
INTEGRATION IN LOCALLY COMPACT SPACES II

EDWIN HEWITT and H. S. ZUCKERMAN

§ 1. Introduction. The general problem of producing concrete representa-

tions for continuous linear functionals on normed linear spaces, Le., of identi-

fying conjugate spaces, has.of course attracted the attention of many mathe-

maticians during the last five decades and has been solved in many cases [1,

pp. 59-72]. Likewise, the problem of extending a linear functional defined on

a linear subspace of a normed linear space may be regarded as solved by the

Hahn-Banach theorem [1, p. 28], although problems involving "natural" ex-

tensions, like that yielding the Lebesgue integral from the Riemann integral,

remain. In the present paper, we shall consider two "natural" methods of

extending a certain linear functional and show that they are in fact identical.

As a by-product, we obtain a concrete representation both for the original

functional and for its "natural" extension. In subsequent communications,

the writers will consider topologies in certain families of linear functionals,

canonical resolutions of linear functionals, and other extension problems.

§2. Statement of the problem. Let X9 throughout the present paper, de-

note an arbitrary but fixed locally compact (= locally bicompact) Hausdorff

space. Let &(X,R) denote the linear space of all continuous real-valued func-
ocao

tions c{x) on X for each of which there exists a compact subset A of X such

that c(#)=0 for X G A ' . For brevity, we denote by the symbol (£+ the set of

all non-negative functions in S(Jζ 2?). For all subsets Q of X9 we denote by
ocoo

tq the characteristic function of Q, and for all real-valued functions ψ on X,

we denote by ΨQ the function φ cQ.

The family of all compact subsets of X is denoted by a, and the family of

all closed subsets of X by SF. The smallest family of sets containing a and

closed under the formation αf countable unions, and differences, is denoted by

a; the smallest family of sets containing 9* and closed under the formation

of countable unions and complements is denoted by ty. ( ^ is of course the

family of Borel sets, in the classical sense, while a is the family of Borel sets

as defined by Halmos £5, p. 219].)
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8 EDWIN HEWITT AND H. S. ZUCKERMAN

We shall be concerned throughout the present paper with a fixed (but arbitrary)

positive linear functional M defined on &(X, R). No boundedness or other con-
αeαc

tinuity condition is assumed.

In the sequel, we consider all functional, integrals, and measurability con-

ditions only for functions on X which are non-negative. This is justified by

the following fact. Let T be an abstract set, and let g? be any linear space

of real-valued functions denned on T such that maχ(/, 0) and min(/, 0) are

in g whenever/Gg. Furthermore, let M be any real functional on the non-

negative elements of g such that M(/,+/2)=M(/j) + M(/2), M(af)=aM(f) for

# ^ 0 , and Af(/)=*0, for all non-negative /, /,, and /2Gg'. Then M admits a

unique extension Mover g which is a linear functional: M(/)=Λf[max(/, 0)]

-M[-min(/, 0)]. It is an elementary exercise to verify that M is indeed

linear and unique, and we therefore omit this verification.

Two questions regarding the functional M immediately present themselves:

(A) Can M be written as an integral? That is, does there exist a measure μ*

defined for some family of subsets of X such that all ce(£+ are μ.*-measurable

and M(c)= \ c(x)dμ*{x) for all cε(£+? (B) Is there a natural way of extending

the functional M to a space of functions on X which properly contains <£+?

An affirmative answer to (A) is provided by the following construction,

which proceeds along classical lines. For every compact subset A of X, let

μ(A) be defined as inf M(c). For every open subset G of X, let μ'(G) be

defined as sup μ(A). For every subset P of X, let μ*(P) be defined as
A£d,ACG

inf μ'(G). The set-function μ* is an outer measure on X with respect to
Gθ}>eii, G=>P

which every set in EF of finite μ*-measure is measurable. Furthermore, for

cεθί+, M(c)=\ c(x)dμ*(x). This outer measure μ* is an extension of the

measure defined by Halmos [5, pp. 216-249]. The theory of this measure has

been set forth in another communication by one of the present writers [8]

Since the class of functions measurable (μ*) and having finite integrals

always contains functions not in &+, our affirmative answer to (A) automa-

tically provides an affirmative answer to (B).

An extension of M by a quite different construction has been described, with-

out proofs, by H. Cartan [4, pp. 73-74]. Let II denote the set of all real-valued

non-negative upper semi-continuous functions / on X for each of which there

exists a compact subset A of X such that f{x)=0 for xεA'. Let 2 denote the

set of all lower-semi-continuous functions g on X such that Q <=• g{x) ^ Λ-<*> for

all x^X. For / e l l , let Mχχ(f) be denned as inf M{c). For ^ G 8 , let
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be defined as sup M(c). For an arbitrary function φ defined on X
cGC+, c^g

such that 0^f(#)^4-oo for all x&X, let M(φ) = inf Mg(g), and let M(φ)

= sup M\χ(f). If M(^)=M(^)<-j-oo3 then the function ψ is said to be sum-

mable and the common value of M(φ) and M(ψ) is denoted by the symbol

M(φ). The class of all summable functions is denoted by the symbol @.

The object of the present paper is to show that a function φ on X such

that 0^^(#) ̂ + 00 is summable if and only if it is μ*-measurable and has a

finite integral φ(x)dμ*(x); and that under these circumstances, 1 <p(x)dμ*{x)

= M(ψ). I n proving these facts, we find it necessary to establish a number

of properties of the functional M\\, Mg, M9 M, and M. Accordingly, §§ 3-4

are devoted to these functionals.

§3, Properties of semi-continuous functions. For definitions and elemen-

tary properties of semi-continuous functions, we refer the reader to [2, pp. 109

-116]. We require the following facts concerning the classes 11 and ΰ of func-

tions defined in § 2a

3.1 THEOREM. Let gι and g* be functions in 2. Then min(g j9 gz) is also

a function in La

3. 2 THEOREM. If fλ and f* are functions in U, then max(/],/2)Ell.

3. 3 THEOREM. The classes U and 2 are closed under the operation of addi-

tion and multiplication by non-negative real numbers.

Theorems 3. 1-3. 3 are simple, and the proofs are accordingly omitted.

3. 4 THEOREM. Let / e l l and g&%, and suppose that f^g. Then, if F is

any closed set disjoint from (E£x; /(#)>0])~, there exists a function φGδ+

such that f^ψ^g and ψ(x) =0 for x&F,

We consider first the case in which X is a compact space, (This case is

mentioned by N. Bourbaki [3, p. 72, exercise 27], but since the proof requires a

non-obvious construction, we prefer to set it forth in extenso.) Thus we have

arbitrary upper, lower respectively, semi-continuous functions / and g on the

compact Hausdorff space X such that Ot=f^g. If f(x)<g(x) for all Λ E I ,

we easily produce a continuous function c such that f(x)<c(x)<g(x) for all

x^X. For every Λ G X , there exists a neighborhood U(x) such that g(y)>(2g(x)

+/(*))/3 and f(y)<(2f{x)+g(x))/3 for all y&U(x). Let V(x) be a neigh-

borhood of x such that V'(x)<ZU{x) (such a V(x) exists by virtue of the regu-

larity of X); and let ιvx be a continuous real function on X such that
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and 0<wx{y)^l(f{x)+g(x)) for all y&X. Since X is compact, a finite num-

ber of the neighborhoods V(x), say V(Xi)9 . . . , V(#w), cover X The function

c-ma.x(ΐvxι, . . . ?MJ*,J then obviously satisfies the condition imposed. Next,

consider the case where 0i=f^g, but f(x)-g(x) is possible. We define three

sequences of functions by induction. Let / j=/, gi=g, and let Ci be a continuous

function such that fι^C\ύg\+2~ι. (Such a Ci exists in view of the preceding

construction.) Now suppose that the functions /i,/ 2, . . . ,/»-i, gι,. . . ,#«-i,

and ci9. . . ,e«-ι have been defined. We then define fn as max(/i, cn-i—2-(n-1)),

gn as min(^i, cn-j), and cn as any function in 6+ such that fnώcn£gn-h2~n.

Under this inductive definition, it is plain that fn^gn, fn is upper semi-conti-

nuous and gn is lower semi-continuous hence a function cn of the type required

exists. It is also clear that cn-2-n£fn+i£cn+1£gn+i +2~(n+ι)£cn+2~{n+i)<cn

4-2~w. From these inequalities, upon adding, follow the inequalities

\ + p \ £
h-n

The functions cn therefore converge uniformly, and have a continuous limit,

which we denote by c. The inequalities

which are obviously valid, now show that

We now turn to the general case where X is locally compact, /El l ,

and f £g. From the construction given above, we know that on the compact

set A=(EZx, f(x)>0J)~ there exists a continuous real-valued function ψQ such

that f(x)^ψo(x)*=g(x) for all x&A. By an elementary construction, there ex-

ists an open set G such that A C G C G - C ^ ' and G~ is compact. It will then

suffice to show that there exists an extension ψ of ψ0 over X such that φ is

continuous, ^ ^ 0 , and φ(x)=0 for x&G'. Consider the set 3 oί all continuous

real functions on X which are 0 on G\ Since X is completely regular, it is

clear that, given pi and jfc distinct points of A, there exists a function ^ G 3 such

that g{pi)~\9 g(pi)-0. Furthermore, sums, products, scalar multiples, and uni-

form limits of functions in 3 are again functions in S Finally, since A is

compact, there exists a function e G 3 such that e{x)=l for Λ G A . The Stone-

Weierstrass theorem for compact Hausdorff spaces [7] now implies that every

continuous real function on A coincides (on A) with some function in 3 There-

fore φ0, which is continuous on A, can be extended over X as an element

Cj of 3; and the function max(^j, 0) = ̂  satisfies the condition of the present

theorem.
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3. 5 NOTE. The insertion of a continuous function between two semi-con-

tinuous functions as in theorem 3. 4 is not always possible in general completely

regular spaces. For example, let T be the space of all ordinal numbers (α, β)

where l^a^Q and l^β^ω, barring the point (Ω, ω). We define £7*,p(£r0, ft) as

•£[(«', β')\ ot<cc'ik(x^ β<β' r^ft] for all a<a0 and /3<ft, These sets UΆ^{aϋf ft)

are then a complete system of neighborhoods of (aQ, ft). Let G = E[_(a,ri)\

l£a£Ω9n = l93,5,. . . ] . Let F = £t(β,w); w = l,3,5, . . . ] . Then cais lower

semi-continuous, cF is upper semi-continuous, and CF^CG. However, it is not

hard to prove that any real-valued continuous function f such that ψ^ct must

necessarily have values ^ l o n a set of the form i?[(αru, β)\ n^0^ω~] for some

ao<Ω and n<ω. Hence the relations cF^φ^cG cannot be simultaneously satisfied.

The space T, of course, is non-normal, and this fact is utilized heavily in the

above construction. The question, so far as the writers are aware, remains

open for non-compact normal spaces.

§ 4. Properties of the functioiials Mχ\, Mg, M, M, and M.

4.1 THEOREM. Let /Gi l and let a be any non-negative real number: Then

Mn(af)=aMn(f).

If tf = 0, this equality is obvious. For ct>0, and ε>0, let c b e a function

in S+ such that cmf and ΛΙ(cr)-— <Mχχ{f). Then ac^af, and thus <xM(c)

~M(ac)^M\χ{<xf) on the other hand, «M(c)<αMu(/) + e. Thus M\\\af)

<αilίu(/) + s for all e>0, and hence M\χ{af)ύccM\\{f). Replacing / b y -/

and multiplying through by — , we have — M\\(f)^M\\(—/J; upon replacing

— by or, we have aM\\(f)^M\χ(<xf); and this establishes 4. 1.

4. 2 THEOREM. Let ̂ G 2 #tfd let a be any non-negative real number. Then

The proof of 4. 2 is very like that of 4.1.

4.3 THEOREM. Let /i and f« be any functions in il. Then Mu(/j-f-/2)

Let ε be any positive real number, and let the functions c, G S + have the

property that c^fi and M(c, ) - |-<Mu(/f) (i = l,2). Then clearly Aftt(/,+/2)

^M(Ci+cO=M(c,)+M(c s)<Mn(/1)+Mu(/2) + ε. This proves that Mu(/,-f/2)

^Λfu(/j)-fΛfu(/2). Conversely, suppose that c G δ + , that c^/j-f/2, and that

ΛΓ(c)-e<Mu(/j+/j). It is clear that c~/ 2 G2 and t h a t / , ^ c - / 2 . By 3. 4, there

exists a function c,eC5;+ such fhat f^c^c-f*. It is clear that c-c,eί£+ and
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12 EDWIN HEWITT AND H. S. ZUCKERMAN

that f2?=c-Ci. Writing c-Cι as c2, we then have C\Λ-c«-c, and c^fi, c 2^/ 2 .

The following relations are now evident: M\\(f1) + M\\(f2)^ M(cι)+M(c2)

=Af(c J+c2)=M(c)<Mu(/ J+/2) + ε. From this, we infer that MVi(f1)Λ-Myχ(f2)

A) and thus establish the present theorem.

4.4 THEOREM. Let gi and g2 be any functions in 2. Then M2(gi-\-g2)

If Ms(gt) or M%(g2) is +oo, it is obvious that

2 ). We therefore assume that both Mg(#) and M^igs) are finite. Let

have the properties that a^gi and M(c,0+-|->Mg(#, ) (f=l, 2). We

then have AΓg(#j + #s)^M(Ci+Cί) = M(Ci)+M(c8)>Mg(#j) + Λfgtes)-- ε, and ac-

cordingly, Mg(^+^)^Mg(^,)+Mgfe). In proving the converse inequality, we

consider first the case in which Mg(#j + # 8)< + «>. Let c £ g + be such that

c^gi + gϊ and M{c) + ε>M2(gi + g2). Then max(c~^,, 0) is an upper semi-

continuous function vanishing outside the compact set (E[x, C(ΛΓ)>0])". Accord-

ingly, there exists a function c2e&+ such that ma.x(c-gl9 0)t£c2^g2. Now the

function c — c« has the property that c — c^ — gi, as a simple calculation shows.

Hence, writing max(c~c2, 0) as d, we have d ^gi, c^ Cj-f r2 and therefore Λfg^i

+^2)-e<M(c)^M(c,+c2)=M(c,)+M(C2)^Mg(^i) + Mg(^2). The case Λfgfej+#s)

= -f co is handled similarly, using, for an arbitrarily large positive real number

A, a function ce(£+ such that c^gι+g« and M(c)>A The inequality M s f e + ^ )

= Mg(<§
r

J)+MJe(^r

2) is thus established in all cases, and with it the present theorem.

4.5 THEOREM. Every function c of g+ is in U and in 2 and M(c)=M\χ(c)

4.6 THEOREM. 7/*^ and ψ2 are inU (or 2) and if ψ1^ψ29 then M\χ(ψλ)

(or M2(Φι)^M2(φ2))^

4.7 THEOREM. If ψi9 ψ2, andψi-ψ* are in U (or 2), *fte» Mu(^j-02

-Mu(02) (or Mziψi-ψt) -MQ(Wi) -Mg(^ s)).

Theorems 4.5-4.7 are obvious.

We now consider the functionals M, M? and M defined in §2 (q.v.).

4.8 THEOREM. For every function ψ on X such that 0^^(ΛΓ)^ + OO, M(ψ)

Let / and g be functions in U and L respectively such that f^ψ^g. Then,

by 3.4, there is a function ce(£+ such that f^c^g. Thus Afu(/) ^

and it follows that M(<p)= sup M u (/)^ inf
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4.8a THEOREM. Let £G2. Then M2(g)^M(g)9 and M(f)^Mu(f) for f&J.
For M%(g)= sup M(c)^ sup Mn(f).

g U

4.9 THEOREM. Let ψι and φ2 be functions in @. Then f

Let e be any positive real number. Then there exist functions

gi&Ά such that fi^ψi^gi and Mu(/,-) +~>M S (£;) (i=l, 2). Then

£gi+gu and Mu(/,+/2) = Mu(/i).+ Mn(/-)>^
Hence M(^j + ̂ 2 ) — M^-f^s), and by 4.8, equality must obtain. It is also clear

that Miψi+ψz) is finite.

4.10 THEOREM. If φG@ αra/ # is a non-negative real number, then α^e@.

4. 11 THEOREM. If ψx and φ«^S, then M(φi+φ«) = M(φi)+M(φ2). If f e ©

α ί̂/ α: is a non-negative real number, then M(a<ρ)=aM(φ). If φl9 ^2e@ and

<Pι=^<p2, then ^i-fs&S, and M(ίΊ-^ 2 ) = M(^ J)-.M(^ 2).

4.10 and 4,11 are established in the usual way.

4.12 THEOREM. Let g be any function of 2. Then ^ G S at/ ##d only if. M%(g)

is finite; and in this case M(g) = M2(g).

Plainly ^ E S implies that Λ/$>(g) is finite; for M2(g)^M(g) by 4.8a. Con-

versely, if M%{g) is finite, then, by 4.6, M(g)^Λfg(g). Since M%(g)4*M(g)9 we

have M(g)gM(g)9 and thus, in view of 4.8, M(g) = M(g) = M%(g) =M(g) and

plainly M(g) < + oo.

4.13 THEOREM, ^^ry function f of VI is i/a ©, αwc? M

It follows from 4.6 that M(f) = Mχχ(f)9 and from 4.8a that

This, with 4.8, completes the present proof.

4.14 THEOREM. Let ψ be a non-negative upper semi-continuous functio?ι on

X such that ψ^g, where g^2 and M2(g)< + C°. Then ψ is summable.

Since ψ^g we have M(ψ)?=M(g) = MQ(g)< + <π, and we need only to prove

that M(ψ)=M(ψ). It is clear that M(^) = sup Myχ{ψA), since every Mn(ψA) is
A&L

^M(ψ) and every /Gil such that f^ψ is majorized by some ψA. Let ε be any

positive number. Since Mgί^) is finite, there exists a function ίfc£+, vanishing

outside of a compact set D, such that d^g and M(J) + e>Mg(<§r). We next

observe that giv is in 2, that gD>i=g-d, that M2(g-d) = M2(g)-M(d)9 and that

accordingly Afgί^) <e. By 3.4, there exists a function c^&+ such that 0^Cjί=g.

By the definition of MX\(ψΌ), there exists a function c2e(£+ such that c2^^p and

M(c2) <MU(ΦD) + e. Denoting minfci, c ) by c, we obviously have ceίξ+, g^c^φDi

and M(c)<Mu(0ί)) + e. The function C+^D' is obviously in 2 and satisfies the
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14 EDWIN HEWITT AND H. S. ZUCKERMAN

inequality ψ^c+gw. We apply the definitions of M and M9 4.4, and the in-

equalities developed above to write the following: M{ψ)^M^.(cJtgD')=M^{c)

+M2(gD>) = M(c) -h M%(gD>) < M(c) + e <M n(ψD) 4- 2ε^M(ψ) + 2e. Accordingly,

), and by 4.8, M(ψ)=M(ψ).

4.15 THEOREM. Let {gn}%=1, be a countably infinite sequence of functions of

2 such that gι£gigg*£ . . . £gn£ . . . Then M% (supgn) = sup

Write sup gn=g. Then we have, obviously, gn^g and iWb(^Λ)^ikΓg(^) for

all n. We must therefore show that limMgte«)^Mgte). Consider first the case

Λίg(<g
r)< + oo. Let εj and ε2 be any positive numbers, and let c be a function of

β+ such that cέg and Af(έr)+-^->AfgC?). Let A=(E[x, c(x)>0])~; clearly A

is compact. For every βEA, there exists an integer n(a) such that gmaΛa)

>g(a)-~ and a neighborhood Z7(α) such that \c(x)—c(a)\<^ for x&J(ά)

and gn(a){x)>gma)-~j for #eZ7(β). Then clearly ^«(e)(^)>^U)-e 2 for all

x^U(a). A finite number of these neighborhoods, say Ufa), . . . , U(ak), cover

A Writing «0 = max(w(α,), . . . , «(<**)), we have £« 0 U)>c(#)-e 2 for all x&A.

Next, let c0 be any function in (£+ which is ^ 1 on A. Since c = 0 o n A', the

following inequalities hold: c-mm(gm, c)^ε^cθ9 c^ε2c0-hmm(gm9 c). Then the

monotonicity and additivity of M% show that M(c) = M%{c) ^εϊM(co) + Mgrninigno,

c)t£ε2M{c0)+M2(gm). Choosing ε2<"2Ϊj|bτ ^ a s w e a r e °^ v i o ιίsίy at liberty to

do), we have M(c) <^+M2(gno). Thus we have M2(g) -- |^<M(c) < ^ + M β ( ^ 0 ) ,

and consequently M%(g) ^ limM^fe). If Mg(^) = -foo, we choose c ε g + such
n->oo

that c ^ ^ and M(c) is arbitrarily large. The argument presented above is then

repeated.

§5. The measure μ*.

5.1 THEOREM. Let A be any compact subset of X. Then tA&X and M(cA)

These observations are obvious from the definitions of U, μ, and Λfu, and

from 4.13.

5. 2 THEOREM. Let G be any open subset of X. Then r^GS and μ'(G)= Mg(to).

Thus ta is summable if and only if μ'(G) is finite.

It is obvious that cG&2 As is stated in §2, we have μ\G)— sup μ(A).
Aea, ACC

In proving that Λfg(te)^μ'(G), suppose first that μ'(G) is finite. Then, for every

e>0, there is a set A^a such that A<ZG and μ(A) + ε>μ'(G). By 3.4, setting
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f=tA and g=tG, there exists a function ce&+ such that

a n d °- cW^ 1 f o r a11 *•
The following inequalities are now clear: Mg(te)+e^Af(c) + e= ĵ«(.A) +ε>/*'(G).

If μ'(G) is infinite, we select an A ε α and contained in G such that μ{A) is

arbitrarily large and repeat the argument Thus M%{ζG)^μ'{G) in any case,

To prove that M%{cG) ^ μf (G), we consider first the case Mg(to)<-foo. Then,

for an arbitrary ε>0, we select a function ce(£+ such that c^ιG and M(c) + ~

Next, let a be a real number such that 0<α<L The set Ba-E[x;

)^a2 is a compact subset of G. Then, by 3.4, we may choose a function
£+ such that

l all

Writing max[c(», d(x)2—d(x)-h(x), we clearly have ar>ft(#)§^0 for ail x and

M#)=0 for #eG'. Thus h<acG, and by 4.5 and.4.6, we have M(h)^aM^(iG).

It follows that Λf(c) -M(d)^M(max(c, d)) -M(J)=Λf(/2)^αMs(f(?). From this

we infer that

M2{cG)<M(c)+-~£M(d) + aM20G)+-~.

Choosing «<2Λf"~ί—Γ ^ ^ e t r ^ a ^ c a s e -Ws(fG)=0 can be ignored here), and

taking the infimum over all d satisfying the conditions imposed above, we have

Af8(te)^(.B«) + e. Since μ(Ba)^μ\G), the inequality M2{cG)^μ\G) is estab-

lished. If Mg(te) = + oo, we select a function ceg + such that c^cG and ikf(c)

is arbitrarily large, and proceed as before. Thus the present theorem is estab-

lished.

5.3 THEOREM. Let P be any subset of X Then μ*(P)=M(cP).

We prove first that M(r P )^^*(P). We may suppose that μ*(P)< + oo, that

e is a positive real number, and that G is an open set "DP such that μ'(G)~ε

</4*(P). Then the function cG is in £ and is ^cP; by 5.2 and the definition of

M, wehave/i*(/>) + e>ju
/(G) = Λffi(rβ)^M(^). Hence M(cP)^μ*(P). In proving

the reverse inequality, we suppose that M(cP) is finite, that e is an arbitrary

positive number, and that g is a function in £ such that g(x) = 1 for x e P and

Af2(g)<γ+M(cp). Let a be any number such that 0<α<l . Then the set

; g{x)>a] is an open set containing P. Consider the function ψ(x)
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16 EDWIN HEWITT AND H. S. ZUCKERMAN

= max[fΰ(tW, g(x)]-g(x) We have

1 0 Λ n o n e Z V

and the inequalities O^ψ{x)*=( *W(#) are easily verified. It is also obvious

that ψ is upper semi-continuous. Being bounded above by the summable function
/1 \ — —
( 1 )g, ψ is also summable (4.14), and we have M{φJtg)^M(ψ)-\-M^{g)
\ a /

= ikf£(max(ίDα, g))^M%(cD(i). Furthermore, the inequality ψ^( ljg implies

that M\φ)^( ljMs(g). Assembling the results obtained so far, we have

+M(cp). By choosing a sufficiently close to 1, we make ( ^ ) < ~9MΛ V a n c *

thus establish the inequality μ*(P)*=M(cP).

5.4 THEOREM. Let T be any subset of X such that cτ is summable. Then

there exists a compact subset A of T such that μ(A) + ε>M(cτ), where ε is an

arbitrary positive real number.

Suppose first that M(cT)>0. Let / be a function in II such that f^cτ and

•ί>M(:τ). For every number a such that 0<α*=l, the set # * = £ ] > ;

is a compact subset of T. It is obvious that cua + (xcτ^f. As the

characteristic function of a compact set, cBa is in U and by 4.13 is in @. Apply-

ing 5.1, 4.10, 4.13, and the monotonicity of M9 we find ^(«Sα)+αrM(rr) = M(^<χ)

+ aM(eτ) = M(cBa+aιτ)^M(f)=Mχχ(f)>M(cτ)-γ. Choosing cc< * 9 we

have μ{BΛ) + ε>M(cτ), as we wished to show. The case M(cT)-0 is simple,

since in this event, if A is a compact subset of T, M(cA) = μ(A)^M{cτ)-0 of

necessity.

We next make a few remarks on μ*-measurability.

5.5 THEOREM. Let G be any open subset of X such that μ'(G) = μ*(G) is

finite. Then there exist a family {AW}£=J of compact sets and a set N of μ*

measure 0 such that G = ({JAn)\JN; G is therefore μ*-measurable.

By 5.2, co is in ®. Then, by 5.4, there exists for every positive integer n

a compact subset An of G such that μ(An) + — >M(co). Let Bn = \JAj. Plainly
1 n - j=ι

μ{Bn)Λ—>M(co). Now the sets Bn, being compact, are /immeasurable [8, Th. 3].
oo oc

As the union of a countable family of μ^-measurable sets, the set P=\JAn = ΌBn

is μ*^measurable. By a well-known theorem [6, p. 8, Th. 5.13, we have μ*(P)
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= lim/j(£?„), and hence ^*(P)~M(^). On the other hand, every Bn is a com-
W-»ac

pact subset of G, and μ{Bn) -M(cBn) £M(CQ), and thus limμ(Bn) gM(cQ). There-

fore μ*(P) = M(t0). However, M(cQ) = M(co) = /**(G), by 4.12 and 5.3. Since P

is /immeasurable, we have μ*(G) = μ*{GΓ)P)+μ*(GΓ\P')=μ*(P)+μ*{GΓ\P').

Hence /^(GfV3') =0 writing GC\Pf as JV, and noting that every set of μ*-measure

0 is //^-measurable, we have the present theorem.

5.6 THEOREM. Let F be any closed subset of X such that μ*(F) is finite.

Then F is μ*-measurable, and can be written in the form \JCn\JL, where the
n = l

Cn are compact and /Λ*(L)=0.

Since μ*(F) is finite, there exists an open set GZ)F such that M^G)=μf{G)

<ooβ The function ti9 which is certainly upper semi-continuous, is therefore

summable, by 4.14. The argument now follows that used in 5,5.

5. βa COROLLARY, Let Z be any subset of X such that Z= \JZn, where ^nGEΓ

and μ*(Zn)<°° Then Z is /^-measurable.

This is an immediate consequence of the fact that each Zn is contained in

an open set Gn of finite /**-measure which is /^-measurable by 5.5, and that

the family of /^-measurable sets is closed under the formation of countable

unions and of complements.

5.7 THEOREM. Let T be a μ*-measurable subset of X such that μ*(T)<°o.

Then there exist a set L&a and sets Nι and N2 both of μ*-measuγe 0 such that

T', ΛiC3\ NsCL', and

By the definition of μ*, there exists a family {Gn}%sl of open sets such that

C D Γ a n d f/(Gn)-^<μ*(T). Writing U~Γ\Gn, we clearly have μ*(U) = μ*{T)
7l n=i

and since T is μ^measurable, /<*(C/Π^/)=0. By 5.5, Gn-Qn\JSn9 where Qn is

the union of a countable family of compact sets and μ*(S«)=0. Thus U-f\Gn

, where MCUS»,^*(Aί)=0,and (ΓtQn)nM=0. Writing
ί l

1= Γ\Qn, we see that L is in a and that T\J(Uf\T) =HJM. Thus upon setting

TftM^N* and LΓ\T = Ni} we have Q = μ*(Λf) =μ*(N2)9 0 = μ*(UΓ\T')=μ*(Ni),

and (TnW)UWi = i Since iViCΛί, and MCZ', it is clear that N*CL'.

§ 6. /ί*-measurability and summability. The present section is devoted to

showing the equivalence between /^--integration and summing by the functional M.

6.1 THEOREM. Let Q be a subset of X such that μ*{Q)=Q. Then c^ is sum-
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18 EDWIN HEWITT AND H. S. ZUCKERMAN

triable, and M(CQ) =0.

By the definition of μ*, for every e>0, there exists an open set GDQ such

that μ(G)<ε. Since cG&l and cG^cQ, it follows that M(cQ)^M2(cG)=μ'(G)<ε.

Thus M(cQ)=0, and by 4.8, M(cQ)=0 as well.

6.2 THEOREM. Let L be any set in the family a such that μ*(L) is finite.

Then L is μ*measuable, cL is summable, and /**(£) =M(α).

It is proved by one of the present writers [8] that L is μ* measurable, and

that for every e>0, there exists a compact set A such that ACL and such that

μ(A) + ε>μ*{L). We may now write the inequalities M(ί£)^M2(^) = μ(A)

>μ*(Z) — e, which are obvious. By 5.3, we have μ*(L) = M(CL), and thus M(CL)

^M(CL). Theorem 4.8 shows that cL is actually summable and that M(cL) = μ*(L).

6.3 THEOREM. Let T be any μ*-measurable subset of X such that μ*(T)< + oo.

Then ίT is summable, and μ*(T) = M(cτ).

Let Ni, iV«, and L be the sets described in 5.7. Then T\JNι=L\JNu and

since TON^LftNo-O, we have fr+^ J = ̂ υ.vJ = ̂ υ^ 2 = α4-^v2. Using the easily

verified inequality M(ίτ+CNι)ί=M{cτ)+ M(cN}), and noting that cL and r.v2 are

summable, in view of 6.2 and 6.1, we may write M(α) = M(fi)+M(^v2) = M ( ^

+ tx2) = M(tτ+tx1)gM(cτ)+M(iNl) = M(tτ)έM(icτ+t2i1). (The last inequality fol-

lows from the monotonicity of M\) Thus M(cT) =M(α). We now observe that

since *̂(JV, ) = O, there exist open sets G, such that GONi and ^'(G,)<ε (i=l, 2).

Using once again the compact set ACL referred to in 6.2, we deduce the follow-

ing relations: B = AΠG/ΠG2 'CT; ΰ s α ; μ(B)>μ(A)-2ε>μ*(L)-3e. Since

iβGll, we have M(cτ)^=M)χ(cB) = μ{B)>μ*(L)-3ε. From the relations μ*{L)

= M(eL) and M(cτ)^MUτ), we thus infer that M(tτ) = M(tτ) = μ*(L) = μ*(T).

6.4 THEOREM. Let T be any subset of X such that cτ is summable. Then
T is μ*>measurable, and μ*(T) = M(cτ) Furthermore, T is the union of a count-
able family of compact sets and a set of μ*-measure 0.

By 5.3, we have /J*(T) = M(CΓ). By 5.4, there exists, for every positive
2

integer n, a compact set AnCT such that μ(An)-\—>M(cτ). As in 5.5, we see

that μ*(\JAn) =M(<τ)=/**(T). Also as in 5.5, we note that (jΛn is μ*-measur-

able and that μ*(T(}(\JAny) = μ*(T)-μ*([JAn) =0. As the union of \JAn and
ίi = l π = l n = I

a set of /4*-measure 0, T is certainly ^-measurable. Thus the present theorem

is verified.

We remark in passing that 6.4 cannot be extended to the case of sets T

such that M(*r) = + oo. For such T, it is clear that A**(^) = + ° ° ; but T need
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not be μ*-measurable. (For example, take X=R, M(c) = Π c(x)dx9 and T=[0,

°°)U& where Q is a non-Lebesgue measurable subset of (-1, 0). Then M(cτ)

= 4-oo, but T is clearly not /immeasurable.)

We now prove the equivalence of /^-integration and summation by M in

the simplest case.

6.5 THEOREM. Let φ be a μ*-measurable function on X such that 0^ψ

00 and such that J φ(x)dμ*(x)< + oo. Then M(P)=f φ{x)dμ*(x).

Using the definition of the integral given by Saks [6, p. 19], we have,

for every ε>0, a finite sequence of /immeasurable sets, A\, A29 . . •, Am, such

that AiΠΛj^O for i*j, Ai\JA2\J . . . \JAm=Elx; f W > 0 ] , μ*(Ai)< + oo9 and

φ(x)dμ*(x)<^0iμ*(Ai) + ε, where βi = inίφ(x)m Consider the function ω{x)

= Σ Λ U (ΛΓ). It follows from 6.3 and 4.11 that M(ω)=^Σβiμ*(Ai). Since ω£φ,

we have M(^)^M(αO = M(ω) = Σβ;/**(A)> f φ(x)dμ*{x)-ε, and these in-
* = J Jx

equalites prove the present theorem.

6.6 THEOREM. Let φ be a bounded, non-negative, μ*-measurable function on

X such that /**(£[>; ^U)>0]) is finite. Then M{φ)^[ φ(x)dμ*(x).

Let P-E£x; ψ(x)>ΰ}9 let ε be an arbitrary positive number, let n be a

positive integer > - ^ — - , and let ] be the least integer ^[SUP^(ΛΓ)] ^ . Let

j = EΪx; -ί^— <φ(x)^^~ 1, for s l , 2, . . > ? /. Let us denote the function

J f — 1 J 7

2 ^ :Pj by <wi and the function Σ ^ by α>2. The inequalities ω}^φ^ω2 are
obvious. Furthermore, it is clear that ωx and ω2 are /ί*-measurable and that

= Σ^^(Py) and J^ ^

j are summable and that M ( ω j ) = Σ -
n

and 4.11 imply that ωJ? ω2, and ω2-ωj are summable and that M(ωj)=Σ--

μ*{Pj), M ( o 7 2 ) = Σ ^ * ( P ; ), and M(ω2-ω1) = Σ—^(Py) . Thus we have Λf

-(θi)=M(ωo)-M(ω1). The definition of w and additivity of μ* show that
1 )<ε. It follows that M(ω1)>M(ω2) ~ε. The
WJΞI v J n

inequality ωi^φ implies that I ωι(x)dμ*(x)^\ φ(x)dμ*(x), and the inequality
Jx Jx

<p*=ωι implies that M(ψ) ^M(ω2) =M(ω2). We combine the above relations, and

have f <f(x)dμ*(x)^ϊ ωi(x)dμ*(x) =M(ω3) >M{ω2) ~ε = M(co2) -e^M(φ) ~ε.
v X *f X
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20 EDWIN HEWITT AND H. S. ZUCKERMAN

This completes the present proof.

6.7 THEOKEM. Let ψ be a function on X such that O^φ^ + oo, ψ is μ*-

measurable, μ*(E[x\ ^(*)>0])< + oo, and Γ φ(x)dμ*(x)< + <*>. Then M(ψ)

Utilizing again the definition of integral set forth in Saks, loc. cit., we find that
n Λ

the sums *Σkμ*(E[_x k<ψ(x)£k+ll) are all bounded above by I ψ(x)dμ*(x).
fc = l JX

Thus the series ^kμ*(E[_x\ k<φ{x)^k-\-Y]) converges to a sum ^\ ψ{x)dμ*(x).

It follows immediately that \\mmμ*(E£x m<^(Λ;)])=0=lim μ*(E[x; m<φ(x)J).

Let ε be any positive number and let p be a positive integer such that μ*(E[_x;

P<φ(x)~\)<ε. Define functions ψp and pp as follows:

0 itφ{x)>p9

The function ψp clearly satisfies the hypotheses of 6.6, and therefore there exists

a function ΛG8 such that h^ψp and M^{h) — ε^M{ψp)^\ ψp{x)dμ*(x). We
J X

now examine the function pp, and for convenience we write E\_x k<φ(x) ^ £ + 1 ]

as Zk(k~p, p+1, . . .)• The sets Zk are certainly ^*-measurable and of finite

/**-ineasure. Let Gk be an open set containing Zk such that f{G)
(k=p,p+l, . . .). Let£» = Σ(*+Dto* (n=p,p+l, . . .) . It is clear that the

functions gn are an increasing sequence of functions in C, that g=

-Mmgn is in 2, and that g=^pp. We apply 4.15 and 6.4 to write

M£(^«)=lim(Σ(^+l)^G :jfe))==Σ(^ + l ) ^ / ( ^ ) . We apply inequalities set forth

above to write M β ( * ) = Σ V ( G * ) + i V ( G * ) < Σ ^ )

We combinef
J XX c.

these results with the inequality on h set forth above and thereupon infer

Since g+h^ψ and since s is arbitrary, it follows that

x) = $ φ(x)dμ*(x).
X

x) + [
J X

6.8 THEOREM. Let ψ be any function on X such that θ£ψ*= + oo, φ is

measurable, and J φ{x)dμ*(x)< + <χ>. Then M{ψ)^\ ψ(x)dμ*(x).
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The present theorem is proved by an argument quite analogous to that used
in 6.7. We define functions

{*) if ~

0 if

seriesn^φ-nψ. We next write Yk^EΪx; γτ^-^ψ{x)< i-l. The

/ι*(yi) and Σg^*(*fc) converge; the function nψ satisfies the hypotheses of

6.7, for every positive integer n, and M(σn) is small. The remainder of the

proof is modelled closely after that of 6.7 and is omitted.

We collect the results of 6.5 and 6.8,

6.9 THEOREM. Let φ be any function on X such that 0^φ^ + °°, ψ is μ*-

measurable, and \ φ(x)dμ*(x)<-\~<χ>.. Then ψ is summable. and M(φ)~\ φ(x)
J X J X

dμ*{x).

The converse of 6.9 is also true.

6.10 THEOREM. Let ψ be a function on X such that 0-ύφ^--\ °° and ψ is

summable. Then ψ is μ*-measurable and M{φ)-\ φ{x)dμ*(x).

For every positive integer n, there exist functions /»eU and gn^Z such
2 I

that fn^ψ^gn and Mu(/n) + ~>M(^)>Ms(^ n ) . We may suppose that

fn^fn+i and gn+ι^gn (Λ = 1, 2, . . .)• Since fn and gn are ^-measurable, 6.9

implies that M\\(fn)-\ fn(x)dμ*{x) and Λfg(̂ r») = f gn\x)dμ*{x). Writing
V X V X

<p~Yιmfn and ω-\\mgn9 we have, clearly enough, ψ^φ^ω, Lebesgue's theorem

on term-by-term integration \β9 p.29] shows that \ ψ{x)dμ*(x) = \ ω{x)dμ*{x)
J X J X

= M(^). It follows that φ — ψ is a function vanishing except on a set of ju*-

measure 0; acoordingly ψ is ^-measurable and Miψ)-] ω{x)dμ*{x) = ̂  ψ{x)

dM*(x).
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