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Determining the physical mechanisms that extract energy from turbulent fluctuations
in weakly collisional magnetized plasmas is necessary for a more complete
characterization of the behaviour of a variety of space and astrophysical plasmas.
Such a determination is complicated by the complex nature of the turbulence as
well as observational constraints, chiefly that in situ measurements of such plasmas
are typically only available at a single point in space. Recent work has shown that
correlations between electric fields and particle velocity distributions constructed from
single-point measurements produce a velocity-dependent signature of the collisionless
damping mechanism. We extend this work by constructing field–particle correlations
using data sets drawn from single points in strongly driven, turbulent, electromagnetic
gyrokinetic simulations to demonstrate that this technique can identify the collisionless
mechanisms operating in such systems. The velocity-space structure of the correlation
between proton distributions and parallel electric fields agrees with expectations of
resonant mechanisms transferring energy collisionlessly in turbulent systems. This
work motivates the eventual application of field–particle correlations to spacecraft
measurements in the solar wind, with the ultimate goal to determine the physical
mechanisms that dissipate magnetized plasma turbulence.
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1. Introduction

Studies of the turbulent transport of mass, momentum and energy have composed a
significant fraction of plasma physics research over the last half-century. Of particular
interest is the question of what mechanisms extract energy from the turbulent cascade,
damping electromagnetic fluctuations and eventually irreversibly heating the plasma.
The answer to this question will improve the understanding of a wide array of plasma
systems, ranging from laboratory devices, planetary magnetospheres, the Sun and its
extended atmosphere and accretion disks around massive astrophysical bodies.
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Proposed mechanisms for the dissipation of turbulence in weakly collisional plasmas
can broadly be grouped into three classes: resonant mechanisms, such as Landau
damping, transit-time damping or cyclotron damping (Landau 1946; Barnes 1966;
Coleman 1968; Denskat, Beinroth & Neubauer 1983; Isenberg & Hollweg 1983;
Goldstein, Roberts & Fitch 1994; Leamon et al. 1998; Quataert 1998; Gary 1999;
Hollweg & Isenberg 2002; TenBarge & Howes 2013); non-resonant mechanisms, such
as the stochastic heating of ions in large amplitude, low-frequency Alfvénic turbulence
(McChesney, Stern & Bellan 1987; Chen, Lin & White 2001; Johnson & Cheng
2001; Bourouaine, Marsch & Vocks 2008; Chandran 2010; Chandran et al. 2010;
Bourouaine & Chandran 2013); and intermittent dissipation in current sheets and
magnetic reconnection sites (Dmitruk, Matthaeus & Seenu 2004; Markovskii &
Vasquez 2011; Matthaeus & Velli 2011; Servidio et al. 2011; Karimabadi et al. 2013;
Zhdankin et al. 2013; Osman et al. 2014a,b; Zhdankin, Uzdensky & Boldyrev 2015).
All three classes couple electromagnetic fluctuations to the plasma particle velocity
distribution, leading to energy transfer and damping. This coupling occurs through the
nonlinear wave–particle interaction term in the Vlasov equation (Howes 2015; Howes,
Klein & Li 2017). Each mechanism produces distinct structures in velocity space that
are characteristic of that mechanism. For example, resonant mechanisms preferentially
energize particles near a resonant velocity with a change in sign in the energy transfer
across that resonant velocity, while the stochastic heating described by Chandran et al.
(2010) will only energize thermal and sub-thermal particles, producing a platykurtic
distribution (Klein & Chandran 2016).

The solar wind, a low-density and high-temperature plasma accelerated from the
Sun that flows radially outward through the heliosphere, is a heavily sampled space
plasma system, with measurements dating back to the dawn of the space age. The
large quantity of measurements of this super-Alfvénic plasma flow makes it a unique
system with which various plasma and turbulence theories, including descriptions of
damping and dissipation, can be tested across a wide range of physical scales and
plasma parameters. A significant limitation of such in situ measurements is that most
observations occur at a single point, or at most a few points, in space. Any attempts
to use the solar wind to test theories of turbulence must take this limitation into
consideration.

A novel field–particle correlation technique has been proposed (Klein & Howes
2016; Howes et al. 2017) which uses single-point measurements to capture the
non-oscillatory, or secular, transfer of energy associated with the net removal of
energy from turbulent fluctuations. This correlation isolates the secular energy
transfer by averaging the nonlinear field–particle interaction term in the Vlasov
equation over a time interval longer than the time scale characteristic of the turbulent
fluctuations involved in the energy transfer. Crucially, not only can the secular
energy transfer be isolated, but the velocity-space structure of this correlation can be
used to discriminate between various collisionless damping mechanisms using only
single-point measurements of the type accessible to spacecraft in the solar wind.

A fundamental question at the forefront of heliophysics research is whether Landau
damping, and other resonant wave–particle interactions, can effectively remove
energy from turbulent plasmas given the highly nonlinear nature of strong plasma
turbulence (Plunk 2013; Schekochihin et al. 2016). In this work, we seek evidence of
Landau damping in turbulent plasmas by the application of field–particle correlations
to data extracted from a series of gyrokinetic simulations of three-dimensional
electromagnetic plasma turbulence. This extends previous work applying such
correlations to monochromatic, electrostatic waves (Klein & Howes 2016; Howes
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et al. 2017; Klein 2017) and the Landau damping of a single kinetic Alfvén wave
(Howes 2017) to a system of strong turbulence where the role of resonant interactions
is a matter of current debate.

The remainder of this paper is organized as follows. The electromagnetic form
of the field–particle correlation is developed in § 2. A presentation of the expected
structure of damping in low-frequency turbulence is found in § 3, followed by a
discussion of the simulation code employed, AstroGK, in § 4. In § 5, we apply the
correlation to a single kinetic Alfvén wave, followed by an application to turbulent
simulations in § 6. Discussion, summary and future applications are found in § 7. Even
in the presence of strong turbulence and spatially inhomogeneous heating, the secular
energy transfer from the turbulent fields to the protons is shown to be localized in
velocity space near the resonant velocities associated with Landau damping. This
work motivates future application to data from turbulence simulations which contain
other damping mechanisms, as well as spacecraft observations, with the ultimate goal
to determine which mechanisms act to dissipate turbulence in the solar wind.

2. Field–particle correlations for electromagnetic fluctuations
The novel approach of using field–particle correlations to diagnose the energy

transfer between fields and particles has been described for electrostatic fluctuations
in the Vlasov–Poisson system (Howes et al. 2017) and been applied to both damped
and linearly unstable systems (Klein & Howes 2016; Howes 2017; Klein 2017). Here
we describe the application of the field–particle correlation technique to the case of
electromagnetic fluctuations in the Vlasov–Maxwell system.

The Boltzmann equation describes the dynamics and energetics of weakly collisional
plasmas relevant to heliospheric environments, such as the solar corona and the solar
wind, determining the evolution of the six-dimensional velocity distribution function
fs(r, v, t) for a plasma species s,

∂fs

∂t
+ v · ∇fs + qs

ms

[
E+ v×B

c

]
·
∂fs

∂v
=
(
∂fs

∂t

)
coll

. (2.1)

The species charge and mass are qs and ms respectively, v the velocity, E and B
the electric and magnetic fields, and c the speed of light. Combining the Boltzmann
equation for each plasma species together with Maxwell’s equations forms the closed
set of Maxwell–Boltzmann equations that govern the nonlinear evolution of turbulent
fluctuations in a magnetized kinetic plasma.

Here we focus strictly on the collisionless dynamics of the energy transfer between
fields and particles, so we drop the collision operator on the right-hand side of (2.1)
to obtain the Vlasov equation. Multiplying the Vlasov equation by msv

2/2, integrating
over all position and velocity space, and using an integration by parts in velocity for
the Lorentz force term yields the expression

∂Ws

∂t
=
∫

d3r
∫

d3vqsv ·Efs =
∫

d3rjs ·E, (2.2)

where the current density of species s is defined as js≡
∫

d3vqsvfs and the microscopic
particle kinetic energy for species s is given by

Ws ≡
∫

d3r
∫

d3v
1
2

msv
2fs(r, v, t). (2.3)

Note that the ballistic term (the second term on the left-hand side of (2.1)) and the
magnetic part of the Lorentz term (the third term on the left-hand side) yield zero net
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energy transfer upon integration over all position and velocity space, assuming suitable
boundary conditions, such as periodic boundaries or infinitely distant boundaries with
vanishing fs. Summing (2.2) over species and combining with Poynting’s theorem

∂

∂t

∫
d3r
|E|2 + |B|2

8π
+ c

4π

∮
d2S · (E×B)=−

∫
d3rj ·E, (2.4)

where j =∑s js is the total current density, we may obtain the conserved Vlasov–
Maxwell energy, W, for electromagnetic fluctuations in a collisionless, magnetized
plasma,

W =
∫

d3r
|E|2 + |B|2

8π
+
∑

s

∫
d3r
∫

d3v
1
2

msv
2fs. (2.5)

Note that, for periodic or infinitely distant boundaries, the Poynting flux term, the
second term on the left-hand side of (2.4), yields zero net change in the energy W.

In the Vlasov–Maxwell system, equation (2.2) shows clearly that the change in the
microscopic energy of the particles is accomplished by interactions of the particles
with the electric field, where js ·E is the (spatially) local rate of change of the energy
density of particle species s. But, as pointed out in the previous description of how
to use field–particle correlations to explore the conversion of turbulent energy into
microscopic particle energy (Howes et al. 2017), this energy transfer between fields
and particles includes both the conservative oscillating energy transfer associated
with undamped wave motion and the secular energy transfer associated with the
collisionless damping of the turbulent fluctuations. Here we specifically define the
turbulence as the sum of the fluctuations in the electromagnetic fields and the
fluctuations of the bulk flows of the plasma (Howes 2015). Collisionless interactions
between the fields and the particles, governed by the Lorentz force term (third term
on the left-hand side) in (2.1), remove the energy from the turbulent fluctuations,
transferring it into microscopic particle kinetic energy that is not associated with bulk
plasma motions. Diagnosing this net transfer of energy between fields and particles
is the key aim of the field–particle correlation method, using a time average over
an appropriately chosen correlation interval to eliminate the often large signal of the
oscillating energy transfer, exposing the smaller signal of the secular energy transfer.

A significant limitation of spacecraft measurements is that information is generally
limited to a single point, or at most a few points, in space. Therefore, the spatial
integration necessary to simplify the energy transfer in the Vlasov equation to the
form given by (2.2) is not possible. To explore the energy transfer between fields and
particles at a single point in space, we define the phase-space energy density for a
particle species s by ws(r, v, t) = msv

2fs(r, v, t)/2. Multiplying the Vlasov equation
by msv

2/2, but not integrating over space or velocity, we obtain an expression for the
rate of change of the phase-space energy density,

∂ws(r, v, t)
∂t

=−v · ∇ws − qs
v2

2
E ·

∂fs

∂v
− qs

c
v2

2
(v×B) ·

∂fs

∂v
. (2.6)

When integrated over velocity space, an integration by parts of the last term on the
right-hand side of (2.6) yields an integrand containing v · (v×B)= 0, so the magnetic
field cannot accomplish any net change of energy of the particles. In addition, when
integrated over volume, the first term on the right-hand side of (2.6) yields zero net
energy change for either periodic or infinite boundary conditions. Therefore, we focus
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here on the second term on the right-hand side of (2.6), the term that determines the
effect of the electric field on the rate of change of phase-space energy density.∗

Examining the electric field term, we can write the form of the field–particle
correlation at a single point r0 for the general Vlasov–Maxwell case, separating the
contributions from the parallel and perpendicular parts of the electric field,

CE‖(v, t, τ )=C

(
−qs

v2
‖

2
∂fs(r0, v, t)

∂v‖
, E‖(r0, t)

)
(2.7)

CE⊥(v, t, τ )=C
(
−qs

v2
x

2
∂fs(r0, v, t)

∂vx
, Ex(r0, t)

)
+C

(
−qs

v2
y

2
∂fs(r0, v, t)

∂vy
, Ey(r0, t)

)
,

(2.8)

where we define the non-normalized correlation

C(A, B)≡ 1
N

i+N∑
j=i

AjBj (2.9)

for quantities A and B measured at discrete times tj = j1t with correlation interval
τ ≡ N1t. Note that the v2 = v2

‖ + v2
⊥ factor is reduced to v2

‖ for CE‖ because the net
energy change is zero for the v2

⊥ contribution when integrated over velocity. Similarly,
for CE⊥ , one uses v2

x for the energy change due to Ex and v2
y for the energy change

due to Ey, where we assume for notational simplicity that the local magnetic field is
in the ẑ direction, B= B(r0)ẑ.

Note that, depending on the physical mechanism to be investigated, one will
choose the appropriate correlation, either CE‖ or CE⊥ . One would choose CE‖ to
investigate Landau damping, since it is mediated by the parallel electric field, and
one would choose CE⊥ to study cyclotron damping or stochastic ion heating, since
these mechanisms are mediated by the perpendicular electric field. Importantly,
regardless of the underlying mechanism, CE‖ and CE⊥ measure the energy density
transfer mediated by the associated electric field component.

Since taking the velocity gradient of noisy or low resolution phase-space
measurements of particle velocity distribution functions can lead to large errors,
one can define a related correlation C′ that is derived by an integration by parts in
velocity (Howes et al. 2017). These alternative forms are

C′E‖(v, t, τ )=C(qsv‖ fs(r0, v, t), E‖(r0, t)) (2.10)

C′E⊥(v, t, τ )=C(qsvx fs(r0, v, t), Ex(r0, t))+C(qsvy fs(r0, v, t), Ey(r0, t)). (2.11)

When integrated over velocity, C′E‖ simply yields the time averaged js‖E‖ and C′E⊥
yields the time averaged js⊥ ·E⊥, which is the net electromagnetic work done on the
particles. And since the alternative forms C′ are equivalent to the C forms of the
field–particle correlations when integrated over velocity, the original forms C given
by (2.7) and (2.8) also yield, upon velocity integration, the net electromagnetic work
done on the particles.

∗As discussed in Howes et al. (2017), it is imperative to use a consistent frame of reference for the
particle distributions and the fields, which in the case of spacecraft measurements will require a Lorentz
transformation of the electric field from the spacecraft to the plasma frame.
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3. Resonant energy transfer in low-frequency turbulence
We next describe the damping mechanisms accessible to turbulence in solar

and astrophysical plasmas and predict where in velocity space the related energy
transfer is expected to appear. The resonant mechanisms that can remove energy
from weakly collisional plasma turbulence depend strongly on the frequency of the
turbulent fluctuations. Direct multi-spacecraft observations of the solar wind find
that turbulent fluctuations at length scales near ion kinetic scales are anisotropic,
with k⊥ � k‖, with ⊥ and ‖ defined with respect to the local mean magnetic field
(Sahraoui et al. 2010; Narita et al. 2011; Roberts, Li & Li 2013; Roberts, Li & Jeska
2015). The frequency of such fluctuations depends on the normal-mode response of
the plasma: fast/whistler fluctuations have frequencies ω ∼ Ωp at k⊥dp ∼ 1, while
both Alfvén/kinetic Alfvén waves (KAWs) and slow/kinetic slow waves have lower
frequencies, ω�Ωp, where Ωp is the proton cyclotron frequency and dp = vA/Ωp is
the proton inertial length (Howes et al. 2012; Howes, Klein & TenBarge 2014). Many
of these multi-spacecraft observations of the solar wind find that ω�Ωp, suggesting
that fast/whistler fluctuations play a minor role in governing the turbulence of these
systems. Both historic and recent in situ observations of the solar wind find that the
measured fluctuations have polarizations consistent with low-frequency Alfvén waves
at larger scales (Belcher & Davis 1971) and KAWs at ion scales (Podesta & TenBarge
2012; Salem et al. 2012; TenBarge et al. 2012; Chen et al. 2013; Kiyani et al. 2013).
This body of evidence, combined with theoretical (Schekochihin et al. 2009) and
numerical (Howes et al. 2008) studies, suggests that the turbulence is dominated by
low-frequency, anisotropic Alfvénic fluctuations with ω�Ωp, though the importance
of higher-frequency fluctuations is still an open question; a recent review of this topic
can be found in the introduction of Cerri et al. (2016).

Kinetic plasma theory dictates that resonant collisionless damping mechanisms
satisfy the resonance condition ω − k‖v‖ − nΩp = 0, where n is any integer. For
low-frequency, anisotropic turbulence with ω�Ωp, the collisionless damping arising
through the cyclotron, or n 6= 0, resonances is expected to be negligible (Lehe, Parrish
& Quataert 2009). The dominant resonant damping mechanisms in such systems
are those which approximately satisfy the n = 0 condition ω − k‖v‖ = 0, known
as the Landau resonance. Two specific collisionless damping mechanisms, Landau
damping (Landau 1946) and transit time damping (Barnes 1966), operate via this
resonance; the former is mediated by the electric force of the parallel electric field
on the particle charge, while the latter is mediated by the magnetic mirror force
from the variations in the magnetic field magnitude on the particle magnetic moment
µs=msv

2
⊥/2|B|. In this work, we focus on capturing the signature of Landau damping

using the field–particle correlation CE‖ in strong plasma turbulence. Application of
the perpendicular electric field correlation CE⊥ , which is expected to capture cyclotron
damping, will be considered in later work using a simulation model that captures the
physics of the cyclotron resonance, since the gyrokinetic approximation orders out
the cyclotron physics, eliminating this damping mechanism in gyrokinetic simulations
(Howes et al. 2006).

Previous applications of field–particle correlations of the type described in § 2 were
used on relatively simple systems of one or a few wave modes which damp via
resonant interactions with one velocity (Klein & Howes 2016; Howes 2017; Howes
et al. 2017) or a few velocities (Klein 2017). One might naively expect a spectrum
of turbulent fluctuations potentially to interact with a broad range of velocities,
eliminating any coherent signature that may be used to diagnose the nature of the
damping mechanism. However, by examining the linear properties of low-frequency
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(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

FIGURE 1. Linear characteristics of the collisionless, low-frequency Alfvén dispersion
relation as a function of k⊥ρp for βp = 0.3 (a,d,g), 1.0 (b,e,h) and 3.0 (c,f,i) and reduced
mass ratio mp/me = 32. Panels (a–c) plot the linear damping rate |γ |/ω (red line) and
proton |γp|/ω (black) and electron |γe|/ω (green) power absorption. The resonant proton
velocities (black lines) are plotted in (d–f ) and the electric field ratio |E‖|/|E⊥| (red lines)
is shown in (g–i).

Alfvén waves, we predict that the turbulent fluctuations should preferentially interact
with ions over a relatively narrow band of resonant velocities.

In figure 1, linear Vlasov–Maxwell damping rates for an Alfvén wave are presented
as a function of k⊥ρp with constant k‖ρp = 10−3, where ρp is the proton gyroradius.
The following plasma parameters were used: Tp = Te, T⊥,s = T‖,s, vtp/c = 10−4,
mp/me = 32, with βp = 0.3, 1.0, and 3.0, where βp = 8πnpTp/B2. All of the
characteristics of the linear, magnetized, collisionless, fully ionized, proton–electron
plasma response are calculated using the the PLUME dispersion solver (Klein & Howes
2015). We constrain the values of βp to those near unity to match typical solar wind
observations. Additionally, we model a plasma with a reduced mass ratio, shifting
significant electron damping to larger scales by the reduction of the ratio of the
species Larmor radii, ρe/ρp =

√
me/mp.† With this choice of reduced mass ratio,

there is sufficient resolved collisionless damping by the electrons within the limited
dynamic range of our simulations to achieve a steady-state turbulent cascade, with
no need for artificial dissipation at small scales, which could corrupt our results.

The collisionless power absorption by species s due to a normal mode in one wave
period is calculated following Stix (1992) § 11.8 and Quataert (1998) as

γs(k)
ω(k)

= E∗(k) · χ a
s (k) ·E(k)

4WEM(k)
, (3.1)

where χ a
s is the anti-Hermitian part of the linear susceptibility tensor for species s

evaluated at the real component of the normal-mode frequency, E and E∗ are the
vector electric field associated with the normal mode and its complex conjugate and
WEM is the electromagnetic wave energy. The sum γp + γe equals the total damping
rate γ in the limit γ /ω. 1. Values for γp and γe are shown in figure 1(a–c) with the
regions for which γ /ω & 1, where the calculation of γs breaks down, highlighted in
red.

†We have ensured that our selected mass ratio is sufficiently large that the proton damping rate decreases
at scales k⊥ρp� 1 in a quantitatively similar fashion to the proton damping rate for a plasma with a realistic
mass ratio of mp/me = 1836.
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While the total damping rate monotonically increases near k⊥ρp = 1.0, the power
absorbed by the protons is a strongly peaked function near that scale. Proton damping
will be dominated by modes with wavevectors near this peak, which have resonant
velocities bounded within a narrow region. This peak arises because Landau damping
efficiently operates when both the resonant velocity vres=ω/k‖ lies in the bulk of the
velocity distribution and there exists a finite parallel electric field. The resonant
velocity of an Alfvén wave normalized by the thermal velocity vtp, plotted in
figure 1(d–f ), is shown to be non-dispersive and in resonance with the bulk of
the proton velocity distribution until it reaches length scales of order ρp where the
wave transitions to a kinetic Alfvén wave. For the parameters under consideration,
the dispersive modifications increase ω, moving the wave largely out of resonance
with the protons and reducing damping at small scales. Alfvén waves with k⊥ρp� 1
have weak parallel electric fields, as shown in (g–i), which limit the effectiveness
of resonant damping at large scales. Therefore, the proton power absorption in
a wave period γp/ω peaks near k⊥ρp = 1. The wavevector region having proton
power absorption within one e-folding of the maximum proton power absorption is
highlighted in vertical grey bands in figure 1(a–f ). The secular energy transfer to the
protons from a spectrum of low-frequency, Alfvénic fluctuations should therefore be
constrained to a narrow band of parallel velocities (horizontal blue bands in second
row) near the proton thermal velocity in (d–f ), with a clear dependence on βp.

4. Gyrokinetic simulations of low-frequency turbulence
We next detail the turbulence simulations carried out in this study. Gyrokinetics,

a rigorous limit of the Vlasov–Maxwell system of equations, has been shown to
optimally describe the low-frequency, anisotropic turbulent fluctuations typically
found in the solar wind (Frieman & Chen 1982; Howes et al. 2006; Schekochihin
et al. 2009). By averaging over the gyromotion of the particles, gyrokinetics reduces
the dimensionality of the kinetic system from six (three dimensions in coordinate
space, three dimensions in velocity space (3D-3V)) to five (three dimensions in
coordinate space, two dimensions in velocity space (3D-2V)). The gyrokinetic
formalism describes damping via the Landau (n = 0) resonance, (TenBarge &
Howes 2013) and resolves the kinetic microphysics of collisionless magnetic
reconnection in the large-guide-field limit (TenBarge et al. 2014a; Numata &
Loureiro 2015). Mechanisms such as cyclotron damping and stochastic heating
due to low-frequency Alfvénic turbulence are not included, the former due to the
exclusion of high-frequency behaviour and the latter due to conservation of the
magnetic moment enforced by the gyroaveraging procedure. In this paper, we focus
on recovering the signature of Landau damping, leaving the identification of other
damping mechanisms to later work.

We employ the astrophysical gyrokinetics simulation code, AstroGK (Numata et al.
2010), which has been used to successfully model plasma physics phenomena in
the heliosphere over the last decade (Howes et al. 2008, 2011; TenBarge & Howes
2012, 2013; TenBarge, Howes & Dorland 2013; Numata & Loureiro 2015). AstroGK
evolves the gyroaveraged scalar potential φ(r), parallel vector potential A‖(r) and
the parallel magnetic field fluctuation δB‖(r), as well as the gyrokinetic distribution
function hs(Rs, v⊥, v‖), in a triply periodic slab geometry. The gyrokinetic distribution
function is related to the total distribution function fs via

fs(r, v, t)= F0s(v)

(
1− qsφ(r, t)

T0s

)
+ hs(Rs, v⊥, v‖, t)+ δf2s + · · · , (4.1)
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where F0s is the Maxwellian equilibrium distribution, r is the spatial position, Rs
the associated species gyrocentre related to r by r = Rs − v × ẑ/Ωs and δf2s are
second-order corrections in the gyrokinetic expansion parameter ε ∼ k‖/k⊥ which are
not retained (Howes et al. 2006). The domain is a periodic box of size L2

⊥ × L‖,
elongated along the straight, uniform mean magnetic field B0=B0ẑ. The code employs
a pseudospectral method in the x–y (perpendicular) plane and finite differencing in the
z-direction. The velocity distribution is resolved on a grid in energy E=v2/2 and pitch
angle λ = v2

⊥/v
2 space, with the points selected on a Legendre polynomial basis. A

fully conservative, linearized, gyroaveraged collision operator is employed (Abel et al.
2008; Barnes et al. 2009).

As a technical step, we transform from the gyrokinetic distribution function hs to
the complementary perturbed distribution

gs(Rs, v⊥, v‖)= hs(Rs, v⊥, v‖)− qsF0s

T0s

〈
φ − v⊥ ·A⊥

c

〉
Rs

(4.2)

(Schekochihin et al. 2009), where 〈· · ·〉 is the gyroaveraging operator. The
complementary distribution function gs describes perturbations to the background
distribution in the frame moving with an Alfvén wave. Such perturbations are
associated with the compressive components of turbulence and therefore are associated
with the collisionless damping mechanism under consideration. Field–particle
correlations calculated using hs or fs (not shown) yield qualitatively and quantitatively
similar results to those computed with gs.

We perform three turbulent simulations with nearly identical setups. The number
of simulated grid points is (nx, ny, nz, nλ, nE) = (64, 64, 32, 64, 32), where nλ and
nE are the number of pitch angle and energy points. The fully resolved simulation
domain spans k⊥ρp ∈ [0.25, 5.5] or k⊥ρe ∈ [0.04, 0.97] for the reduced mass ratio
under consideration, mp/me = 32. The maximum v⊥ and v‖ resolved for each species
is 4vts. We set βp to 0.3, 1.0 and 3.0 for the three simulations. The simulations are
driven using an oscillating Langevin antenna (TenBarge et al. 2014b) that drives
fluctuations with wavevectors (kx, ky, kz) = (1, 0, ±1) and (0, 1, ±1) plus their
complex conjugates with amplitudes sufficient to drive the system into a saturated
state of strong turbulence. All three simulations are run to at least tωA = 20, where
ωA = k‖vA with k‖ = 2π/L‖. The proton collision frequency is set at approximately
a tenth of the maximum linear proton damping rate, νp/k‖vtp = 5 × 10−5, 2 × 10−4

and 1 × 10−3 for the βp = 0.3, 1.0 and 3.0 runs respectively. The electron collision
frequency is similarly set to a tenth of the maximum linear electron damping rate,
approximately νe/k‖vtp = 2× 10−3 for all three cases. These collision frequencies are
larger than those observed in the nearly collisionless solar wind, but this enhancement
is necessary to ensure energy is not transported to velocity-space structure smaller
than that resolved by the simulation. We have run suites of simulations, not shown
here, to ensure that both the damping rate and velocity-space structure of the energy
transfer are not affected by the enhanced collisionality as long as the collision
frequency is less than the maximum linear damping rate, a constraint satisfied by our
turbulent simulations.

Total power spectra for the three turbulent simulations are shown in figure 2,
averaged over an outer-scale Alfvén turn-around time starting once the turbulence has
reached steady state, at around tωA=6. The surrounding grey shaded regions represent
the standard deviation of the spectra over the time interval used for averaging. We
note there is evidence of bottlenecking (flattening of the spectra) at the smallest scales
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(a) (b)

FIGURE 2. Total power spectra for the βp = 0.3, 1.0 and 3.0 simulations (a), with
the standard deviation of the spectra shown as grey shading. An evaluation of the
energy injected into and collisionally dissipated from the simulations (b) demonstrates the
steady-state nature of the turbulence.

in these simulations, as we have elected to not introduce artificial hypercollisionality
which may obscure signatures of the collisionless damping mechanisms in the velocity
distribution function. To ensure the simulations are in a steady state, we evaluate the
external energy injected into the system via the antenna (black lines), the collisional
entropy production (pink), and the time derivative of the fluctuation energy (blue).
We note that their sum (red line) is zero, indicating good conservation of energy
in these simulations. A detailed discussion of these terms can be found surrounding
equation (B19) in Howes et al. (2006).

Both the complementary perturbed distribution gp(Rj; v⊥, v‖) and E‖(rj) are output
at selected fixed points in the spatial domain at a fixed cadence to mimic single-point
observations of the solar wind. With this single-point diagnostic, we calculate the
field–particle correlation CE‖ , representing the first application of this technique to a
turbulent data set.

5. Field–particle correlations for a single KAW
Before applying the field–particle correlations to data from the three turbulence

simulations, we first consider a single, nonlinearly evolving kinetic Alfvén wave,
similar to the case presented in Howes (2017). We initialize a single KAW with
k⊥ρp = 1 and βp = 1.0, following the eigenfunction initialization specified in Nielson
et al. (2010). The gyrotropic complementary proton distribution at a single point
r0 in the simulation is plotted in figure 3 at time tωA = 4.7. Also plotted are the
instantaneous rate of change of the phase-space energy density, CE‖(τ = 0), and the
time-averaged correlation CE‖(τωA = 5.56). The correlation interval τωA = 5.56 was
selected so that the time average was over one linear wave period of the initialized
KAW, T = 2π/ω0 with ω0 = 1.13ωA. For all three cases, the gyrotropic structure is
clearly organized by the parallel resonant velocity of the initialized wave, marked
with a grey line, with little structure depending on v⊥.‡ Such structure was seen in
the electrostatic simulations of Landau damping described in Klein & Howes (2016)

‡While CE‖ (τ 6= 0) is quantitatively similar if we use gp, hp, or fp in its calculation, the additional terms
in hp and fp obscure the structure around v‖ = vres in the distributions themselves.
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(a) (b) (c)

FIGURE 3. The proton gyrotropic complementary distribution function at a point in the
single KAW simulation, (a), and the correlations CE‖(τ = 0) and CE‖(τωA = 5.56), (b,c),
at a point in time, tωA= 4.7. The resonant velocity of the KAW is shown as a solid grey
line.

(a) (b) (c)

FIGURE 4. The reduced field–particle correlation CE‖(v‖) at two values of v‖, (a,b), as
well as the v‖ integrated correlation ∂wp/∂t, (c), for a range of correlation intervals τ
indicated by the colour bar. The correlation interval τωA = 5.56 selected for of figures
3(c) and 5 is indicated with a black line.

and Howes et al. (2017). To focus on this v‖ dependence, we calculate the reduced
field–particle correlation, integrated over v⊥, which for notational simplicity, we write
as CE‖(v‖)=

∫
dv⊥CE‖(v‖, v⊥).

To illustrate the effects of the length of the correlation interval, in figure 4 we
plot CE‖(v‖) for two values of v‖ above and below the resonant velocity, 0.8vtp and
1.3vtp, as well as the correlation integrated over v‖, ∂wp(r0, t)/∂t= ∫ dv‖CE‖(v‖) where
wp(r0, t) is the ion spatial kinetic energy density at position r0 and time t. We see that
for an interval of exactly one linear wave period, the oscillatory component of the
phase-space energy transfer is removed completely. For correlation intervals that are
not integer multiples of the wave period, the cancellation of the oscillatory component
is not exact, but for correlation intervals longer than the wave period, τ > T , the
oscillatory component is significantly reduced, enabling the secular energy transfer
associated with collisionless damping to be observed. Note that the correlation CE‖
measures the rate of the change of phase-space energy density for a particle species
due to energy transfer with the fields; for sufficiently long correlation intervals, the
net transfer in figure 4(b) is positive showing that electric field is losing energy to
the protons. As turbulence simulations will have a broadband spectrum of fluctuations
with different periods, we will choose correlation intervals longer than the associated
linear wave periods in an attempt to remove as much oscillatory energy transfer as
possible.

The gyrotropic velocity-space plots in figure 3 only illustrate the energy transfer at a
single point in time, but we are interested in characterizing the entire time evolution.
Thus, we integrate gp(v‖, v⊥, t) and CE‖(v‖, v⊥, t) over v⊥ to obtain the parallel
reduced distribution function gp(v‖, t) and parallel reduced correlation CE‖(v‖, t);
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(a)

(c)

(d) (e) ( f )

(b)

FIGURE 5. Timestack plots from the single KAW simulation, showing (a) the structure of
the reduced complementary proton distribution function gp(v‖), (b) the instantaneous field–
particle correlation CE‖(v‖, τ = 0), (c) the averaged field–particle correlations CE‖(v‖, τ =
2π/ω0), (d) the rate of change in the ion kinetic energy density ∂wp(t)/∂t and (e) the net
energy density transfer rate to the ions 1wp(t). The fraction of the energy transferred in
the region around the resonant velocity of the KAW, R, is given in ( f ).

these reduced values are then used to construct timestack plots that are functions of
only v‖ and t, presented in figure 5. As with the gyrotropic distributions in figure 3,
the variations as a function of v‖ in figure 5, including (a) the reduced complementary
distribution function

∫
dv⊥v⊥gp, as well as the correlations (b) CE‖(v‖, τ = 0) and (c)

CE‖(v‖, τ = 2π/ω0 = 5.56/ωA), are all organized about the resonant velocity of the
initialized KAW. However, in these timestack plots, we see the significant oscillatory
behaviour in time in both the velocity distribution function and the instantaneous
phase-space energy transfer, while the correlation averaged over one linear wave
period reveals the secular, resonant energy transfer. Note that the signature of energy
gain above the resonant velocity (red) and energy loss below the resonant velocity
(blue) in (c) corresponds to the flattening of the distribution function found in
quasilinear treatments of collisionless damping (Klein & Howes 2016; Howes et al.
2017). This is the velocity-space signature of the ion Landau damping of the kinetic
Alfvén wave.

To track the total rate of energy transfer at this point in coordinate space, we plot
in figure 5(d) the velocity-space integrated correlation ∂wp(r0, t)/∂t, which represents
the total rate of energy transfer between the parallel electric field and the ions at that
position in space. In figure 5(e), we plot the accumulated energy transfer to the ions
at position r0, given by 1wp(r0, t) = ∫ t

0 dt′∂wp(r0, t′)/∂t′. These two measures show
that the physical mechanism of Landau damping achieves a net transfer of energy to
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the ions over time at this position in the simulation, as expected for a collisionlessly
damped KAW.

To better quantify the resonant nature of the secular energy transfer, we define the
ratio

R≡

∫ v2

v1

dv‖|CE‖(v‖)|∫ 4vtp

−4vtp

dv‖|CE‖(v‖)|
, (5.1)

where v1 = 0.65vres and v2 = 1.35vres and the simulation domain extends from
v‖ =−4vtp to 4vtp. The values of v1 and v2 are selected so that 90 % of the energy
transferred is within the region between these two velocities. The value of R for
the single KAW simulation is presented in figure 5( f ). We use this ratio to assess
how much of the energy transfer in turbulent simulations is due to interactions with
resonant particles. To help in the physical interpretation of R, we estimate what
fraction of the energy transfer would be mediated by these particles if the energy
transfer was equally partitioned according to the equilibrium velocity distribution.
That estimate, which is just the fraction of particles within the resonant energy range
from v1 to v2, given by

∫ v2

v1
dv‖ exp[−v2

‖/v
2
tp]/
∫ 4vtp

−4vtp
dv‖ exp[−v2

‖/v
2
tp], has a value

of 0.134 (vertical grey dot-dashed line), much smaller than the fraction computed
from the simulation, R' 0.9, shown in figure 5( f ). Therefore, the resonant particles
dominate the energy transfer, as expected for the Landau damping occurring in this
system.

6. Field–particle correlations in strong plasma turbulence
6.1. Single-point field–particle correlations

With the single KAW results providing context for the interpretation of field–particle
correlation results, we next apply the field–particle correlation technique to data from
a single spatial point r0= [x, y, z] = [0, 10.2, 0]ρp in the turbulent βp= 1.0 simulation
domain, where [0, 0, 0] is the midpoint of the simulation box. In figure 6(a), the
complementary gyrokinetic distribution function gp(v‖, v⊥) is plotted at r0 in the βp=
1.0 run at a time sufficiently late in the run for the turbulence to be fully developed,
tωA = 14.1. Solid grey lines indicate the parallel resonant velocity for a KAW with
the peak proton damping rate, vres = 1.282vtp, and dashed lines indicate the resonant
velocities associated with KAWs having proton damping rates equal to 1/e of the peak
value, as identified in figure 1. We calculate the instantaneous phase-space energy
density transfer CE‖(v‖, v⊥, τ = 0) in (b), and in (c), we calculate the correlation
averaged over an interval τωA = 10.4.

Unlike the case for a single KAW presented in figure 3(a), figure 6(a) shows
that the structure of the complementary distribution function gp(v‖, v⊥) for the
strong turbulence simulation has large amplitude fluctuations spread more broadly
over velocity space, with the largest amplitude fluctuations occurring at velocities
|v‖| � vtp. Note also that, for the single KAW case in figure 3(a), the fluctuations
in gp(v‖, v⊥) are almost entirely restricted to v‖ > 0; the reason is because the wave
is propagating in only one direction. In the strong turbulence simulation shown in
figure 6(a), Alfvénic fluctuations propagate in both directions, thereby leading to
significant fluctuations in gp(v‖, v⊥) at both v‖ > 0 and v‖ < 0.

Taking the instantaneous correlation CE‖ with τ = 0 in figure 6(b), which
corresponds to the rate of instantaneous energy transfer between the parallel electric
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(a) (b) (c)

FIGURE 6. (a) The gyrotropic complementary distribution function gp(v‖, v⊥) at a single
point in the βp = 1.0 turbulent simulation, as well as the correlations (b) CE‖(τ = 0) and
(c) CE‖(τωA= 10.4) at time tωA= 14.1. The resonant parallel velocity associated with the
maximum proton damping rate is shown as a solid grey vertical line.

(a) (b) (c)

FIGURE 7. Reduced correlations CE‖(v‖) for (a) v‖= 0.8vtp and (b) v‖= 1.3vtp, as well as
(c) the velocity integrated ∂wp/∂t for correlation intervals ranging from 0 (grey) to 20/ωA.
Thick black lines indicate the correlation interval selected for figures 6, 8 and 12.

field and the ions as a function of gyrotropic velocity space (v‖, v⊥), we see that the
instantaneous energy transfer is also broadly spread over a wide region of velocity
space, with significant structure as a function of v⊥ and v‖. By taking the correlation
over the interval τωA = 10.4, equal to a correlation interval τ = 1.67T0 where T0
is the period of the largest scale Alfvén waves represented in the simulation, we
show in figure 6(c) that the energy transfer is largely restricted to the region near the
range of resonant velocities for waves with the highest ion damping rates (within the
vertical dashed lines). In addition, the correlated energy transfer is almost entirely a
function of v‖, with little significant structure in v⊥, as expected from kinetic theory
for Landau damping. It is remarkable that, even in a strong turbulence simulation,
the application of the field–particle correlation technique obtains a velocity-space
signature that is qualitatively similar to the case for a single KAW, enabling a
straightforward interpretation of the results: the collisionless energy transfer between
the parallel electric field and the ions is dominantly a resonant transfer associated
with the Landau resonance, a key result of this investigation.

As with the single KAW case, the selection of the correlation interval τ is crucial
to separating the oscillatory and secular components of the energy transfer. Choosing
an appropriate interval is especially challenging in the case of broadband turbulence
as there is a spectrum of frequencies associated with the secular energy transfer. To
study the impact of the choice of particular values of τ , we consider the energy
transfer captured by CE‖(v‖), at two values of v‖, as well as for the velocity integrated
correlation for a range of intervals, shown in figure 7.

As discussed in Howes et al. (2017) and demonstrated in figure 4 for the single
KAW case, if the correlation interval is longer than the wave period of a damping
mode, the oscillatory energy transfer will be largely averaged away, leaving mostly
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(a)

(c)
(d) (e) ( f )

(b)

FIGURE 8. Timestack plots from the turbulent, βp= 1.0 simulation, using the same layout
as presented in figure 5.

the secular component. As there is not a single wave period for turbulent systems,
we elect to average the field–particle correlation over an interval much longer than
the linear wave period of the most strongly damped mode. As shown in figure 7
with black lines, the selected correlation interval of τωA = 10.4 is sufficiently long
to remove most of the fluctuations in the energy transfer, leaving a nearly monotonic
transfer of energy between the fields and particles.

With a correlation interval τωA= 10.4 selected to isolate the secular energy transfer,
we next present the timestack distributions of gp(v‖, t) and the associated reduced
field–particle correlations CE‖(v‖) from the same position r0 diagnosed in figure 6.
The reduced complementary proton velocity distribution gp(v‖) is shown in figure 8(a).
As with the gyrotropic plot of gp(v‖, v⊥), there is no significant organization of the
structure of the distribution gp(v‖) about the preferred parallel resonant velocities
of the system, but rather there are large amplitude fluctuations at |v‖| � vtp. The
instantaneous rate of change of the phase-space energy density as a function of
v‖, CE‖(v‖, τ = 0), plotted in figure 8(b), is broadly distributed about the system’s
preferred resonant velocities. However, significant oscillatory behaviour in time is
retained in the instantaneous energy transfer.

The averaged correlation CE‖(v‖, τ = 10.4) is plotted in figure 8(c), which shows
clearly that the net energy transfer is localized in the range of the resonant
parallel velocities. Again, this velocity-space signature clearly indicates active
Landau damping transferring energy to the ions via the parallel electric field of
the turbulent fluctuations. Tracking the energy transfer rate at point r0, we plot in
(d) the velocity-space integrated correlation ∂wp(r0, t)/∂t and in (e) the accumulated
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(a)

(c)
(d) (e) ( f )

(b)

FIGURE 9. Reduced correlation CE‖(v‖, τωA= 10.4) at three points rj (a–c) in the βp= 1.0
simulation, along with (d) the net energy transfer rate ∂wp(rj, t)/∂t and (e) the accumulated
energy transfer 1wp(rj, t). Panel ( f ) shows the fraction of the energy transferred in the
region around the preferred resonant velocities, R.

energy density transfer to the ions 1wp(r0, t). These two metrics show that a net ion
energization over time occurs at this position in the simulation.

While the resonant signature is not as clean as that seen in simpler Vlasov–Poisson
systems, or the single KAW simulation presented earlier in this work, we can quantify
the fraction of the energy transferred by resonant particles using the ratio R, extended
to include the positive and negative resonant velocities. We set v1 =±0.65vres,lower =
0.66vtp and v2 = ±1.35vres,upper = 2.30vtp and plot R in figure 8( f ). Over 92 % of
the net energy transferred between fields and particles is mediated by the particles
in this resonance region. If the energy transfer was equally partitioned based upon
the particle density, we would expect only 35 % of the net energy transfer to be
carried by these particles (vertical grey dot-dashed line). Thus, this analysis shows
clearly that a resonant process is governing the net transfer of energy from fields to
particles. The key result of this field–particle correlation analysis is that this resonant
process, Landau damping, is an effective mechanism for the removal of energy from
the turbulent fluctuations in a strongly turbulent, kinetic plasma.

6.2. Spatial variation
We next present timestack plots of the reduced correlation CE‖(v‖, τωA = 10.4) at
three additional distinct spatial points, r1 = [6.6, 6.6, 0]ρp, r2 = [0, 12.6, 0]ρp, and
r3 = [0, 6.6, 5.5/ε]ρp, from the βp = 1.0 turbulent simulation in figure 9(a–c). The v‖
structure of the energy transfer quantitatively differs between the three points but is
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qualitatively organized by the resonant velocities for all three cases. The net secular
energy transfer, calculated by integrating over v‖, varies between these points, as
shown in figure 9(d) for the net energy density transfer rate ∂wp(rj, t)/∂t and (e) for
the accumulated energy density transfer to the ions 1wp(rj, t). The spatial variation of
the energy transfer to the ions is consistent with previous findings that damping and
heating in turbulent systems is not spatially homogeneous but occurs intermittently in
space (Wan et al. 2012; Karimabadi et al. 2013; TenBarge & Howes 2013; Wu et al.
2013; Zhdankin et al. 2013, 2015). Further analysis at other points analysed in the
simulation domain (not shown) demonstrates that, although the amplitude and sign
of the energy transfer differs from position to position, the energy transfer between
the parallel electric field and the ions is dominated by resonant particles, all having
values of R ≈ 0.9, as shown in figure 9( f ). Therefore, this important result shows
definitively that Landau resonant collisionless energy transfer can occur in a spatially
non-uniform manner, in contrast to naive expectations of Landau damping based on
the plane wave decomposition usually used to derive linear Landau damping. Ongoing
work using field–particle correlations will determine whether Landau damping can
indeed be responsible for particle energization that is highly intermittent in space,
such as that occurring in the vicinity of current sheets, as has been previously
suggested (TenBarge & Howes 2013; Howes 2015, 2016).

6.3. Variation with plasma β
An important test of the application of the field–particle correlation technique to
strong plasma turbulence is the dependence of the results on the plasma β. At large
scales k⊥ρp� 1, the value of the parallel Alfvén wave phase velocity normalized by
the Alfvén speed is simply unity, ω/(k‖vA) = 1. Normalizing instead to the proton
thermal velocity, this relation becomes ω/(k‖vtp) = vA/vtp = β−1/2

p . Therefore, if the
collisionless transfer of energy between the electromagnetic fields and the ions is
governed by a resonant mechanism, the field–particle correlation technique will show
that the dominant regions of energy transfer in velocity-space shift accordingly as the
plasma βp is changed.

We present timestack plots of (a) the reduced complementary distribution function
gp(v‖)=

∫
dv⊥gp(v‖, v⊥), (b) the instantaneous phase-space energy density transfer rate

CE‖(v‖, τ = 0) and (c) the time-averaged correlation CE‖(v‖, τωA > 0) for the βp = 0.3
simulation in figure 10 and for the βp= 3.0 simulation in figure 11. As expected from
the scaling ω/(k‖vtp)∝ β−1/2

p , illustrated in figure 1, the preferred resonant velocities
are shifted to higher v‖ for lower βp, and lower v‖ for higher βp, specifically ω/k‖=
2.00vtp for βp= 0.3 and ω/k‖= 0.626vtp for βp= 3.0. We choose correlation intervals,
τωA = 16.1 and 9.70 for the βp = 0.3 and 3.0 simulations to remove the oscillatory
component of the energy transfer. In (d,e), the net secular energy density transfer rate
∂wp(rj, t)/∂t and the accumulated energy density transfer 1wp(rj, t) is plotted, showing
a net transfer of energy to the ions from the electric field.

The fraction of energy transferred by particles with parallel velocities near the
resonant velocities, R, is large for both simulations. As with the βp = 1.0 turbulent
simulation, we select |v1| = 0.65vres,lower and |v2| = 1.35vres,upper, where vres,lower and
vres,upper are the resonant velocities associated with the KAW wave modes having
proton damping rates equal to 1/e of the peak proton damping rate. This selection
results in |v1| = 1.188(0.378)vtp and |v2| = 3.193(1.330)vtp for the βp = 0.3(3.0)
simulation, and yields R = 0.75(0.7), shown in ( f ). If the energy transfer was
equally partitioned based upon velocity-space density, these particles would only
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(a)

(c)

(d) (e) ( f )

(b)

FIGURE 10. Timestack plots from the turbulent, βp=0.3 simulation, using the same layout
as presented in figure 5.

be responsible for 9 % and 53 % of the energy transfer respectively. Thus, for all
examined values of βp, the phase-space energy transfer is largely consistent with
the linear predictions for resonant Landau damping. We note that we have restricted
this work to βp near unity to model typical 1 AU solar wind turbulence, restricting
v‖,res ∼ vtp. Future work is underway to study the effects of significant departures
from βp = 1 on the secular transfer of energy, as both magnetically and thermally
dominated plasmas are relevant in different space and astrophysical contexts.

6.4. Alternative field–particle correlation C′E‖
As discussed in § 2, limitations of spacecraft data make velocity gradients ∂fs(v)/∂v‖
noisy and potentially unreliable. To alleviate this problem, an alternative correlation,
C′E‖ , was introduced in (2.10). This alternative correlation is calculated over the same
correlation interval τ and at the same three spatial points rj used for figure 9 and
is shown in figure 12(a–c). As has been previously noted for application of this
technique to electrostatic systems, the resonant signature – that is, the change in
sign of the phase-space energy transfer rate across a preferred velocity – is not
present in the structure of C′E‖ . Nevertheless, a calculation of the resonant fraction
R replacing CE‖ with C′E‖ , shows that the amplitude of the alternative correlation
remains significantly enhanced in the resonant particle region. Comparison of the (d)
net energy density transfer rate ∂wp(rj, t)/∂t and (e) the accumulated energy density
transfer to the ions 1wp(rj, t) for the standard correlation CE‖ in figure 9 and for the
alternative correlation C′E‖ in figure 12 shows that the two forms of the correlation
yield identical results. This must hold, since the integrated quantities are related by
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(a)

(c)
(d) (e) ( f )

(b)

FIGURE 11. Timestack plots from the turbulent, βp=3.0 simulation, using the same layout
as presented in figure 5.

(a)

(c)

(d) (e) ( f )

(b)

FIGURE 12. Reduced correlation C′E‖(v‖, τωA = 10.4) and integrated quantities at the
same three points in the βp = 1.0 simulation shown in figure 9.
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an integration by parts in velocity (Howes et al. 2017), both simply tracking the
same averaged jp‖E‖ energy transfer rate. The agreement serves as a check that both
analysis methods are being applied correctly.

7. Conclusions and future work
Here we have applied the field–particle correlation technique (Klein & Howes 2016;

Howes et al. 2017) to explore the ion energization in gyrokinetic simulations of
strong plasma turbulence. The results definitively show that Landau damping persists
as an effective physical mechanism for ion energization in strong plasma turbulence,
contradicting recent suggestions that Landau damping may become ineffective in the
highly nonlinear environment of strong turbulence (Plunk 2013; Schekochihin et al.
2016). Furthermore, it is shown directly that the ion energization resulting from the
Landau damping of turbulent electromagnetic fluctuations is spatially non-uniform,
in contrast to naive expectations that Landau damping leads to spatially uniform
energization, likely arising from the plane wave decomposition typically used to derive
linear Landau damping. Further work using field–particle correlations will address
whether Landau damping can effectively lead to the spatially intermittent plasma
heating in the vicinity of current sheets found in plasma turbulence simulations (Wan
et al. 2012; Karimabadi et al. 2013; TenBarge & Howes 2013; Wu et al. 2013;
Zhdankin et al. 2013) and inferred from solar wind observations (Osman et al. 2011,
2012; Perri et al. 2012; Wang et al. 2013; Wu et al. 2013; Osman et al. 2014a).

Simulations with a wider range of plasma parameters than considered in this work,
especially more significant variations in βp, will be useful in further testing the
applicability of this correlation to a wide range of solar wind parameters. This work
only focuses on a single class of dissipation mechanisms which satisfy the Landau
(n = 0) resonance. Future work will focus on characterizing the velocity-space
structure of field–particle correlations due to other damping mechanisms, including
n 6= 0 cyclotron damping, stochastic ion heating by low-frequency Alfvénic turbulence,
and energization via magnetic reconnection. Comparing correlations constructed using
different components of the electric field and comparing where in velocity and
configuration space energy transfer occurs will enable the determination of the
relative contribution of proposed mechanisms to the dissipation of turbulence.

This work demonstrates that field–particle correlations can be usefully applied
to data from single-point measurements of turbulent space plasmas. Application of
this technique to current and proposed missions, such as DSCOVR, Magnetospheric
Multiscale (MMS) (Burch et al. 2016), Parker Solar Probe (Fox et al. 2015) and
Turbulence Heating ObserveR (THOR) (Vaivads et al. 2016) may enable the definitive
identification of the mechanisms which dissipate turbulence and heat the solar wind
as it expands through the heliosphere. The alternative correlation C′E‖ , which is easier
to employ on noisy and lower velocity-space resolution solar wind observations, is
able to isolate the regions in velocity space where the energy transfer is occurring.
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