In Fig. $2(b)$, which is the case of the hyperbola,

$$
\therefore \mathrm{ACD} \text { is supplementary to } \angle R P_{1} \mathrm{P}_{2}
$$

and

$$
\angle B C D=\angle R P_{2} P_{1}=-R P_{1} P_{2} .
$$

Therefore angles ACD and BCD are supplementary.
G. Philip

Note on Geometric Series. - The formula for the sum of n terms of the geometric series

$$
\begin{gathered}
a+a r+a r^{2}+\ldots+a r^{n-1}, \\
\text { viz. } s=\frac{a\left(r^{n}-1\right)}{r-1}, \text { may be written } s=\frac{\mathrm{T}_{n+1}-\mathrm{T}_{1}}{r-1},
\end{gathered}
$$

where T_{1} is the first term and T_{n+1} the term immediately succeeding the last to be summed This form is useful for finding the sum of a closed geometric series without first finding the number of terms. Thus
and

$$
\begin{aligned}
& \frac{1}{8}+\frac{1}{4}+\frac{1}{2}+\ldots \ldots \ldots+32=\frac{64-1 / 8}{2-1} \\
& a^{-5}+a^{-3}+a^{-1} \ldots \ldots+a^{19}=\frac{a^{21}-a^{-5}}{a^{2}-1}
\end{aligned}
$$

since the terms of the series which succeed 32 and a^{39} are respectively 64 and a^{21}.
R. J. T. Bell

Distance of the Horizon.-The approximate rules given in this note may perhaps be new to some readers.

If an observer be at a height h above the Earth's surface, the distance of the horizon as seen by him is given by the formula

$$
d=\sqrt{2 r h},
$$

where r is the radius of the Earth.
If h is given in feet, then

$$
\sqrt{\left(\frac{h}{5280} \times 8000\right)}
$$

will give d in miles.
Now

$$
\begin{equation*}
\frac{8000}{5280}=\frac{100}{66}=\frac{3}{2} \text {, nearly. } \tag{62}
\end{equation*}
$$

