw: OB°(J](!A)°).<rciw, n2w,...»(/! x)) C° u°

and this reduces to

7Ei(MC°ll°

Expanding h and x, this is

n1((Xp:l[(\Ai)
o.(a>b,c))(eo

i,...,e:))C0u0

which reduces to
a[{e\,...,e°n)/P]C°u°

https://doi.org/10.1017/S0956796800001246 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001246

Strong normalisation for the linear term calculus 77

Expanding out the definition of a and reducing, this gives

discard^'0' e\in ... discard*"0' e° in u°

which is

(discard e\ in ... discard en in w)°

as required.

In the case of promotion followed by contraction we have

Aj , . . . , An, F h copy (promote e, for x,- in /) as y, z in u: C

where
A,he,:L4,

xl:\Al,...,xn:\Anhf:B

T,y:\B,z:\B\-u:C

The translation of this redex is

niioutw* (builds JJ(\At)° h x)) C° (Xy: v ^ Iz: v ^ .M°)

which reduces to

7i3(O
B° [build*"* Y[(\At)° h] (h x)) C° {Xy: v ^ Iz: v ^ .u°)

which, after expanding out the definition of OB°[], reduces to

(}-Ai)° h m) {bui
)C°(ky:v<s>B°.lz:v<!>B°.u°)

This expression then reduces to

n3(h x) C° (Xm: IK W,)°.An: IK WJ)°
.uo[(6ui7d^B= n(!A)°hm)/y,(builckB° YlV-Aif hn)/z])

and then to

W,)° * m)/y, {build^* IK Wi)

After expanding the definition of c, this leads to

copy*'-0' el asx\,x" in ... copy4"'0" e° asx'n,x"n in
u°[(builds IK W,-)° h (x[,..., x'n))/y,

{builds* UV-AiTh(x'l,...,x'n'))/z]

which is

(copy ex as x\,x'(in ... copy en as x'n, x '̂ in
u[(promote x\ for x(in f)/y, (promote x" for x, in /)/z])°

as required.

D

https://doi.org/10.1017/S0956796800001246 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001246

78 P. N. Benton

Corollary 5

All well-typed terms of the linear term calculus are strongly normalising. •

5 Conclusions

We have presented a strong normalisation proof for the linear term calculus which
uses a translation into the second-order polymorphic lambda calculus.

The proof technique used here appears to be very general, and can probably
be applied to many other systems. It is therefore worth trying to comment on the
motivation and intuition behind the construction. There is a strong sense that one
is constructing a categorical model of LTC within one of XI. This, however, is not
in itself enough to lead to the translation, as we need to model reduction rather
than equality. For example, every cartesian closed category is symmetric monoidal
closed so one might hope to be able to prove the result by translating LTC into
the simply typed lambda calculus, with tensor mapping to product, linear function
space to function space, and ! interpreted as the identity (which is certainly a
comonad satisfying the necessary conditions). Unfortunately, such a simple-minded
approach fails: although t\ = ti implies t\ = t\ (for the appropriate fit] equalities),
the implication fails when equality is replaced by reduction. By getting a feel for
how a naive translation fails one can use what is essentially a programmer's, rather
than a mathematician's, intuition to derive a translation which works. As we have
already mentioned, in this case we gain further guidance from the isomorphism

and from work on type-theoretic encodings of abstract datatypes. Indeed, our
coding of ! has something of an object-oriented flavour: one cannot copy or discard
a promoted object 'from the outside' since one does not know the number or types
of its components. Instead, one asks the object to perform the operation on itself
by selecting and calling the appropriate method from within the object. This type-
theoretic view of object-oriented programming can actually be taken much further;
Hofmann and Pierce (1992), for example, use coinductive types in more powerful
variants of System F to model many features of real object-oriented languages.

One might still feel that, as LTC is first-order, the use of 12 is excessive, and
that a simply typed lambda calculus extended with coinductive definitions should
suffice (assuming that one knew that such a system is strongly normalising). This
does not appear to be the case, essentially because of the 'active' nature of promoted
objects. Firstly, observe that it is perfectly possible to translate <g> and / by x and
1, rather than using the kl encoding of products. This is not true for the encoded
products which appear as the first and third components of Q)B(X) (and which
morally represent / and ®). This is because in either of the following two redexes:

discard (promote ... for ... in ...) in e

copy (promote ... for ... in ...) as x, y in e

the expression e ends up buried in the reduct at a depth which depends upon the

https://doi.org/10.1017/S0956796800001246 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001246

Strong normalisation for the linear term calculus 79

structure of the promoted object. Thus the promoted object has to act on e. This
means that the discard and copy methods have to be functions, each of which
accepts as argument the context in which the object is to be discarded or copied. As
it is impossible to know the type of that context at the point when the promoted
object is constructed, the methods have to be polymorphic. Of course, this informal
argument does not rule out that possibility of there being a proof which works via
a translation into a simpler calculus than 12, but even if that were the case, the
present proof has the advantage of extending trivially to cover the obvious extension
of LTC with second-order quantification.

It should also be noted that even when one has the right translation of types,
the translation of terms does not follow automatically. For example, the translation
of promoted terms has to contain a very explicit coding up of the reduction rules
associated with such terms. This is probably a strength, rather than a weakness, as
it means that a wide class of calculi should be treatable using this technique.

Acknowledgements

This work owes a great deal to my collaborators Gavin Bierman, Martin Hyland
and Valeria de Paiva.

References

Benton, P. N., Bierman, G. M., Hyland, J. M. E. and de Paiva, V. C. V. (1992) Term
Assignment for Intuitionistic Linear Logic (Preliminary Report). Technical Report 262,
Computer Laboratory, University of Cambridge.

Benton, P. N., Bierman, G. M., Hyland, J. M. E. and de Paiva, V. C. V. (1992) Linear lambda
calculus and categorical models revisited. In E. Borger et al. (eds.), Selected Papers from
Computer Science Logic 1992. LNCS 702, Springer-Verlag, pp. 61-84.

Benton, P. N., Bierman, G. M., Hyland, J. M. E. and de Paiva, V. C. V. (1993) A term calculus
for intuitionistic linear logic. In M. Bezem and J. F. Groote (eds.), Proc. Int. Conf. Typed
Lambda Calculi and Applications, Utrecht, The Netherlands. LNCS 664, Springer-Verlag,
pp. 75-90.

Bierman, G. M. (1993) On Intuitionistic Linear Logic. PhD thesis, Computer Laboratory,
University of Cambridge.

Chirimar, J., Gunter, C. A. and Riecke, J. G. (1995) Reference Counting as a Computational
Interpretation of Linear Logic. Journal of Functional Programming, to appear.

Gallier, J. H. (1990) On Girard's "candidats de reducibilite". In P. Odifreddi (ed.), Logic and
Computer Science. Academic Press, pp.123-203.

Girard, J.-Y. (1972) Interpretation fonctionnelle et elimination des coupures de Farithmetique
d'ordre superieur. These de Doctorat d'Etat, Universite de Paris VII.

Girard, J.-Y., Lafont, Y. and Taylor, P. (1989) Proofs and Types. Cambridge Tracts in Theo-
retical Computer Science, Cambridge University Press.

Hofmann, M. and Pierce, B. C. (1992) An Abstract View of Objects and Subtyping (Preliminary
Report). Technical Report ECS-LFCS-92-226, Department of Computer Science, University
of Edinburgh.

Howard, W. A. (1980) The formulae-as-types notion of construction. In J. R. Hindley and
J. P. Seldin (eds.), To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism. Academic Press.

Mitchell, J. C. and Plotkin, G. D. (1988) Abstract types have existential type. ACM Trans, on
Programming Languages and Systems, 10(3): 470-502.

https://doi.org/10.1017/S0956796800001246 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001246

80 P. N. Benton

Plotkin, G. D. and Abadi, M. (1993) A logic for parametric polymorphism. In M. Bezem and
J. F. Groote (eds.), Proc. Int. Conf. Typed Lambda Calculi and Applications, Utrecht, The
Netherlands. LNCS 664, Springer-Verlag, pp. 361-375.

Reynolds, J. C. (1974) Towards a theory of type structure. Proc. Paris Colloquium on Pro-
gramming. LNCS 19. Springer-Verlag.

Tait, W. W. (1967) Intensional interpretations of functionals of finite type I. Journal of
Symbolic Logic, 32.

https://doi.org/10.1017/S0956796800001246 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001246

