INTEGRATION IN LOCALLY COMPACT SPACES II

EDWIN HEWITT and H. S. ZUCKERMAN

§ 1. Introduction. The general problem of producing concrete representa-
tions for continuous linear functionals on normed linear spaces, i.e., of identi-
fying conjugate spaces, has of course attracted the attention of many mathe-
maticians during the last five decades and has been solved in many cases [1,
pp. 59-72]. Likewise, the problem of extending a linear functional defined on
a linear subspace of a normed linear space may be regarded as solved by the
Hahn-Banach theorem [1, p. 28], although problems involving “natural” ex-
tensions, like that yielding the Lebesgue integral from the Riemann integral,
remain. In the present paper, we shall consider two ‘“natural” methods of
extending a certain linear functional and show that they are in fact identical.
As a. by-product, we obtain a concrete representation both for the original
functional and for its- “natural” extension. In subsequent communications,
the writers will consider topologies in certain families of linear functionals,
canonical resolutions of linear functionals, and other extension problems.

§ 2. Statement of the problem. Let X, throughout the present paper, de-
note an arbitrary but fixed locally compact (= locally bicompact) Hausdorff
space. Let €(X, R) denote the linear space of all continuous real-valued func-

tions ¢(x) on X for each of which there exists a compact subset A of X such
that ¢(x) =0 for X&A’. For brevity, we denote by the symbol €, the set of
all non-negative functions in €(X, R). For all subsets @ of X, we denote by

¢q the characteristic function of @, and for all real-valued functions ¢ on X,
we denote by ¢o the function ¢e¢q.

The family of all compact subsets of X is denoted by d, and the family of
all closed subsets of X by <. The smallest family of sets containing a and
closed under the formation of countable unions, and differences, is denoted by
a; the smallest family of sets containing & and closed under the formation
of countable unions and complements is denoted by &F. (& is of course the
family of Borel sets, in the classical sense, while d is the family of Borel sets
as defined by Halmos [5, p. 219].)
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We shall be concerned throughout the present paper with a fixed (but arbitrary)
positive linear functional M defined on €(X, R). No boundedness or other con-

tinuity condition is assumed.

In the sequel, we consider all functionals, integrals, and measurability con-
ditions only for functions on X which are non-negative. This is justified by
the following fact. Let T be an abstract set, and let ¥ be any linear space
of real-valued functions defined on T such that max(f, 0) and min(f, 0) are
in ¥ whenever f&%. Furthermore, let M be any real functional on the non-
negative elements of § such that M(f,+/2) =M(fi)+M(f2), M(af)=aM(f) for
a=0, and M(f)=0, for all non-negative f, f,, and f.&%. Then M admits a
unique extension M over § which is a linear functional: M(f)=M[max(f, 0)]
~M[ —-min(f, 0)]. It is an elementary exercise to verify that M is indeed
linear and unique, and we therefore omit this verification.

Two questions regarding the functional M immediately present themselves:
(A) Can M be written as an integral? That is, does there exist a measure u*
defined for some family of subsets of X such that all ce€, are u*-measurable

and M (c)=j\_c (x)dp*(x) for all ce€,? (B) Is there a natural way of extending

the functional M to a space of functions on X which properly contains €.?
An affirmative answer to (A) is provided by the following construction,

which proceeds along classical lines. For every compact subset A of X, let

#(A) be defined as inf M(c). For every open subset G of X, let »/(G) be

(==Y ]
defined asAsiufcau(A). For every subset P of X, let u*(P) be defined as
. ﬂin(f; . #(G). The set-function x* is an outer measure on X with respect to
open, G2

which every set in &F of finite p*-measure is measurable. Furthermore, for
ce€,, M(c)=jxc(x)du*(x). This outer measure g* is an extension of the

measure defined by Halmos [5, pp. 216-2497. The theory of this measure has
been set forth in another communication by one of the present writers [8].

Since the class of functions measurable (x*)-and having finite integrals
always contains functions not in €., our affirmative answer to (A) automa-
tically provides an affirmative answer to (B).

An extension of M by a quite different construction has been described, with-
out proofs, by H. Cartan [4, pp. 73-74]. Let I denote the set of all real-valued
non-negative upper semi-continuous functions f on X for each of which there
exists a compact subset A of X such that f(x)=0 for xeA’. Let Q denote the
set of all lower-semi-continuous functions g on X such that 0<g(x) £+« for
all xX. For fEU, let My(f) be defined as inf M(c). For g=g, let

cE(+,c=f
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Mgq(g) be defined as sup M(c). For an arbitrary function ¢ defined on X

CEC+, =g

such that 0=¢ (%) =+ for all xEX, let M(¢) =yeisnf Me(g), and let M(¢)
» 4Z=P
=, s’,]u? Mu(f). If M(¢)=M(p)<+, then the function ¢ is said to be sum-
€11, S1=»

mable and the common value of M(¢) and M (¢) is denoted by the symbol
M(¢). The class of all summable functions is denoted by the symbol &.
The object of the present paper is to show that a function ¢ on X such
that 0=¢(x) <+ is summable if and only if it is g*measurable and has a
finite integral fxga(x)d;g*(x); and that under these circumstances,f e(X)d p*(x)
X

=M (¢). In proving these facts, we find it necessary to establish a number
of properties of the functionals My, Mg, M, M, and M. Accordingly, §§3-4
are devoted to these functionals.

§ 3. Properties of semi-continuous functions. For definitions and elemen-
tary properties of semi-continuous functions, we refer the reader to [2, pp. 109
-116]. We require the following facts concerning the classes I and ¢ of func-
tions defined in §2.

3.1 TueoreM. Let g, and g. be functions in Q. Then min(g, &) is also
a function in L.

3. 2 TueorREM. If fi and f. are functions in U, then max (fi,f:)EW.

3.3 TurOrReEM. The classes W and R are closed under the operation of addi-
tion and multiplication by non-negative real numbers.

Theorems 3. 1-3. 3 are simple, and the proofs are accordingly omitted.

3.4 THEOREM. Let f&EU and g=Q, and suppose that f<g. Then, if F is
any closed set disjoint from (E[x; f(x)>01)", there exists a function ¢=6,
such that f<¢<g and ¢(x)=0 for x&F.

We consider first the case in which X is a compact space. (This case is
mentioned by N. Bourbaki [3, p. 72, exercise 277, but since the proof requires a
non-obvious construction, we prefer to set it forth in extenso.) Thus we have
arbitrary upper, lower respectively, semi-continuous functions f and g on the
compact Hausdorff space X such that 0=f=g. If f(x)<g(x) for all xEX,
we easily produce a continuous function ¢ such that f(x)<c(x)<g(x) for all
x=X. For every x &= X, there exists a neighborhood U(x) such that g(y)>(2g(x)
+£(x))/3 and f(y) <(2f(x)+g(x))/3 for all yU(x). Let V(x) be a neigh-
borhood of x such that V- (x)CU(x) (such a V(x) exists by virtue of the regu-
larity of X); and let w, be a continuous real function on X such that
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w,,(y)={(l»)(f(x)+g(x)) yEV-(x)

yeU'(x)’
and O<w,(y)£3(f(x)+g(x)) for all y&X. Since X is compact, a finite num-
ber of the neighborhoods V(x), say V(x1),. . ., V(xm), cover X. The function
c=max(ws, . . . ,Wx,) then obviously satisfies the condition imposed. Next,

consider the case where 0= f=g, but f(x)=g(x) is possible. We define three
sequences of functions by induction. Let f;=/f, 81=g, and let ¢, be a continuous

function such that fi£¢,28,+27'. (Such a ¢; exists in view of the preceding
construction.) Now suppose that the functions fi, fs, . . . s /-1, &iy- + « s &n-1
and ¢y, . . . ,Cn-; have been defined. We then define f, as max(f;, cs_;=2-#-0),

&» as min(g, ¢n-1), and ¢, as any function in €, such that fa<c,<g,+2"".
Under this inductive definition, it is plain that f»<ga, f» is upper semi-conti-
nuous and g, is lower semi-continuous; hence a function ¢, of the type required
exists. It is also clear that ¢,—2""= fp 1 €Cn1E£8n+2~ V=, +2- "V Loy
+2-%, From these inequalities, upon adding, follow the inequalities

- = n+§p3-x ~k 9-n+1
]Cn+1) Cnl_. ‘ 2-F<« .
=n

The functions ¢, therefore converge uniformly, and have a continuous limit,
which we denote by ¢. The inequalities

i€ nscnEgn+2 =8 +277,
which are obviously valid, now show that f=c=g.

We now turn to the general case where X is locally compact, fEU, gEQ,
and f=g. From the construction given above, we know that on the compact
set A= (E[x, f(x)>0])- there exists a continuous real-valued function ¢, such
that f(x)=¢i(x) =g(x) for all x=A. By an elementary construction, there ex-
ists an open set G such that ACGCG-CF’ and G- is compact. It will then
suffice to show that there exists an extension ¢ of ¢, over X such that ¢ is
continuous, ¢=0, and ¢(x)=0 for x&G’. Consider the set 3 of all continuous
real functions on X which are 0 on G’. Since X is completely regular, it is
clear that, given p, and p, distinct points of A, there exists a function g& 3 such
that g(p1) =1, g(p.) =0. Furthermore, sums, products, scalar multiples, and uni-
form limits of functions in 3 are again functions in 8. Finally, since A is
compact, there exists a function e= 3 such that e(x)=1 for x&A. The Stone-
Weierstrass theorem for compact Hausdorff spaces [7] now implies that every
continuous real function on A coincides (on A) with some function in 8. There-
fore ¢,, which is continuous on A, can be extended over X as an element
¢, of 3; and the function max(¢;, 0)=¢ satisfies the condition of the present
theorem.

https://doi.org/10.1017/S0027763000012174 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000012174

INTEGRATION IN LOCALLY COMPACT SPACES 11 11

3.5 Note. The insertion of a continuous function between two semi-con-
tinuous functions as in theorem 3. 4 is not always possible in general completely
regular spaces. For example, let T be the space of all ordinal numbers («, 3)
where 1=a <2 and 1=f3=<w, barring the point (2, w). We define U, 3(av, [) as
El(a’, B); a<a’say, B<B =By] for all a <a, and f<B;. These sets U, 5(ay, B)
are then a complete system of neighborhoods of (ay, 8;). Let G=E[(a, n);
l2a=2,n=1,3,5,...]. Let F=E[(2,»n); n=1,3,5,...]. Then (« is lower
semi-continuous, ¢r is upper semi-continuous, and ¢r<¢;. However, it is not
hard to prove that any real-valued continuous function ¢ such that ¢=¢; must
necessarily have values =1 on a set of the form E[(ay,B); n=£B<=w] for some
ay< 2 and n<w. Hence the relations ¢»= ¢ < (; cannot be simultaneously satisfied.
The space T, of course, is non-normal, and this fact is utilized heavily in the
above construction. The question, so far as the writers are aware, remains
open for non-compact normal spaces.

§ 4. Properties of the functionals My, Mg, M, M, and M.

4.1 THEOREM. Let fEU and let a be any non-negative real number: Then
My(af)=aMu(f).

If a=0, this equality is obvious. For a«>0, and >0, let ¢ be a function
in 6, such that c=f and M(c)—-z- <My(f). Then ac=af, and thus aM(c)
=M(ac)=My(af); on the other hand, aM(¢) <aMy(f)+e. Thus My(af)

<aMy(f)+e for all ¢>0, and hence My(af)=aMy(f). Replacing f by ,(;}f

and multiplying through by 7} , we have }r Mu(f );—‘Mu(—zl{ f ); upon replacing
—3? by «, we have aMy(f)=My(af); and this establishes 4. 1.

4.2 THEOREM. Let gE=Q and let a be any non-negative real number. Then.
Mg(ag)=aMg(g).

The proof of 4.2 is very like that of 4.1.

4,3 THEOREM. Let f, and f. be any functions in W. Then My(fi+ f2)
=My(f)) +Mu(fe).

Let ¢ be any positive real number, and let the functions c¢;& €, have the
property that ¢;=f; and M(ci) ~ ;’ <My(fi) (i=1,2). Then clearly My(f,+f2)
£ M(cy+c0) =M(c)) + M(c.) <My(f))+Mu(f2) +¢.  This proves that Mu(fi+/:)
£Myu(f))+Myu(f:). Conversely, suppose that c=€,, that ¢=f,+/., and that
M(c)—e<My(fi+/f:). Itisclear that c—f,&=Q and that fy=<c~f:. By 3. 4, there
exists a function ¢, ¢, such fhat fige,=c—~f,. It is clear that c—c,E§., and
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that f,=c—c,. Writing ¢—c, as ¢;, we then have ¢,+c:=c, and ¢,=f;, c.=1s.
The following relations are now evident: My (f))+ Mu(f:) € M(c))+M(c.)
=M(c,+¢) =M(c) <My(fi+f.)+¢. From this, we infer that My(f,)+Myu(f2)
< My (fi+f.) and thus establish the present theorem.

4.4 THEOREM. Let g and g, be any functions in 8. Then Mg(gi+g.)
=Me(g:1)+ Mg (g).

If Me(g,) or Mg(g:) is +co, it is obvious that Mg(gy+g2) =+ o =Mg(g:)
+Mg(g.). We therefore assume that both Me(g;) and Mg(g:) are finite. Let
¢iE ¢, have the properties that ci=g; and M(c;) + %>Mg(g,‘) (z=1, 2). We
then have Mg(g1+ g2) =M(c1+c2) =M(c,)+M(c:) > Mg(g:)+ Mg(g:)— e, and ac-
cordingly, Ma(g:+ g:)=M g(g:) +Mg(g:). In proving the converse inequality, we
consider first the case in which Mg(gi+g:) <+. Let ¢c=€, be such that
c£g+8: and M(c)+e>Mg(g,+g:). Then max(c—g;, 0) is an upper semi-
continuous function vanishing outside the compact set (E[x, c(x)>0])". Accord-
ingly, there exists a function ¢,&§, such that max(c—g;, 0)=c:= g.. Now the
function c¢—c. has the property that c—c.< g, as a simple calculation shows.
Hence, writing max(c—c., 0) as ¢;, we have ¢;£g:, c=c,+c¢. and therefore Ma(g;
+g0) —e< M(c) = M(ci+c,) =M(c)+M(c:) < Mg(g1) + Mg(g,). The case Mg(g,+g2)
=+ is handled similarly, using, for an arbitrarily large positive real number
A4, a function ce=6, such that c=g,+g, and M(c)>A. The inequality Mq(g,+g)
= Mga(g,) +Mg(g,) is thus established in all cases, and with it the present theorem.

4.5 THEOREM. FEwvery function ¢ of G, is in U and in Q and M(c)=Mu(c)
= Mg(c).

4.6 TueorEM. If ¢y and ¢ are in N (or Q) and if py< ., then My(¢:) = My(¢,)
(or Mg(¢) £ Me(¢s)).

4.7 THEOREM. If ¢y, 2, and ¢1—¢. are in N (o7 ), then My(¢s—¢2) =My (¢y)
—My(¢2) (07 Mg(ps—¢2) =Me(¢)) —Mg(¢s)).

Theorems 4.5-4.7 are obvious.

We now consider the functionals M, M, and M defined in §2 (q.v.).

4.8 TheorEM. For every function ¢ on X such that 0=¢(x) =+, M(@)
=M(¢).

Let f and g be functions in U and L respectively such that f<¢<=g. Then,
by 3.4, there is a function c&€; such that f=c<g. Thus My(f)=M(c) = Mga(g),
and it follows that M(¢)= sup My(f) = inf Ma(g).

ren, =9 Ve, yEp
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4.8a THEOREM. Let g=Q. Then Mg(g) <M (g), and M (f)<My(f) for fEU.
For Mga(g)= sup M(c)< sup 111\411(1’).

cEQ+, Sy =g, 1€

4.9 THEOREM. Let ¢, and ¢, be functions in S. Then ¢+ ¢.E8.

Let ¢ be any positive real number. Then there exist functions f;&EUIl and
&ES such that fi=¢i=g and Mu(fi)+5>Mg(g) (i=1,2). Then fi+/;<¢i+¢s
£41+8:, and Myu(fi+/f2)=Mu(f1)+ Mu(f:) > Mg(g) + Mga(g:) —e=Mg(gi+g:) —e.
Hence M(¢,+¢:)=M (¢1+¢:), and by 4.8, equality must obtain. It is also clear
that M(¢;+¢-) is finite.

4.10 THEOREM. If ¢&=S and a is a non-negative real number, then a¢=S.

4.11 TueoreM. If ¢, and ¢S, then M(¢1+¢:)=M(¢)+M(¢:). If ¢=&
and « is a non-negative real number, then M (a:go):aﬂ(go). If ¢1, €8 and
=0y, then ¢1—¢.=S, and M(¢1—¢:) = M(¢)) — M(¢:).

4.10 and 4.11 are established in the usual way.

4.12 TueoreM. Let g be any function of . Then gES if and only if. Mg(g)
is finite; and in this case M(g)= Ma(g).

Plainly g=S implies that Mg(g) is finite; for Mg(g)= M(g) by 4.8a. Con-
versely, if Mq(g) is finite, then, by 4.6, M(g)< Mq(g). Since Mq(g) =M(g), we
have M(g)< M/(g), and thus, in view of 4.8, M(g) =M (g)=Mg(g)=M(g); and
plainly M(g) < + .

4.13 THEOREM. FEvery function f of W is in S, and M(f) = My(f).

It follows from 4.6 that M(f)=My(f), and from 4.8a that M(f) =< My (f).
This, with 4.8, completes the present proof.

4.14 THEOREM. Let ¢ be a non-negative upper semi-continuous function on
X such that ¢<g, where g=Q and Mg(g) <+. Then ¢ is summable.

Since ¢ =g we have M(¢)=M(g)=Mg(g)<+, and we need only to prove
that M(¢)=M(¢). It is clear that M(¢)= sup My (¢4), since every My(¢.) is
=M(¢) and every fEU such that f=¢ is majorized by some ¢4 Let ¢ be any
positive number. Since Mg(g) is finite, there exists a function d=¢., vapishing
outside of a compact set D, such that d=g and M(d)+e>Mg(g). We next
observe that gp is in @, that gn=g—d, that Ma(g—d) = Mg(g) —M(d), and that
accordingly Mg(gn) <e. By 3.4, there exists a function ¢;&6, such that ¢p=c,=g.
By the definition of My(¢p), there exists a function ¢.&6. such that ¢.=¢p and
M(c;) < My(¢p) +¢. Denoting min(e, ¢:) by ¢, we obviously have cEY.,, g=c=¢»,
and M(c) < Myu(¢p)+e. The function c+gp is obviously in € and satisfies the
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inequality ¢<c+gr. We apply the definitions of M and M, 4.4, and the in-
equalities developed above to write the following: M(¢)<Mg(c+gp)=Mg(c)
+Mg(gp) = M(c) + Mg(gp) < M(c) + e < My(¢o) + 2e<M(¢) + 2e. Accordingly,
M(¢)£M(¢), and by 4.8, M(¢) =M ().

4,15 THEOREM. Let {gn}:.,, be a countably infinite sequence of functions of
Q such that g <g<g= ... =2gn=< .... Then Mg (,?:_?.Ewg")=,§<_',f£’,M9‘g")'

Write sup g»=g. Then we have, obviously, g.=g and My(g,)=Mg(g) for
all n. Wel=r';1<l;')st therefore show that limMg(gx)=Mzg(g). Consider first the case
Mé(g)<+oo. Let ¢ and ¢ be any pc;:i:ive numbers, and let ¢ be a function of
G, such that c=g and M(c)+—521>M9(g). Let A=(E[x, c(x)>0])"; clearly A
is compact. For every a=A, there exists an integer n(a) such that gna (a)
>g(a)—% and a neighborhood U(a) such that [c(x)—c(a)l<% for x&U(a)
and gna (x)>gn(a)—% for x€U(a). Then clearly gna(%)>c(x)~e, for all
x&=U(a). A finite number of these neighborhoods, say U(a;), . . ., U(ar), cover
A. Writing my=max(n{a,), . . ., n(ar)), we have g»(x)>c(x)—e, for all x=A.
Next, let ¢, be any function in ¢, which is =1 on A. Since ¢=0 on A’, the
following inequalities hold: c¢—min(gny, ¢) £e:¢o, ¢ =< eeco+min(gn,, ¢). Then the
monotonicity and additivity of Mg show that M(c)=Mg(c) <e:M(co) + Mgmin(gn,,
¢) £e:M(co) +Mga(gn,). Choosing €’<—2M§'(c_o) (as we are obviously at liberty to
do), we have M(c) <%+M2(gno). Thus we have Mg(g) —% <M(c) <%+Mg(gm),
and consequently Mga(g) < limMeg(gn). If Mg(g)=+«, we choose c=E, such
that c=g and M(c) is arbi;;;rily large. The argument presented above is then
repeated.

§5. The measure u*.

5.1 THEOREM. Let A be any compact subset of X. Then .= and M(c,)
=pu(A).
These observations are obvious from the definitions of W, x, and My, and

from 4.13.

5.2 THEOREM. Let G be any open subset of X. Then ;&R and p'(G) =Mg(ts).
Thus ¢z is summable if and only if ' (G) is finite.

It is obvious that ¢(:&=Q. As is stated in §2, we have 2/'(G) = _Sup cu(A).

, de
In proving that Mg(t.)=p'(G), suppose first that 4/ (G) is finite. Then, for every
e>0, there is a set A=a such that ACG and u(A)+e>4(G). By 3.4, setting
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f=t4 and g=¢, there exists a function ¢&=¢, such that

c(x):{(l) ;i‘é, and O=c(x) =1 for all x.
The following inequalities are now clear: Mg(¢t)+e=M(c)+e=u(A)+e>4'(G).
If #/(G) is infinite, we select an Ae&a and contained in G such that u(A) is
arbitrarily large and repeat the argument. Thus Mg(«)=4#'(G) in any case.
To prove that Ma(ws)=u'(G), we consider first the case Mg(se)<+co. Then,
for an arbitrary ¢>0, we select a function ¢=¢, such that c=¢ and M(c)+~§>
>Mg(s). Next, let a be a real number such that 0<a<1. The set B,=E[x;

c(x)=a] is a compact subset of G. Then, by 3.4, we may choose a function
deg ., such that

1 x=B,
0 =G
0=d(x)<1 all x=X.

d(x):{

Writing max[c(x), d(x)]—d(x)=h(x), we clearly have a >h(x)=0 for all x and
h(x)=0 for x&G’. Thus k<ate, and by 4.5 and 4.6, we have M(h) £aMg(¢:).
It follows that M(c) -~ M(d) = M(max(c, d)) —M(d)=M(h) <aMg(t¢). From this
we infer that

My(t6) <M(€) +-5 = M(d) +aMg(te) + -

Choosing “<§M;m (the trivial case Mg(¢«)=0 can be ignored here), and
taking the infimum over all d satisfying the conditions imposed above, we have
Mg(tc) £ u(B:)+e. Since u(B,) =4/ (G), the inequality Mg(cw) < /(G) is estab-
lished. If Mg(t) =+ o, we select a function ¢=€, such that c=¢ and M(c)
is arbitrarily large, and proceed as before. Thus the present theorem is estab-

lished.
5.3 THEOREM. Let P be any subset of X. Then p*(P)=M (¢»).

We prove first that M (¢p) < 2*(P). We may suppose that u*(P)< + o, that
e is a positive real number, and that G is an open set DP such that u'(G)—¢
<up*(P). Then the function ¢ is in € and is =¢p; by 5.2 and the definition of
M, we have p*(P)+¢>u'(G) = Mg(tc)=M (¢p). Hence M (cr) € u*(P). In proving
the reverse inequality, we suppose that M(:r) is finite, that ¢ is an arbitrary
positive number, and that g is a function in € such that g(x)=1 for x&P and
Mz(g)<§+ﬂ7(:p). Let @ be any number such that 0<a<1. Then the set
D,=Elx; g(x)>a] is an open set containing P. Consider the function ¢(x)
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=max[tn, (%), gx)]—g(x). We have

[ 1-g(x) x&=D,
¢(x)= 0 x non €D,’
and the inequalities 0=¢(x) £ (%( —-1)g(x) are easily verified. It is also obvious
that ¢ is upper semi-continuous. Being bounded above by the summable function

( —%—l)g, ¢ is also summable (4.14), and we have M(¢+g)=M(¢)+ Mg(g)
= Mg(max(tp,, &))=Ma(cp,). Furthermore, the inequality ¢-£-(%—1)g implies
that M(¢) = (~—1)Mg(g) Assembling the results obtained so far, we have
1P % 4 (D) = My(en,) € Me(@)+ () & Ma@+ (o= 1) M) <5+ ( o =1) Mg (@)

+M (:r). By choosing a sufficiently close to 1, we make (&1——1)<m and
thus establish the inequality u*(P)= M(¢p).

5.4 TuEOREM. Let T be any subset of X such that ¢r is summable. Then
there exists a compact subset A of T such that u(A)+e>M (ir), where e is an
arbitrary positive real number.

Suppose first that M(cr)>0. Let f be a function in U such that f<¢ and
Mu(f)+%>ﬂ(:1). For every number a such that 0<a=1, the set B,=E[x;
f(x)=a] is a compact subset of 7. It is obvious that ¢p,+atr=f. As the
characteristic function of a compact set, ¢s, is in 1 and by 4.13isin &. Apply-
ing 5.1, 4.10, 4.13, and the monotonicity of M, we find x(B.) +aM (er) = M(t5,)

+aM(zT)=M(:B¢+a,T)éﬂ(f)=Mu(f)>_1\z(:r)——§-. Choosing a< , we

€
- . 2M (¢r)
have p(B.)+e¢>M(ir), as we wished to show. The case M(tr)=0 is simple,
since in this event, if A is a compact subset of T, M(c4) =u(A)< M(r) =0 of
necessity.

We next make a few remarks on p*-measurability.

5.5 TaHeoreM. Let G be any open subset of X such that ' (G)=p*(G) is
finite. Then there exist a family {An)2-, of compact sets and a set N of w*-
measure O such that G=(UA»)UN; G is therefore p*-measurable.

n=1

By 5.2, t¢ is in &. Then, by 5.4, there exists for every positive integer »
a compact subset A, of G such that u(A,,)-}- >M(zu) Let B,,—UA, Plainly
//.(Bn)'i“” >M((t¢). Now the sets B, being compact are p* -measurable [8, Th.3].
As the union of a countable family of ux*-measurable sets, the set P-—nL_)‘A,,-nL_JIB,,

is p*-measurable. By a well-known theorem [6, p. 8, Th.5.1], we have p*(P)
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=limx(B»), and hence p*(Pj=M (:¢). On the other hand, every B, is a com-
n> >

pact subset of G, and #(Ba) =M (¢5,) €M (), and thus limp(Bna) £M (). There-
fore u*(P)=M/(ts). However, M () =M (¢g) = A*(G),nby 4.12 and 5.3. Since P
is p*measurable, we have p*(G)=p*(GNP)+p*(GNFP')=p*(P)+u*(GNFP).
Hence p*(GNF')=0; writing GNP’ as N, and noting that every set of u*-measure
0 is p*-measurable, we have the present theorem.

5.6 THEOREM. Let F be any closed subset of X such that p*(F) is finite.
Then F is p*-measurable, and can be written in the form QF::UL, where the

C. are compact and p*(L)=0.

Since p*(F) is finite, there exists an open set GOF such that My(twe) =t/'(G)
< oo, The function ¢r, which is certainly upper semi-continuous, is therefore
summable, by 4.14. The argument now follows that used in 5. 5.

5.6a COROLLARY. Let Z be any subset of X such that Z=UZ,, where Z,&5F
n=1
and u*(Zs) <. Then Z is p*-measurable,
This is an immediate consequence of the fact that each Z, is contained in
an open set G, of finite p*measure which is p*measurable by 5.5, and that

the family of p*-measurable sets is closed under the formation of countable
unions and of complements.

5.7 THEOREM., Let T be a p*-measurable subset of X such that p*(T') <.
Then there exist a set L&A and sets Ny and N, both of p*-measure 0 such that
NCT, N.CT, N.CL, and (TNN-')UN,=L.

By the definition of u*, there exists a family {Gr}=., of open sets such that
G,DOT and /4’(G,,)~~71l—<,u*(T). Writing Uzéﬁ,.,we clearly have p*(U)=u*(T);
and since T is w*-measurable, p*(UNT")=0. By 5.5, G»=Qn\USs, where @ is
the union of a countable family of cgmpact sets and ﬂ*(%x)=0. Thus U= f;\lG,,
Z'DI(QnUSn) =QJQ,,UM, where MC,\.'LS"’ w* (M) =0, and ('Q,lQn)ﬂMs 0. Writing

L= ?\Q", we see that L is in d and that TU(UNT"Y=LUM. Thus upon setting
n=1

TNM=N, and LNT'=N,, we have 0=p*(M)=uy*(N:), 0=p*(UNT') = n1*(N)),
and (TNNYUN,=L. Since NoCM, and MCL’, it is clear that N;CL'.

§6. u*-measurability and summability. The present section is devoted to
showing the equivalence between g*-integration and summing by the functional M.

6.1 TuEOREM. Let @ be a subset of X such that p*(Q)=0. Then ¢, is sumn-
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mable, and M (¢g) =0.

By the definition of u*, for every ¢>0, there exists an open set GDQ such
that 4/ (G) <e. Since &€ and o=y, it follows that M (c) = Ma(wc) =1/ (G)<e.
Thus M(eg) =0, and by 4.8, M(c) =0 as well.

6.2 TuEOREM. Let L be any set in the family @ such that pw*(L) is finite.
Then L is p*-measuable, ¢ is summable, and p*(L)=M(c1).

It is proved by one of the present writers [8] that L is u#*-measurable, and
that for every >0, there exists a compact set A such that ACL and such that
u(A)+e>u*(L). We may now write the inequalities M (cz)=Mg(cs) =n(A)
>u*(L)—¢, which are obvious. By 5.3, we have u*(L)=M (cz), and thus M(cz)
=M{(c;). Theorem 4.8 shows that ¢; is actually summable and that M. (ez) = p*(L).

6.3 TueoREM. Let T be any p*-measurable subset of X such that p*(T) <+ co.
Then ¢r is summable, and 1*(T)= M (ir).

Let N;, N.. and L be the sets described in 5.7. Then TUN,=LUM., and
since TMN,=LNN.=0, we have tr+ey,=troy;=tron.=tr+tv. Using the easily
verified inequality M (cr+ey,) < M (er)+M(cy,), and noting that ¢, and ¢y, are
summable, in view of 6.2 and 6.1, we may write M (ez) =M (er) +M(ew,) = M(es
+ey) = M(er+ey) € M(er) + M(en,) = M(er) £ M(¢2+¢y,).  (The last inequality fol-
lows from the monotonicity of M.) Thus M(cr)=M(:.). We now observe that
since #*(IV;) =0, there exist open sets G; such that G;DN; and £/(G;) <e (i=1, 2).
Using once again the compact set ACL referred to in 6.2, we deduce the follow-
ing relations: B=ANG/NG/CT; Bea; u(B)>p(A)—2:>p*(L)—3e. Since
=N, we have M(er)=My(es)=p(B)>u*(L)~3e. From the relations p*(L)
=M(z) and M(er) < M(cr), we thus infer that M(er) = M(er) = p*{L) = u*(T).

6.4 TueoreM. Let T be any subset of X such that ¢r is summable. Then
T is p*measurable, and p*(T) = M (:z). Furthermore, T is the union of a count-
able family of compact sets and a set of p*-measure O.

By 5.3, we have u*(T)=M{(r). By 5.4, there exists, for every positive
integer », a compact set A,CT such that u(A”)+,;‘,>M (¢r). As in 5.5, we see
that p*(UAn) =M (er) = #*(T). Also as in 5.5, we note that UAj is z*-measur-
able and that #*(T1 (UAR") = u*(T) —u*(UAn) =0. As the union of UAx and

a set of p*measure 0, T is certainly g*-measurable. Thus the present theorem
is verified.

We remark in passing that 6.4 cannot be extended to the case of sets T
such that M(¢r) =+o. For such 7T, it is clear that p*(T)=+ o ; but 7 need
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not be pg*-measurable. (For example, take X=R, M(c) =r ¢(x)dx, and T=[0,
)UQ, where @ is a non-Lebesgue measurable subset of (—1, 0). Then M(¢r)
=+, but T is clearly not g*measurable.)

We now prove the equivalence of u*-integration and summation by M in
the simplest case.

6.5 THEOREM. Let ¢ be a p*-measurable function on X such that 0<¢(x)
£+ oo and such that §X¢(x)dﬂ*(x)<+oo. Then M(gp)gjxgo(x)du*(x).

Using the definition of the integral given by éaks [6, p.19], we have,
for every ¢>0, a finite sequence of u*-measurable sets, A;, 4., . . ., Am, such
that A;NA;=0 for i%xj, AJUAU ... UAn=E[x; ¢(x)>0], g*(Ai) <+ o0, and
ngo(x)du*(x)<28iu*(A;)+s, where (;=inf ¢(x). Consider the function w(x)

i=1} aE A8

="28,~m,-(x). It follows from 6.3 and 4.11 that M (w) =§‘,ﬁiﬂ*(A;). Since w=¢,
i=1 . =]

we have _M(go)éﬂ(w)=_M(w)=ij‘,ﬂm*(Ai)>jY¢(x)dp*(x)——e, and these in-

equalites prove the present theorem.

6.6 THEOREM. Let ¢ be a bounded, non-negative, p*-measurable function on
X such that p*(E{x; ¢(x)>0]) is finite. Then M‘(go)éfxgp(x)dﬂ*(x).

Let P=E[x; (x)>0], let ¢ be an arbitrary positive number, let # be a

positive integer > £ (

, and let J be the least integer =[sup¢(x)].z. Let
2aEX

P,-=E[x; i:n—*<<p(x)éh—], for j=1, 2, ..., J. Let us denote the function
J j_,l
= n
obvious. Furthermore, it is clear that o, and w. are g*measurable and that

Sw,(x)d,u*(x) 2 -«»p*(P,) and (wq(x)du*(x) z- #*(P;). Next, 6.4,4.9, 4.10,

J ’
¢tr; by @y and the function Z‘%zp] by w,. The inequalities w;£¢<w; are
=

—_— J o5
and 4.11 imply that @, w,, and w,—w, are summable and that M (w’)ZE,]Wn 1
=

J —
w*(Pj), M(w:) = 2 u*(P,), and M (w:—w,) =Z #*(Pj). Thus we have M(w,

—w;) =M (w.) — M (w1). The definition of # and additivity of u#* show that
Mo-o) =53 Pp=Lur(P)<e. 1t follows that M(w)>M(ws)~s. The
=1

inequality w;=¢ implies that fxm,(x)du*(x)é_fx@(x)du*(x), and the inequality

¢ =, implies that M(¢) £ M (w:) =M (v,). We combine the above relations, and

have j ¢ ()= 0i()du*(x) =M (@) > (01) ~ e =M (@) = =M (¢) —e.
X
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This completes the present proof.

6.7 THEOREM. Let ¢ be a function on X such that 0£¢<+4 oo, ¢ is p*-
measurable, p*(E[x; ¢(x)>0])<+w, and st(x)d/z*(x)<+oo. Then M (¢)
éfxcp(x)du*(x).

Utilizing again the definition of integral set forth in Saks, Joc. cit., we find that
the sums k‘:,ku*(E[x; k<¢(x)=k+1]) are all bounded above by sto(x)du*(x).
=1

Thus the series ,,i.,k/‘*(E[x; k<¢(x)=k+1]) converges to a sum égxgo(x)du*(x).
It follows immediately that 11'3_13?c mp*(E[x ; m<o(x)]) =0=,£i_§2 u*(E[x; m<e@(x)]).
Let ¢ be any positive number and let p be a positive integer such that u*(E[x;
p<¢(x)])<e. Define functions ¢ and pp as follows:

(o) if p(x) <D .
‘”"(")‘{ 0 if p(x)>p"

0p(%) =9 (%) —¢p(x).
The function ¢, clearly satisfies the hypotheses of 6.6, and therefore there exists
a function hEQ such that h=¢, and Mg(h)—c=M(¢p) =jx¢p(x)du*(x). We

now examine the function pp, and for convenience we write E[x ; k<¢(x) =k+1]
as Zy(k=p, p+1, ...). The sets Z, are certainly p*measurable and of finite
s*measure. Let Gp be an open set containing Z; such that 2/ (Gk)—é% <u*(Zr)
(k=p, p+1, . ..). Let gn—Z(k-l-l)m,. (n=p, p+1, ...). It is clear that the
functions g» are an increasing sequence of functions in g, that g= E(k—r])e(,,
—’1‘1_513 8n is in ¢, and that g=p,. We apply 4.15 and 6.4 to write Mg(g) —llm

Mg(g,,)_llm(z(k+l)p Gp)) = E\h-f-l)u(Gk) We apply inequalities set forth
avove to write M(g) =Sy (G 53/ (G) < STR(w 70 455 )+ 53 (420145, )

<§‘,k/,¢*(Zk)+§‘_,u*(Zk)+25+ 51 éj. pp(x)du*(x)+35+-z,:,—. We combine
k=p k=) 2 X 2

these results with the inequality on % set forth above and thereupon infer
Mg (g+h) = Ma(@) + Mg () <[ _op(0)d )+ @p(0)dt () +e(4+ 55 ).
X x 2

Since g+h=¢ and since ¢ is arbitrary, it follows that
M(9) £ My(g+1) = [ oo dp* 0+ {_go()dp*x) = [ o@)du(x),

6.8 THEOREM. Let ¢ be any function on X such that 0=£¢<+ o, ¢ is p*-
measurable, and Lg&(x)du*(x)<+oo. Then M(go)éfx_(p(x)du*(x).

https://doi.org/10.1017/50027763000012174 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000012174

INTEGRATION IN LOCALLY COMPACT SPACES II 21

The present theorem is proved by an argument quite analogous to that used
in 6.7. We define functions

o) if Lo
(%) = 1 °

_ ; .1 1 U |
and 0,=¢—»p. We next write Yk=E[x ; }ﬁ«égp(x)< }*J. The series Z‘iﬂT

p#*(Y:) and kz;]-};u*(Yk) converge; the function ,¢ satisfies the hypotheses of
6.7, for every positive integer m, and M(s,) is small. The remainder of the
proof is modelled closely after that of 6.7 and is omitted.

We collect the results of 6.5 and 6.8.

6.9 THEOREM. Let ¢ be any function on X such that 0=¢<+oo, ¢ is u*
measurable, and Lgﬁ(x‘)d/z*(x)<+ . Then ¢ is summable, and ﬂ(go):SXga(x)
au*(x).

The converse of 6.9 is also true.

6.10 TueorEM. Let ¢ be a function on X such that 0£¢p<+ o0 and ¢ is
summable. Then ¢ is u*-measurable and M (ga):jvxgo(x)dy*(x).

For every positive integer », there exist functions f,EWl and g,=¢ such
that fr=¢=g, and Mu(fn)+%>ﬂ(¢)>Mg(gn)~%. We may suppose that
fnEfne and guui 28, (n=1, 2, ...). Since f, and g, are p*-measurable, 6.9
implies that Mu(f,,)=§x Fa®)dp*() and Mg(g)={ ga(x)du*(x). Writing
¢'=},irf} f» and w=li_§3 &gn, we have, clearly enough, ¢ ¢ =w. Lebesgue’s theorem
on t::rrn-by~term integration [6, p.29] shows that qub(x)d/z*(x)=Lw(x)du*(x)
=M(¢). It follows that ¢—¢ is a function vanishing except on a set of u*-
measure 0; acoordingly ¢ is u*-measurable and M(¢) =wa(x)dp*(x)=sxgc(x)
dp*(x).
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