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We develop a general regularized thin-fibre (string) model to predict the properties of
non-Newtonian fluid fibres generated by centrifugal spinning. In this process the fibre
emerges from a nozzle of a spinneret that rotates rapidly around its axis of symmetry,
in the presence of centrifugal, Coriolis, inertial, viscous/shear-thinning, surface tension
and gravitational forces. We analyse the effects of five important dimensionless groups,
namely, the Rossby number (Rb), the Reynolds number (Re), the Weber number (We),
the Froude number (Fr) and a power-law index (m), on the steady state trajectory
and thinning of fibre radius. In particular, we find that the gravitational force mainly
affects the fibre vertical angle at small arc lengths as well as the fibre trajectory. We
show that for small Rb, which is the regime of nanofibre formation in centrifugal
spinning methods, rapid thinning of the fibre radius occurs over small arc lengths,
which becomes more pronounced as Re increases or m decreases. At larger arc lengths,
a relatively large We results in a spiral trajectory regime, where the fibre eventually
recovers a corresponding inviscid limit with a slow thinning of the fibre radius as a
function of the arc length. Viscous forces do not prevent the fibre from approaching
the inviscid limit, but very strong surface tension forces may do so as they could even
result in a circular trajectory with an almost constant fibre radius. We divide the spiral
and circular trajectories into zones of no thinning, intense thinning and slow or ceased
thinning, and for each zone we provide simple expressions for the fibre radius as a
function of the arc length.

Key words: non-Newtonian flows, rotating flows, slender-body theory

1. Introduction
Nanofibres with diameters of less than a few hundred nanometres have remarkable

properties such as immense surface-to-volume ratio, giving them significant appli-
cations in artificial tissues, carbon fibres, filtration membranes, sensors, to name a
few (see e.g. Huang et al. 2003). One of the main factors in manufacturing nanofibres
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FIGURE 1. (Colour online) Schematic view of nanofibre formation through one of
the recent methods of nanofibre fabrication by centrifugal spinning, i.e. Forcespinningr:
(a) depiction of spinneret, orifices and rotating frame of reference; (b) closer view of the
orifice and depiction of the jet with curvilinear coordinate system, fibre centreline and
fibre angles in the horizontal (α) and vertical (β) planes.

is the production technique, which influences the fibre shape, the fibre radius, the web
porosity and the production rate. There exist several methods to produce nanofibres,
which may be mainly categorized into four groups: electrospinning, melt blowing,
bicomponent fibre spinning and centrifugal spinning (Nayak et al. 2011). The three
former techniques suffer from a variety of limitations such as low production rates
(per nozzle), high operation costs and smaller ranges of material choice. Recently,
centrifugal spinning methods have received considerable attention since they have the
potential to eliminate these limitations.

Recent nanofibre fabrication techniques based on the centrifugal acceleration, such
as Forcespinningr (Padron et al. 2013) and rotary jet spinning (RJS) (Badrossamay
et al. 2010), are conceptually similar in that fast rotation is employed to apply
high stresses on the fibre to yield its considerable thinning rate. For example, in
Forcespinningr, illustrated schematically in figure 1, a polymeric liquid (solution
or melt) is loaded into a specially designed spinneret with several nozzles that
rotates at a considerable speed, e.g. 103–104 r.p.m. The centrifugal force pushes the
polymeric liquid through the spinneret nozzles, resulting in continuous polymer jets.
The trajectories of these emerging jets are highly curved due to the rotational forces
as they are stretched into very thin fibres, which will either break up or be collected
as a fine web of nanofibres on the collectors positioned away from the rotation centre.

There exist a few scholarly articles that experimentally study nanofibre fabrication
by various centrifugal spinning methods, essentially to evaluate the effects of the
process parameters such as fibre temperature (Sedaghat, Taheri-Nassaj & Naghizadeh
2006; Wang et al. 2011), polymer concentration (Lu et al. 2013; Ren et al. 2013)
as well as rotational speed and orifice size (Weitz et al. 2008; Badrossamay et al.
2010; Vazquez, Vasquez & Lozano 2012; Mary et al. 2013). In a detailed study
using high-speed photography, Padron et al. (2013) explored the effects of several
controllable parameters on fibre trajectory and final fibre radius, finding for example
that both increasing spinneret angular velocity and decreasing polymer concentration
result in thinner fibres. Although an experimental approach seems to be promising in
uncovering the general effects of a number of parameters on nanofibre formation, this
method is time consuming and the large number of the parameters involved makes it
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Dimensionless parameter Name Definition Typical range

Rb Rossby number U/Ωs0 10−4–10−2

m Power-law index — 0.5–0.9a

Re Reynolds number ρsm
0 U2−m/k 10−2–1

We Weber number ρU2a0/σ 10−5–10−1

Fr Froude number U/
√

gs0 10−3–10−1

TABLE 1. Dimensionless parameter definitions and their approximate estimated ranges in
centrifugal spinning methods with polymer solutions.

aThese values are estimated based on the rheology of poly(ethylene oxide) solutions
(Ebagninin, Benchabane & Bekkour 2009) at relevant polymer concentrations which have

been used for nanofibre fabrication experiments (Padron et al. 2013).

extremely hard to have a comprehensive understanding of the physics of the problem.
This is where mathematical modelling comes to aid.

The literature of mathematical modelling of curved jets is mature thanks to the
works of Decent, King & Wallwork (2002), Wallwork et al. (2002), Părău et al.
(2007), Marheineke & Wegener (2009) and many other researchers, using asymptotic
methods. There also exist a number of relevant studies concerning non-Newtonian
fluids, e.g. Uddin, Decent & Simmons (2008), Uddin & Decent (2009), Hawkins
et al. (2010), Uddin & Decent (2010) and Marheineke et al. (2016). Although the
majority of the previous studies have examined jet breakup through stability analyses,
the analysis methods can well be used to study the trajectory and thinning of the
radius of curved jets. These models are based on zeroth-order slender body theories
(commonly referred to as ‘string’ models), whose small parameter is the ratio of the
fibre radius to the radial position of the orifice, and they provide a relatively simple
framework to analyse the fibre behaviours. While relatively simple, however, these
models are known to suffer from debilitating limitations (e.g. near-orifice singularities)
so that their applicability is only restricted to certain parameter ranges. For example,
Götz et al. (2008) and Arne et al. (2010) have proved that the string models have
no physically relevant stationary solutions if Re Rb2 < 1 (see table 1 for definitions).
As will be seen, the regime of moderate Re and small Rb is, however, the regime of
high spinning speeds and viscous fibres, the most relevant regime in the production
of nanofibres by all centrifugal spinning methods.

So far, a few studies have been performed to overcome the string model limitations,
e.g. the development of rod models (see e.g. Mahadevan & Keller (1996), Ribe (2004)
and Ribe, Habibi & Bonn (2006)), where fully coupled conservative equations of
mass, linear and angular momentum are solved to predict the twisting and coiling of a
curved jet. More relevant to our work, for glass wool spinning applications, Arne et al.
(2010) developed a Cosserat rod theory to model a curved jet in a two-dimensional
stationary frame. Despite their superiority, the rod models are increasingly harder
to derive as more dimensionless parameters (especially non-Newtonian ones) are
included, and the equations are numerically stiffer than for the corresponding string
models. For very thin fibres (i.e. small slenderness parameter) and fast rotations, the
principal gain of rod models is the removal of the near-orifice singularity, making
stable solutions possible, while the model equations revert to the string equations
slightly away from the orifice. Another approach to remove the singularity of the
string models is to omit the fibre angle boundary condition in favour of an interface
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condition to ensure the regularity of the string quantities (see e.g. Arne, Marheineke
& Wegener 2011). The other alternative is to employ a regularized model, recently
proposed by Taghavi & Larson (2014) for two-dimensional Newtonian flows (without
surface tension), where the main idea is to add a simple regularization term resulting
from higher-order terms to the string equations, yielding their stable solutions.

In centrifugal spinning methods, the industrially important features of nanofibres
such as fibre radius and defect formation are governed by the spinneret angular
velocity, orifice radius, viscosity, shear thinning and viscoelastic properties, surface
tension, temperature, evaporation, etc. By thoughtfully varying these parameters,
satisfactory control over the fibre radius and the web morphology may become
possible. In this work, we develop a general regularized string model that overcomes
past numerical limitations and allows determination of the three-dimensional
steady fibre jet features while considering centrifugal, Coriolis, inertial, viscous,
shear-thinning, surface tension and gravitational forces of arbitrary magnitudes. For
our application of interest, the relevant ranges of the dimensionless groups formed
by these forces are presented in table 1. String theory has so far failed to provide
steady solutions for these parameter ranges.

Before we proceed, it is worth highlighting a distinction between the current work
and the previous studies that extend the slender jet theory of Wallwork (2001) (e.g.
Decent et al. (2002), Părău et al. (2007), etc.). Inspired by their industrial applications
(e.g. the prilling process) and experimental observations (Wallwork et al. 2002), this
body of work concentrates on liquid jets that quickly break up into droplets (due to
flow instabilities), on a length scale of the order of the spinneret radius. Even though
Wallwork’s (2001) steady state equations are not generally valid in the limit of small
Rb (due to the singularities discussed above), for certain parameters their analysis
based on the time-dependent wave motion reveals that a jet either does not form at
all or is extremely short and rapidly atomizes into droplets due to capillary instability.
On the other hand, the experimental observations in centrifugal spinning processes
suggest a large jet breakup length in many applications, and this length is a function
of many factors, e.g. polymer solution properties, which may stabilize the flow or slow
the growth of the capillary instability. Therefore, the parameter regime of interest in
this paper considers a different small-Rb scenario, with low Reynolds number that is
not accessible to the analysis of Wallwork, and where the jet is expected to be less
susceptible to capillary breakup due to its higher viscosity.

The outline of the paper is as follows. In § 2, the geometry of the problem, the
governing equations, the asymptotic method to derive the reduced model equations and
the regularization approach are discussed. In § 3, our model results and discussion are
presented for the dimensionless parameter ranges associated with nanofibre fabrication
by centrifugal spinning methods. The effects of each parameter are evaluated on the
fibre behaviours and fibre radius thinning regimes are presented where possible.
Section 4 concludes the paper with a brief summary.

2. Problem formulation

In this section, we derive the asymptotic model equations of a single curved jet,
which emerges with a normal speed of U from a nozzle of a cylinder/spinneret of
radius s0 rotating about its axis of symmetry. The rotation angular speed, Ω , is
constant in the counter-clockwise direction (see figure 1a). In most experimental
situations, there are several liquid jets that emerge from the nozzles of the spinneret;
however, in the current study, we neglect the effects of the liquid jets on one another
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by focusing on one nozzle. We assume that the orifice of the nozzle is circular, with
radius a0, which is typically much smaller than the radius of the spinneret, s0. We
assume that the initial cross-sectional area of the fibre is equal to that of the circular
orifice while the fibre radius, R, also always satisfies R/s0 � 1. Motivated by our
application, we also consider that the fibre stretches and becomes very long before
reaching the collectors away from the rotation centre. In this work, we consider the
effects of centrifugal, Coriolis, gravity, surface tension, viscous and non-Newtonian
power-law rheology on the fibre key features. Although for simplicity, we neglect
the possible effects of mass transfer, heat transfer, viscoelasticity and air drag, we
highlight that our formulation should allow us to include these effects, without any
inherent difficulties, e.g. without the well-known singularities observed in similar
asymptotic models.

We also note that the details of the fibre behaviour near the orifice depend on
the flow inside the orifice and on the local contact line dynamics. The latter affects
the fibre flow at the liquid–solid–gas contact line, which can have significant effects
within an arc length of O(lc) with lc being the characteristic capillary length. We
acknowledge that in this work, in accordance with previous mathematical studies
of similar fibre flows, we neglect the complex near-orifice behaviours, including the
effects of the contact angle between the solid surface and the free-surface flow at the
nozzle exit.

To write the governing equations in our system, we consider a reference frame with
the coordinate system (x, y, z) that rotates with the angular speed Ω so that the orifice
from which the liquid jet emerges is fixed (see figure 1b). Therefore, the equations of
motion and continuity in the rotating frame can be expressed as follows:

∂u
∂t
+ u · ∇u=−

1
ρ
∇p+

1
ρ
∇ · T + g− 2ω× u−ω× (ω× r′), (2.1)

∇ · u= 0, (2.2)

where t denotes time, ρ the fluid density and p the pressure within the liquid jet. Also,
g= (0,−g, 0), ω= (0, Ω, 0), r′= (x+ s0, y, z) and u and T are the velocity field and
the deviatoric stress tensor, respectively. We assume that the polymeric liquid fibre
obeys a power-law model described by T = kγ̇ m−1γ̇ij, where k is the consistency, m
the power-law index, γ̇ij the shear-rate tensor and γ̇ the second invariant.

Since the emerging trajectory is highly curved, it would be difficult to analyse the
forces acting on the jet in a Cartesian coordinate system. For that reason, following
Wallwork et al. (2002), to ease the analytical approach we track the curved jet in
an orthogonal curvilinear coordinate system (s, n, ϕ), in which s is the arc length
along the centreline of the jet with respect to the orifice and (n, ϕ) are the plane
polar coordinates in the radial and azimuthal directions within the cross-section of
the jet. This coordinate system has the unit vectors indicated by es, en and eϕ . The
velocity vector can be therefore given as u= ues + ven + weϕ . With its origin at the
orifice centre, (denoted by O in figure 1a), the position of the liquid jet centreline is
described by Cartesian coordinates (X(s, t),Y(s, t),Z(s, t)). Note that in the coordinate
system adopted, the x-axis is normal to the surface of the spinneret in the jet initial
direction while the z-axis and y-axis are normal to the x-axis in the jet centreline
planes. Therefore, along the arc length, positive values of z are in the direction
opposite to the motion of the spinneret and negative values of y are in the direction
of gravity. In this work, we focus on the steady state problem.
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2.1. Equations in curvilinear coordinate system
We present the equations of motion and continuity in the curvilinear coordinate system,
which is convenient to describe the fibre. To do so, we need to first determine the
scale factors (hs, hn, hϕ) in such a system to derive the equations. More detail on
the derivation of the scale factors in a three-dimensional frame in the orthogonal
curvilinear coordinate system can be found in Wallwork (2001). These are

hn = 1, hϕ = n, hs =

∣∣∣∣∂r
∂s

∣∣∣∣ , (2.3a−c)

where r is the position vector relative to the orifice, i.e. r=
∫ s

0 es ds+ nen. Using the
scale factors defined, we can now write the equations of motion at steady state in our
orthogonal curvilinear coordinate system:

ui

hi

∂ui

∂i
+

uj

hj

∂ui

∂j
+

uk

hk

∂ui

∂k
− uj

(
uj

hjhi

∂hj

∂i
−

ui

hjhi

∂hi

∂j

)
− uk

(
uk

hkhi

∂hk

∂i
−

ui

hkhi

∂hi

∂k

)
=−

1
hiρ

∂p
∂i
+ Vi +Gi + ROi, (2.4)

in which i, j and k are index variables denoting the directions s, n and ϕ. Furthermore,
V , G and RO stand for viscous, gravitational and rotational (comprising Coriolis and
centrifugal) terms, respectively, given in appendix A. The continuity equation in our
curvilinear coordinate system can be expressed as follows:

n
∂u
∂s
+ hsv + nv

∂hs

∂n
+ nhs

∂v

∂n
+w

∂hs

∂ϕ
+ hs

∂w
∂ϕ
= 0. (2.5)

2.2. Kinematic condition
The boundary condition at the surface of the jet is defined using a function R(s, ϕ).
According to the kinematic condition, a surface element can be characterized through
(D/Dt)(n− R(s, ϕ)) at n= R. Using the velocity vector and the material operator in
the curvilinear coordinate system, the kinematic condition can be represented as

u
hs

∂R
∂s
+

w
n
∂R
∂ϕ
= v. (2.6)

2.3. Stress conditions
Now, we proceed to derive the equations of the normal and tangential stress boundary
conditions at the interface of the steady jet (n− R(s, ϕ)= 0). The unit normal vector
to the surface of the jet can be obtained as

n=
∇(n− R(s, ϕ))
|∇(n− R(s, ϕ))|

=
1
E

(
−

1
hs

∂R
∂s
, 1,−

1
R
∂R
∂ϕ

)
, (2.7)

where E is the magnitude of the normal vector:

E=

(
1+

(
∂R
∂s

1
hs

)2

+

(
∂R
∂ϕ

1
R

)2
)
. (2.8)
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The tangent vectors at the interface can be derived as

t1 = es +
∂R
∂s

1
hs

en, t2 =
∂R
∂ϕ

1
R

en + eϕ. (2.9a,b)

Using the normal stress balance at the interface we can obtain

n · T · n= σλ, (2.10)

where T is the stress tensor, σ is the surface tension and λ is the free-surface curvature
defined as

λ=
1

nhs

(
−
∂

∂s

(
n

Ehs

∂R
∂s

)
+
∂

∂n

(
nhs

E

)
−
∂

∂ϕ

(
hs

nE
∂R
∂ϕ

))
. (2.11)

The stress tensor components (T ij) in the curvilinear coordinate system can be
obtained as (see e.g. Batchelor 2000)

T ii =−p+ 2ηeii,

T jk = ηejk,

}
(2.12)

where η is the apparent viscosity and eii and ejk are the strain-rate components
computed as (see e.g. Cobble, Smith & Mulholland (1973) and Batchelor (2000))

eii =
1
hi

∂ui

∂xi
+

uj

hihj

∂hi

∂xj
+

uk

hihk

∂hi

∂xk
,

ejk =
hk

2hj

∂

∂xj

(
uk

hk

)
+

hj

2hk

∂

∂xk

(
uj

hj

)
, ejk = ekj.

 (2.13)

Note that the Einstein summation convention is not being used in (2.12) and (2.13).
Ignoring the effects of air–jet interactions, the tangential stress conditions on the free
surface are expressed as

t1 · T · n= 0, (2.14)
t2 · T · n= 0. (2.15)

In order to generalize our work, we shall proceed with the dimensionless form
of our equations, using the following transformations where the bars indicate the
dimensionless quantities:

ū=
u
U
, v̄ =

v

U
, w̄=

w
U
,

n=
n
a
, R̄=

R
a
,

s̄=
s
s0
, t̄=

tU
s0
, X̄ =

X
s0
, Ȳ =

Y
s0
, Z̄ =

Z
s0
,

p̄=
p
ρU2

, η̄=
η

k
(

U
s0

)(m−1) .


(2.16)

The definitions of the dimensionless groups resulting from the scalings above are listed
in table 1. Hereafter, all the bars will be dropped for convenience.
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2.4. Asymptotic analysis
We assume that the jet is a relatively long, slender, thin object which has an aspect
ratio ε = a0/s0. In nanofibre formation applications, the slenderness parameter ε is
very small, which may allow for the use of the leading-order terms as a reasonable
estimate to the leading-order behaviours of the fibre. We therefore expand velocities,
stresses and pressure in series of εn and R, X, Z, Y in series of ε (see Eggers (1997)
and Hohman et al. (2001)). In this context, u, v, w and p are expanded in series with
respect to εn and the rest of the variables are expanded in ε:

u(s, n, ϕ)= u0(s)+ (εn)u1(s, ϕ)+ (εn)2u2(s, ϕ)+ · · ·,
v(s, n, ϕ)= (εn)v1(s, ϕ)+ (εn)2v2(s, ϕ)+ · · ·,

w(s, n, ϕ)= (εn)w1(s, ϕ)+ (εn)2w2(s, ϕ)+ · · ·,
p(s, n, ϕ)= p0(s, ϕ)+ (εn)p1(s, ϕ)+ · · ·,

R(s, n, ϕ)= R0(s)+ εR1(s, ϕ)+ · · ·,
X(s, n, ϕ)= X0(s)+ εX1(s)+ · · ·,
Z(s, n, ϕ)= Z0(s)+ εZ1(s)+ · · ·,
Y(s, n, ϕ)= Y0(s)+ εY1(s)+ · · ·.


(2.17)

To derive the leading-order equations, we also need to determine and expand hs (i.e.
the scale factor associated with the s-direction) as function of s, n and ϕ in our
curvilinear coordinate system. Using the definition of the position vector and after
some lengthy algebra, hs can be obtained as

hs = 1+ εn cos(ϕ)S0 +O(ε2), (2.18)

where S0 = −
√

X2
0ss + Y2

0ss + Z2
0ss with the subscript s representing a derivative with

respect to s here and thereafter.
Finally, we proceed to obtain the leading- and first-order terms of the apparent

viscosity to be used in our set of equations. Since the power-law constitutive equation
is used to evaluate the shear-thinning effects on nanofibre formation, the dimensionless
apparent viscosity can be represented as

η= γ̇ m−1, (2.19)

where the second invariant (γ̇ ) can be calculated as

γ̇ =

√
2
∑

i

∑
j

eijeji. (2.20)

Note that for the flow in a slender-body filament, the extensional deformation is
dominant and thus the term ‘extensional thinning’ or simply ‘strain-rate thinning’
may be more appropriate than the term ‘shear thinning’. However, for the sake of
convention, we refer to our non-Newtonian fluid as a ‘shear-thinning fluid’, for the
case m < 1. Using hs and the strain-rate equations (2.12) and (2.13), the apparent
viscosity can be calculated after some manipulation as

η= |
√

3u0s|
m−1
(

1− (εn)
(m− 1)

u0s

(
w1 sin(ϕ)S0 +

(
u0
S̃0

S0
+

u0s

2
S0

)
cos(ϕ)

)
+O((εn)2)

)
,

(2.21)
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where S̃0 = X0ssX0sss + Y0ssY0sss + Z0ssZ0sss. Now, substituting the expressions defined in
(2.17) into our set of equations, the higher-order equations can be achieved. From the
continuity equation (2.5) we have

O(εn) : u0s + 2v1 +w1ϕ = 0, (2.22)

O((εn)2) : u1s + 3v2 +w2ϕ + (3v1 +w1ϕ)S0 cos(ϕ)−w1S0 sin(ϕ)= 0. (2.23)

From the second tangential stress condition, i.e. (2.15), we have:

O(εn) : R3
0v1ϕ = 0, (2.24)

O((εn)2) : 3R2
0R1v1ϕ + R4

0(w2 + v2ϕ)− 2R2
0R1ϕw1ϕ = 0. (2.25)

Therefore v1ϕ = 0 and by differentiating (2.22) with respect to ϕ it can be seen that
w1ϕϕ = 0. According to the results, w1 must be independent of ϕ and thus we find
that v1 =−u0s/2. From (2.25), we can then see that

w2 + v2ϕ = 0. (2.26)

From the first tangential stress condition (2.14), we find

O(εn) : u1 = u0S0 cos(ϕ), (2.27)

O((εn)2) : u2 =
3
2

u0s
R0s

R0
+

u0ss

4
. (2.28)

By differentiating (2.26) with respect to ϕ, we arrive at

w2ϕ =−v2ϕϕ. (2.29)

Therefore,
v2ϕϕ − 3v2 = u1s + 3v1S0 cos(ϕ)−w1 sin(ϕ). (2.30)

Substituting u1 and v1 with the corresponding expressions we find

v2ϕϕ − 3v2 =

(
u0S0s −

u0s

2
S0

)
cos(ϕ)−w1S0 sin(ϕ). (2.31)

A periodic solution for w2 and v2 can result in

v2 =
1
4

((u0s

2
S0 − u0S0s

)
cos(ϕ)+w1S0 sin(ϕ)

)
, (2.32)

w2 =
1
4

((u0s

2
S0 − u0S0s

)
sin(ϕ)−w1S0 cos(ϕ)

)
. (2.33)

The normal stress condition, equation (2.10), at the zeroth order and order ε can be
written as

p0 =−
|
√

3u0s|
m−1

u0s

Re
+

1
R0We

, (2.34)

p1 =
1

R0We

(
−

R1ϕϕ + R1

R2
0
+ S0 cos(ϕ)

)
+

4|
√

3u0s|
m−1
v2

Re
. (2.35)
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From the kinematic condition, equation (2.6), we obtain

u0s

2
R0 + u0R0s = 0. (2.36)

From this expression it can be concluded that R2
0u0 is constant. Now, using the initial

conditions (R0(0)= 1 and u0(0)= 1) we find

R0 =
1
√

u0
. (2.37)

Using the aforementioned expressions, the motion equations at the leading order can
be obtained. The motion equation associated with the arc length in the steady state
frame is

u0u0s =−
u0s

2We
√

u0
−

Y0s

Fr2
+
(X0 + 1)X0s + Z0Z0s

Rb2
+

3|
√

3u0s|
m−1

Re

(
mu0ss −

u2
0s

u0

)
.

(2.38)
Finally, using the motion equation in the n-direction, a solvability condition can be
found as follows:

0 = S0

(
(7−m)|

√
3u0s|

m−1
u0s

2Re
+

1
R0We

− u2
0

)

+
2u0

Rb

(
Z0ssX0s − X0ssZ0s

S0

)
+
(X0 + 1)X0ss + Z0Z0ss

Rb2S0

− (m− 1)
|
√

3u0s|
m−1

Re

(
u0
S̃0

S0

)
−

1
Fr2

(
Y0ss

S0

)

− tan(ϕ)

(
(m− 1)|

√
3u0s|

m−1
w1

Re
S0 +

2u0

Rb

(
Y0ss

S0

)
+

1
Fr2

(
Z0ssX0s − X0ssZ0s

S0

)

−
(X0 + 1)(Y0ssZ0s − Z0ssY0s)+ Z0(X0ssY0s − Y0ssX0s)

Rb2S0

)
. (2.39)

It is seen that all the terms in (2.39) are independent of ϕ except for the terms in
the last parenthesis. Hence, the summation of the terms independent of ϕ needs to
be equal to zero. The same is true for the terms multiplied by tan(ϕ). Therefore, the
equation above is finally reduced to

0 = S2
0

(
(7−m)|

√
3u0s|

m−1
u0s

2Re
+

√
u0

We
− u2

0

)
+

2u0

Rb
(Z0ssX0s − X0ssZ0s)

+
1

Rb2
((X0 + 1)X0ss + Z0Z0ss)− (m− 1)

|
√

3u0s|
m−1

Re
(u0S̃0)−

Y0ss

Fr2
. (2.40)

2.5. Projection approach
To ease the solution of our set of equations, we use projections onto a local system
of tangential and normal coordinates (Panda 2006). Since all the terms are of leading
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order, henceforth the subscript 0 will be dropped for simplicity. Introducing two fibre
angles, α and β (see figure 1), we obtain

Xs = cos(α) sin(β),
Zs =− sin(α) sin(β),

Ys = cos(β),

 (2.41)

which can also automatically satisfy the standard arc length condition of the fibre, i.e.
X2

s + Y2
s + Z2

s = 1. In fact, the rate of changes of α and β with respect to s are the
local curvature components κ1 (∂sα) and κ2 (∂sβ), respectively. Now, equation (2.38)
can be expressed as

Ns = Re
(

uN
3(m+1)/2

)1/m (
1+

1
2u3/2We

)
+

Re
Fr2

cos(β)
u

−
Re
Rb2

[(X + 1) cos(α)− Z sin(α)] sin(β)
u

, (2.42)

where N = (3(m+1)/2um
s )/u stands for tensile force. After substituting the projection

expressions into (2.40), we arrive at

0 = sin (β)2κ2
1

(
7−m
6Re

uN +
u1/2

We
− u2

)
−

2κ1u sin (β)2

Rb

−
κ1 sin(β)

Rb2
((X + 1) sin(α)+ Z cos(α))− κ1κ1s

(m− 1)(uN)(m−1)/m

3(m−1)/2mRe

+ κ2
2

(
7−m
6Re

uN +
u1/2

We
− u2

)
+
κ2 cos(β)

Rb2
((X + 1) cos(α)+ Z sin(α))

+
κ2 sin(β)

Fr2
− κ2κ2s

(m− 1)(uN)(m−1)/m

3(m−1)/2mRe
. (2.43)

A particular condition to satisfy (2.43) can be met by setting

κ1 =
1
q

(
−

2
Rb
−

1
u sin(β)Rb2

((X + 1) sin(α)+ Z cos(α))− κ1s
(m− 1)(uN)(m−1)/m

3(m−1)/2mu sin (β)2Re

)
,

(2.44)

κ2 =
1
q

(
sin(β)
uFr2

+
cos(β)
uRb2

((X + 1) cos(α)+ Z sin(α))− κ2s
(m− 1)(uN)(m−1)/m

3(m−1)/2muRe

)
,

(2.45)

where q= uRe− ((7−m)/6)N − Re/(u1/2We) stands for the internal energy (sum of
kinetic, viscous and surface tension energies).

So far, the three key reduced model equations are (2.42), which is an axial
momentum balance (also conventionally called the s-momentum balance) and
solvability conditions (2.44) and (2.45). Leading-order equations (2.42), (2.44) and
(2.45) are commonly referred to as the ‘string’ equations.
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y

x
z

FIGURE 2. (Colour online) Schematic diagram of stress tensor components T ns and T sn
on a small jet element near the orifice, acting as moments of a couple causing the element
to bend in the direction opposite to the spinneret rotation.

2.6. General regularization approach
For fast rotations (small Rb), it can be mathematically demonstrated that the string
equations developed so far do not have a physically relevant solution if q < 0 (e.g.
see Götz et al. (2008) for the analysis of a two-dimensional Newtonian case). This
implies that the near-orifice jet curvature is incorrect as the jet initially curves in the
counter-clockwise direction, i.e. the fibre leads rather than trails. In fact, for a given
fibre length, it is possible to accurately delineate the range of Rb, Re, We, Fr and m
where the string model fails. However, we could also approximate the validity range
of our string equations. For example, neglecting gravitational effects, in the vicinity of
the orifice as s→ 0, we can crudely show that q=O(Re− Rb−2m

− Re We−1), where
us has been evaluated by a corresponding inviscid flow value. Therefore, the string
model fails provided that Re−1Rb−2m

+We−1 > 1. For m= 1 and We→∞, this yields
Re Rb2 < 1, which is in accordance with the findings of Götz et al. (2008). Using
the values given in table 1 for the ranges of the dimensionless parameters, we can
easily see that q< 0 near the orifice for almost all the parameter ranges of nanofibre
formation. Thus, the string model fails for all these practical ranges. Motivated by the
important applications, here we develop a simple yet rigorous regularization approach
for three-dimensional non-Newtonian fluids to remove the singularity issue and ensure
the regularity of the string quantities.

Conceptually, the underlining problem in the singularity issue of the string model
is the fact that a viscous fibre would curve in the wrong direction near the orifice,
implying that higher-order terms allowing for the correct near-orifice bending of the
fibre have been ignored in the string equations. Thus, in order to find a way to remove
the singularity, we need to examine the stress tensor component derivatives that would
allow the fibre to bend. The stress tensor comprises of three normal components,
i.e. T ss, T nn and T ϕϕ and six shear components, i.e. T sn, T ns, T ϕn, T nϕ , T ϕs and T sϕ .
The normal stress components are obviously irrelevant to bending whereas variations
of the shear stress components along s, n and ϕ can act as moments of a couple
over an infinitesimal element of the jet, causing the fibre to bend or twist. The latter
(i.e. twisting) is also immaterial in centrifugal spinning. Figure 2 shows a schematic

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

27
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.279


214 S. Noroozi, H. Alamdari, W. Arne, R. G. Larson and S. M. Taghavi

diagram of a fibre close to the orifice, where the shear stress components T ns and
T sn are depicted. As can be interpreted from the schematic, according to the beam
theory, variations of T ns and T sn across the jet centreline or radius serve as bending
moments to curve the fibre throughout the arc length. However, the expansion of the
derivatives of T ns and T sn in the s-direction reveals that these stresses contain higher-
order terms (removed from the string equations) responsible for significantly bending
viscous fibres at very small arc lengths. Among the higher-order terms ignored, the
term ηvss(s, n, ϕ) is the only one that contains the highest-order derivatives of the
centreline curvature. Therefore, it is logical to consider that the singularity issue of the
solvability conditions (governing the curvature) originates from ignoring ηvss(s, n, ϕ),
even though it plays a crucial role in the regions near the orifice, allowing the fibre to
bend and stabilize the jet against Coriolis and centrifugal forces. Therefore, to cope
with the singularity of the string model we must retain and take into account this
higher-order term in the solvability equations (2.44) and (2.45). For our shear-thinning
fluid, expanding ηvss and using the asymptotic expressions, equation (2.32) and the
projection expressions, the term ηvss can be represented as a series of κ1 and κ2
derivatives:

ηvss =−
(εn)3

4Re
|
√

3us|
m−1u

(
κ1 sin (β)2κ1sss√
sin (β)2κ2

1 + κ
2
2

+
κ2κ2sss√

sin (β)2κ2
1 + κ

2
2

+ · · ·

)
+O(ε4),

(2.46)
which we employ to modify and regularize our solvability equations. Therefore, after
some algebra, the final set of our regularized string equations, including the axial
momentum balance and solvability equations, will become

Ns − Re
(

uN
3(m+1)/2

)1/m (
1+

1
2u3/2We

)
−

Re cos(β)
uFr

+
Re sin(β)[(X + 1) cos(α)− Z sin(α)]

uRb2
= 0, (2.47)

δκ1sss + qκ1 + κ1s
(m− 1)(uN)(m−1)/m

3(m−1)/2mu sin (β)2
+

2Re
Rb

+
Re[(X + 1) sin(α)+ Z cos(α)]

uRb2 sin(β)
= 0, (2.48)

δκ2sss + qκ2 + κ2s
(m− 1)(uN)(m−1)/m

3(m−1)/2mu
−

Re sin(β)
uFr2

−
Re cos(β)[(X + 1) cos(α)+ Z sin(α)]

uRb2
= 0, (2.49)

where δ = (εn)2|
√

3us|
m−1/4.

Compared to a usual string model, two regularization terms involving the curvature
third derivatives in the horizontal and vertical planes, i.e. δκ1sss and δκ2sss, appear
in the solvability equations. Here, δ is a small regularization coefficient proportional
to ε2. We find that this simple modification, i.e. including the regularization terms
in the solvability conditions, completely removes the three-dimensional string model
singularities, making a perfectly stable solution possible.

It is to be remembered that the stress term ηvss at higher orders includes a series
of κ1 and κ2 derivatives, among which the terms with the highest-order curvature
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FIGURE 3. (Colour online) Comparison between the magnitudes of the derivatives of κ
for Rb= 0.01, Re= 0.1, We→∞, Fr→∞ and m= 1. The regularization coefficient is
chosen as δ = 10−3.

derivatives have been kept in order to apply our regularization method. It may be
mathematically intuitive that the terms containing the highest curvature derivatives are
the only ones required to yield the stable solution in the limit of ε→ 0 and that the
terms containing the lower-order curvature derivatives can be simply ignored. In order
to verify this, figure 3 plots the magnitudes of the derivatives of κ1 obtained from our
numerical simulation for a typical fibre flow at small Rb. As observed, the magnitude
of κ1sss is much larger than the other derivatives. Furthermore, it is seen that all these
derivatives (including κ1sss) are only significant at small arc lengths (s� 1) and they
all approach to zero at greater arc lengths.

In simple words, the regularization coefficient, δ, represents the order of the
thickness of the near-orifice boundary zone, which has negligible effects at larger arc
lengths. In nanofibre formation applications, the jet is quite thin and, consequently,
the boundary zone is very small. Thus, the solution away from the orifice becomes
independent of the choice of a sufficiently small δ. Figure 4 depicts our simulation
results for the fibre trajectory (figure 4a) and speed (figure 4b) for different values
of the regularization coefficient. According to the figure, at large δ = 1 the fibre
trajectory deviates from trajectories obtained for smaller values (δ = 10−2 and 10−3);
this deviation is minor for δ = 10−1. However, the fibre speed is less influenced
by the magnitude of δ. Therefore, we can conclude that the fibre key features are
independent of the choice of the regularization coefficient as long as δ is kept small,
i.e. typically at 10−2, or lower. The fibre curvature and angle magnitudes near the
orifice are expectedly affected by δ even when it is small, a feature that quickly
vanishes slightly away from the orifice. For all the simulation results presented in
this paper, we fix δ = 10−3.

From a modelling perspective, our regularized formulation presented is general in
the terms of the following aspects.

(i) First, our model regularizes the solvability condition equations for a fully three-
dimensional flow, using a regularization coefficient that is interestingly identical
in both curvature equations.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

27
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.279


216 S. Noroozi, H. Alamdari, W. Arne, R. G. Larson and S. M. Taghavi

0 1 2 3 4 5
–6

–4

–2

0

2

Z

(a)

2 4 6 8 100

100

200

300

400

500

s

(b)

X u

FIGURE 4. (Colour online) Effect of the regularization coefficient, δ, on (a) the fibre
trajectory and (b) the fibre speed for Rb= 0.01, Re= 0.1, We→∞, Fr→∞ and m= 1,
with δ = 1 (dots), δ = 10−1 (dash-dot line), δ = 10−2 (dashed line) and δ = 10−3 (solid
line).

(ii) Second, our formulation is applicable to both Newtonian and non-Newtonian
fluids. The latter includes fluids described by the constitutive relations allowing
for the term ηvss to appear in the motion equations. Examples may include
the Carreau–Yasuda (Aho & Syrjälä 2008) and the Cross–Williamson (Mishra
et al. 2006) models for the polymers with shear-thinning behaviours and the
Song–Xia model (Song & Xia 1994) for the polymers showing also extension
thinning/thickening behaviours. Note that vss (not η) is the heart of the
regularization concept since it includes the third derivative of the curvature
and the fibre thickness as parameters. Therefore, regardless of the functional
dependence of η, a regularization term with a form of δκsss inevitability appears
in the solvability conditions, where κsss is the centreline curvature and δ (as a
regularization coefficient) can be an unknown function of ε, n, non-Newtonian
properties and so on, with the condition that δ→ 0 as ε→ 0. Therefore, δ is
always a very small parameter in the asymptotic limit, used merely to remove
the singularity and stabilize the solution.

The definitions of the dimensionless groups in (2.47)–(2.49) are introduced in
table 1, which combine the design parameters in nanofibre formation by centrifugal
spinning methods and serve as inputs of the model. Note that the slenderness
parameter, ε, which is of O(10−3) in centrifugal spinning methods, vanishes in
the asymptotic limit so that it is not considered as a model parameter. On the other
hand, for a sufficiently long fibre, which is also relevant to centrifugal spinning
methods, it can be shown that the fibre key features are not governed by the end
boundary conditions, implying that the fibre length, L, is also removed as a model
input parameter (see § 2.7). The typical outputs of the model are introduced in table 2.

Before proceeding, it may be useful to note that although our model includes Rb,
Re, Fr, We and m as the flow parameters, a dimensional analysis reveals that there
are several additional dimensionless groups that govern the real fibre flow problem
for nanofibre formation applications. Obvious examples may include the Weissenberg
number (ratio of elastic to viscous stresses), the Schmidt number (ratio of viscous to
molecular diffusion rate), the Nusselt number (ratio of convective to conductive heat
transfer), etc. The general regularization formulation presented in this paper would
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Parameter Definition

X, Y, Z Fibre centreline trajectory
α, β Fibre angles in X–Z and X–Y planes
κ1, κ2 Fibre curvatures in X–Z and X–Y planes
u Fibre speed
R Fibre radius
|Rs| Fibre thinning rate

TABLE 2. Typical model outputs, which are functions of the arc length s. Note that all
the model parameters are of leading order in ε.

allow us to include these dimensionless parameters in our model without any inherent
difficulties e.g. the singularities observed in similar asymptotic models.

Finally, it is worth noting perhaps a few advantages of the regularized string model
relative to a full rod model with bending terms included, which also removes the
singularity at the nozzle. (i) There are generally more equations derived in a rod
model, creating a stiff set of differential equations. (ii) It seems that the effects
of surface tension and a variety of non-Newtonian constitutive equations can be
more easily included in the regularized string model. (iii) The literature of the
rod models for fibre spinning applications is less developed than that of the string
models. The singularities in the latter may be simply removed using a regularization
approach, implying that there may be opportunities for rapid development in the
field. (iv) Regularized string models may be faster to solve numerically, especially
for long fibres. For example, for a number of case studies for very small Rb,
computational time of our model solution was, on average, four times less than that
of the corresponding Cosserat rod model.

2.7. Boundary conditions and numerical scheme
To solve the system of differential equations (2.47)–(2.49), the physically acceptable
boundary conditions at the nozzle exit are

X(0)= Y(0)= Z(0)= 0,
α(0)= 0 and β(0)=π/2,

κ1(0)= κ2(0)= 0,
u(0)= 1.

 (2.50)

However, our simulation results show that the solutions over a large s-domain are
insensitive to the exact values of the end boundary conditions if the fibre is sufficiently
long. In order to robustly solve the equations, one can set the fibre end boundary
conditions as N(L) = κ1s(L) = κ2s(L) = κ1ss(L) = κ2ss(L) = 0, the only consequence
of which is that the solutions will slightly deviate as s approaches the vicinity of L,
merely to satisfy the end boundary conditions. Therefore, the solutions in the main
s-domain will be independent of the choice of a sufficiently large L.

For the numerical scheme, we set up systems of nonlinear equations using a
Runge–Kutta collocation method combined with a Newton method, which is a
fourth-order integration scheme to solve boundary value problems, e.g. ∂sy = F(s, y)
with boundary values defined as g(y(a), y(b)) = 0. We use the bvp4c routine in
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MATLAB R2015a to implement the method and discretize our system of nonlinear
equations. We set the number of the collocation points typically between 100 and
1000, depending on the numerical stiffness of the equations. The convergence of the
Newton method depends highly on the initial guess. To create a robust computational
code, we start the solution procedure by solving the equations for a small value of L,
which we gradually increase. Meanwhile, we update the initial guess at each step. We
continue increasing L until the solutions in the main s-domain become independent
of L. We have validated our model through comparisons against the results of Decent
et al. (2002), Wallwork et al. (2002), Uddin et al. (2008), Arne et al. (2010) and
Arne et al. (2011), finding excellent agreement. We have performed hundreds of
simulations, from which we will present the main findings in this paper.

To better understand the effects of the end boundary conditions and the fibre length,
figure 5 shows the two-dimensional fibre trajectory, angle, curvature, speed, tensile
force and radius as a function of the arc length, for a set of parameters. Seven
values of L are chosen, for which the end boundary conditions are applied. It can
be seen that for larger L the solutions depend very weakly on L, i.e. the solutions
slightly deviate only when s→ L. In fact, for a sufficiently large L, the solutions
superpose and they are indistinguishable from one another. To explain the observed
behaviour, a corresponding inviscid solution is also plotted in figure 5, for which
the only boundary conditions are at the nozzle exit and no end boundary conditions
are needed. For the highly viscous liquid jets (Re = 0.1) of various lengths in this
figure, it can be easily seen that the solutions approach their inviscid limit as L
increases. This implies that for a sufficiently large L, the end boundary conditions
are less relevant and L is also removed as a model parameter since the solution
becomes nearly inviscid, which is a feature that is explained further in the following
section. For further confirmation, we have also examined an inviscid scaling end
boundary condition (Feng 2002), finding that for a sufficiently long fibre the results
are insensitive to the end boundary condition.

3. Results and discussion

In this section, we will explore the effects of the flow parameters such as the
rotation speed (quantified by Rb), viscosity (quantified by Re), gravity (quantified
by Fr), surface tension (quantified by We) and shear-thinning properties (quantified
by m), while focusing on the parameter ranges associated with nanofibre formation,
given in table 1. Although the large number of the dimensionless parameters involved
makes it hard to deliver quantitative predictions for all the possible flow features, we
will attempt to provide essential understanding about the effects of each parameter
and classify the regimes where possible.

Before we proceed to review the effects of the various dimensionless groups,
it is useful to look into the variations of the stress terms versus the arc length
in our reduced model. Figure 6 depicts the variation of the relative stress terms
(absolute values) in the axial momentum balance equation for typical parameters in
the centrifugal spinning process. Each term is the ratio of a stress to a characteristic
inertial stress defined as ρU2/s0. The centrifugal stress term only increases very slowly
with s. Meanwhile, the magnitude of the viscous stress term is initially equal to that of
the centrifugal term but it starts to sharply decrease with s, after certain transition arc
length which can roughly approximated by s≈3(m+1)/(2m+1)21/(2m+1)Re2/(2m+1)Rb−2/(2m+1),
where the inertial stress sharply increases and takes over the viscous stress in
balancing the centrifugal term. (This transition arc length is obtained through a
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FIGURE 5. (Colour online) Simulation results for Rb=0.001, Re=0.1, We→∞ and Fr→
∞ for L= 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1, shown by solid lines of progressively decreasing
thickness. The dashed line in each plot shows the corresponding inviscid solution. The
simulation results for L > 0.4 are almost indistinguishable from one another.

simplified conceptual analysis, an example of which is explained at the end of this
section.) The surface tension stress gradually decreases with s and drops below
the inertial stress at certain transition arc length, which can be approximated by
s ≈ 31/22−2/(3(m+1))Rb2/(m+1)Re−1/(m+1)We−2/(3(m+1)). The decrease in the viscous and
surface tension stress terms as wells as the increase in the inertial term can be all
attributed to the progressive increase of the fibre speed with the arc length. Finally,
the gravitational stress initially increases slightly due to the falling of the fibre, but
eventually reaches a small plateau value.
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FIGURE 6. (Colour online) Absolute value of each stress term in the axial momentum
balance equation as a function of the arc length for typical flow parameters: Rb = 0.01,
Re= 0.1, We=Fr= 0.1, m= 0.9. Centrifugal (dash-dot line), viscous (dashed line), inertial
(solid line), surface tension (E) and gravitational (+) stress terms are shown. Vertical bold
lines mark approximated transition arc lengths explained in the text.

It may be crucially concluded from figure 6 that fibre key features at large arc
lengths are mainly controlled by inertial effects. For example, it may be expected that,
even for very viscous flows, the fibre radius will eventually approach a corresponding
inviscid solution. A particularly relevant inviscid fibre radius solution is simply
obtained for a Newtonian fibre with Rb� 1 and Re→∞, We→∞, Fr→∞, i.e.
R ≈ 4

√
Rb2/2s at large s. Our results will demonstrate that this specific solution is

more or less applicable, except for very small We flows, where the fibre does not
follow a spiral trajectory and does not reach the inviscid limit at large s.

3.1. Effects of the Rossby number
Figure 7 shows the effects of Rb on the variation of the fibre radius versus the
arc length. We observe that the fibre, which initially has a radius equal to that
of the orifice, becomes progressively thin along the arc length. By decreasing Rb,
two effects can be readily seen. First, the fibre starts to thin much more quickly
for smaller Rb. Second, the thinning of the fibre is significantly enhanced as Rb
decreases. Interestingly, each fibre radius at large arc lengths eventually approaches
its own corresponding inviscid limit. Again, the lower Rb flow moves toward its
inviscid limit much faster.

3.2. Effects of the Reynolds number
Figure 8(a) shows the effects of varying Re (over two orders of magnitude) on the
fibre radius. We may expect the lower Re flows to thin relatively more slowly, which
is in fact the case at small arc lengths. However, counter-intuitively the fibre with the
lower Re (more viscous flow) undergoes a relatively higher thinning rate at larger arc
lengths so that it catches up with the less viscous flow at large arc lengths. Broadly
speaking, the viscous fibres forget their history and they all eventually follow more
or less the same corresponding inviscid limit for the fibre radius.
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FIGURE 7. (Colour online) Simulation results of the fibre radius versus the arc length with
m= 1, Re= 0.1 and Fr=We= 10 for Rb= 0.1 (line), Rb= 0.01 (dashed line) and Rb=
0.001 (dash-dot line). The corresponding inviscid limit for the fibre radius (R≈ 4

√
Rb2/2s)

is marked by dotted line.
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FIGURE 8. (Colour online) Simulation results with m= 1, Rb= 0.001 and Fr=We= 10
for Re= 0.001 (line), Re= 0.01 (dashed line) and Re= 0.1 (dash-dot line). (a) Fibre radius
versus the arc length. The corresponding inviscid limit for each fibre radius (R≈ 4

√
Rb2/2s)

is marked by dotted line. (b) Tensile stress versus the arc length.

To explain the behaviours observed, let us discuss figure 8(b), which shows the
variation of the tensile stress (N/R2) for the three different Reynolds numbers. We
can distinguish a general trend for the different cases, i.e. the tensile stress grows,
reaches a maximum (turning point) and then decreases gradually. For the higher Re
flow, the initial increase of the tensile stress is extremely rapid and for the lower Re
flow it is much slower. Our simulations show that while the fibre exhibits viscous
characteristics before the turning point, the inertial behaviours become significant at
the turning point and they completely take over slight thereafter. For the less viscous
flow (higher Re), the tensile stress that balances the centrifugal stress is strong at first,
causing the fibre to thin to a great degree. However, due to the decrease of the tensile
stress after the turning point, the fibre thins with a much slower thinning rate. On
the other hand, for the more viscous fibre (smaller Re), the centrifugal stress is also
dissipated by the tensile stress, which is relatively much smaller at shorter arc lengths.
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FIGURE 9. (Colour online) Simulation results for Rb= 0.01, Re= 0.1, m= 1, We→∞,
for Fr= 0.01 (line), Fr= 0.02 (dashed line) and Fr= 1 (dash-dot line). Each inset scale
is semilogarithmic and has the same arc length range as the main panel.

Therefore, the fibre thins more slowly initially. Nevertheless, the tensile stress of the
more viscous flow continues to grow and it eventually exceeds that of the less viscous
flow, an effect which brings about two consequences. First, since the turning point for
the more viscous fibre is reached at a larger arc length compared to the less viscous
flow, the tensile stress for the more viscous flow remains significant over a wider
range of the arc length, where it can progressively thin the fibre. Second, at larger
arc lengths the more viscous fibre becomes thin at a higher rate than the less viscous
fibre. Nonetheless, in all the cases the inertial stress finally controls the fibre behaviour
at very large arc lengths.

3.3. Effects of the Froude number
Figure 9 shows the fibre three-dimensional trajectory, horizontal angle and curvature
(inset), vertical angle and curvature (inset), radius and thinning rate (inset) as functions
of s for three different values of Fr. As can be seen, at smaller Fr, the fibre falls under
gravity faster than at larger Fr. However, the fibre horizontal angle and curvature
do not much change with different values of Fr. The fibre vertical angle (β) and
curvature (κ2) are more affected in the case of small Fr at small s but they reach
nearly steady values at larger arc lengths. It is perhaps interesting to note the early
oscillations in β (fibre angle in X–Y plane) compared to the monotonic decrease in
α (fibre angle in X–Z plane). Moreover, comparing the curvatures (insets) reveals that
the fibre curvature in the vertical plane is initially more affected than the curvature in
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FIGURE 10. (Colour online) Simulation results for Rb= 0.01, Re= 0.1, Fr→∞, m= 1
for We= 0.001 (solid line), We= 0.01 (dashed line) and We→∞ (dash-dot line). (a) Dc
denotes the circular trajectory diameter. (b) Shows the fibre angle and curvature (inset) in
the X–Z plane. (c) Shows the fibre speed. (d) Shows the fibre radius and thinning rate
(inset); the horizontal dotted line indicates the constant fibre radius limit (for the smallest
Weber number) and the oblique dotted line shows the inviscid fibre radius limit (for the
two larger Weber numbers). Each inset scale is semilogarithmic and has the same arc
length range as the main panel.

the horizontal plane. However, the most important fibre features, i.e. R and |Rs|, are
not significantly influenced by Fr. At larger s, the fibre radii approximately approach
an inviscid solution that excludes all the parameters except for Rb. Therefore, for the
parameter ranges of nanofibre formation, the effect of Fr on the fibre thinning remains
minor throughout the arc length.

3.4. Effects of the Weber number
Figure 10 shows the effects of We on the fibre two-dimensional trajectory, angle,
curvature (inset), speed, radius and thinning rate (inset). At We = 0.01, the flow
features are only slightly affected compared to We → ∞. However, We = 0.001
significantly influences the jet behaviours: in particular the fibre trajectory is much
tighter compared to the higher We flows, up to the point that the fibre even reaches
a circular trajectory centred on the axis of rotation. Consequently, the fibre speed
is also much smaller and at large s it reaches a nearly steady value after a few
oscillations. The fibre thinning rate at shorter arc lengths is weaker for smaller We.
Finally, whereas for higher We the fibre radius advances toward a corresponding
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inviscid limit (i.e. R ≈ 4
√

Rb2/2s), for We = 0.001 it does not reach this limit but
instead approaches an almost constant value.

Let us attempt to justify the behaviours observed at small and large Weber numbers.
When We is very small, the surface energy of the fibre consumes a large portion of
the centrifugal energy and thus the inertial energy cannot overtake the surface energy,
causing the fibre to take a circular path, a constant speed and hence a constant radius.
With increasing We, the surface energy decreases until a critical transition Weber
number (Wet) is reached at which the inertial and surface energies are nearly equal,
where the fibre begins to demonstrate a non-circular (spiral) trajectory instead of a
circular one.

A final note is that at low Weber numbers, the steady fibre trajectory may be
unstable to undulation and fibre breakup, which we do not consider in our analysis.

3.4.1. Simplified model for the circular trajectory regime
In order to analyse the circular trajectory regime, here we derive a simplified model

with analytical expressions to predict the fibre behaviours in the circular trajectory
regime, in the range of small Weber numbers. This implies that we will consider the
flows for which the surface tension stress has a dominant effect. For simplicity, we
concentrate on the condition where gravitational effects are negligible (Fr→∞) and
the flow is Newtonian (m= 1). We also concentrate on flows with Rb� 1, which is
the regime of nanofibre formation. Table 3 shows the main outputs of the simplified
model that will be presented in this subsection.

Provided that the fibre follows a circular path instead of a non-circular (spiral) one,
we have

(X + 1)2 + Z2
=

(
Dc

2

)2

=
1
κ2

c

= const. (3.1)

Therefore, using (2.48) and the projection expressions (see § 2.5), we find the
following equation that satisfies the circular trajectory:(

u−
1
√

uWe

)
κc +

2
Rb
+

1
uRb2κc

= 0. (3.2)

On the other hand, by integrating motion equation (2.47), from zero to the arc length
`c where the trajectory becomes circular, we arrive at∫ `c

0
uus ds+

∫ `c

0

1
2We

us
√

u
ds−

∫ `c

0

(X + 1)Xs + ZZs

Rb2
ds−

3
Re

∫ `c

0
u
(us

u

)
s
ds= 0. (3.3)

Using (3.1), all the terms in (3.3) can be readily integrated except for the viscous
dissipative term (i.e. the fourth term), which is unknown. Crudely, to make the
algebraic integration of the viscous term possible, the inviscid solutions without
surface tension for velocity and its derivative for small Rb may be used as follows:

u≈

√
2s

Rb
, (3.4)

us ≈
1

√
2sRb

. (3.5)

In addition, again for the same purely inviscid flow, `c can be coarsely linked
to the fibre curvature of the circle through

√
2`c ≈ −1/κc. It must be noted that
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Parameter Definition

Dc Circular trajectory diameter
kc Circular trajectory curvature in X–Z plane
`c Arc length of reaching the circular trajectory
uc Fibre speed in the circular trajectory
Rc Fibre radius in the circular trajectory
ut Transition fibre speed between the circular and spiral trajectory regimes
Wet Transition We between the circular and spiral trajectory regimes

TABLE 3. Typical outputs of the simplified model for the circular trajectory regime. The
model inputs are typically Rb, Re and We, while Fr→∞ and m= 1 have been considered
for simplicity.

the aforementioned inviscid expressions are only used to approximately integrate
the dissipative viscous term and it does not mean that our flow is inviscid. After
integrating and manipulating (3.3), we find

u2
c − 1+

2
√

uc

We
−

2
We
+

1
Rb2
−

1
Rb2κ2

c

−
6

Re Rbκc
= 0. (3.6)

Solving (3.6) and (3.2) for κc while ignoring non-physical solutions, we arrive at

κc =
2u1/2

c − 2uc + 3Re−1

Rb(3u2
c − 2u3/2

c − 1+ Rb−2)

−

√
u2

c + 1− 2u−1/2
c + 12Re−1(u1/2

c − uc)+ 9Re−2 + Rb−2(2u−1/2
c − 1)

Rb(3u2
c − 2u3/2

c − 1+ Rb−2)
, (3.7)

where uc, i.e. the fibre speed at the circle (equivalent to 1/
√

Rc), is linked to We, Rb
and κc through

We=
u1/2

c κ2
c

u2
cκ

2
c + 2ucRb−1κc + Rb−2

. (3.8)

Using (3.7) and (3.8), we can find the curvature of the circular trajectory (or the circle
diameter) and the fibre speed (or the fibre radius) at the circle for a given set of We,
Re and Rb.

Now, we can also proceed to compute the transition Weber number, Wet, at which
the fibre starts to have a spiral trajectory instead of a circular one. Relation (3.7)
has an imaginary part (i.e. a non-physical solution) when the term under the square
root becomes negative, which suggests that there would be no circle-like trajectory
that simultaneously satisfies the s-momentum and solvability equations. Therefore, we
assume that the transition between a circular trajectory and a non-circular trajectory
occurs when the term under the square root is zero (where also the maximum
magnitude of the curvature can be reached). Applying this condition delivers two
equations which can be solved to furnish a critical transition Weber number as

Wet =
(2u3/2

t − 2ut − 3
√

ut/Re)
2

√
ut

(
2u2

t

Rb2
−

2
Rb2
+

1
Rb4
+

6ut

ReRb2
+

6u3
t

Re
−

6ut

Re
+

9u2
t

Re2 + (u
2
t − 1)2

) , (3.9)
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FIGURE 11. (Colour online) (a) Fibre curvature of circular trajectory κc (or equivalently
inverse circle diameter Dc) versus We for Rb= 0.001, Fr→∞ and m= 1. (b) Fibre radius
(or speed) versus We for the same parameters as panel (a). In the two panels, the analytical
approximate results are shown by lines and the simulation results by markers for Re= 1
(solid line, ∗), Re= 0.1 (dashed line, +) and Re= 0.01 (dash-dot line, ×).

where ut is the transition fibre speed which is linked to the Rossby and Reynolds
numbers through

Rb=

√√√√√ ut − 2
√

ut

12u3/2
t

Re
+ u3

t −
12u2

t

Re
+

9ut

Re2
+ ut − 2

√
ut

. (3.10)

Using the two equations above, we can find Wet as a function of Rb and Re.
We have analysed numerous simulation data and we have compared them with the

simplified model results. Figure 11(a,b) compares the predictions of the simplified
model with the simulation results. The circular trajectory curvature (or circle diameter)
and the fibre radius (or speed) are shown versus We for a fixed Rb= 0.001 at different
Reynolds numbers. The comparison between the simplified model curves and the
simulation results is satisfactory, although for the smallest Re a deviation from the
simplified model curve is observed, which is due to the simplifying assumptions
explained earlier. Figure 11(a,b) shows that by increasing We, the absolute values
of the fibre curvature and radius in a circular trajectory increase, which are both
counter-intuitive. Loosely speaking, at very small We the surface energy is very
large and larger centrifugal energy (and thus a larger circle diameter) is required
to balance the surface energy, which also causes the fibre to have higher speed
and therefore smaller fibre radius. However, with increasing We and thus smaller
surface energy, the circle diameter required to maintain the necessary centrifugal
force decreases, which in return results in a thicker fibre. By further increasing We,
the inertial energy finally takes over the surface one at Wet, after which the fibre
follows a spiral path and continuously thins along the arc length. In figure 11(a,b),
the lines terminate at approximately the value of Wet, the Weber number at which
the simplified model predicts that there no longer exists a physical circular trajectory
satisfying the simplified equations.

Figure 12 classifies the circular and spiral trajectory regimes, by plotting Wet, from
(3.9), against Rb for three different values of Re. The simplified model predictions are
in good agreement with simulation results except for the smallest Re.
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FIGURE 12. (Colour online) Classification of the circular and spiral trajectory regimes in
the plane of We and Rb (note that the critical transition values are plotted). The simplified
model results are shown by lines and the simulation results by markers for Re= 1 (solid
line, ∗), Re= 0.1 (dashed line, +) and Re= 0.01 (dash-dot line, ×).

Although in this section we presented our simplified model for a Newtonian fluid
(m = 1), the same approach can be used to obtain Wet for a non-Newtonian fluid
(m 6= 1). However, our simulation results (not shown) reveal that Wet is not greatly
influenced by variations in m.

3.5. Effects of the power-law index
Figure 13 is aimed at describing the effects of the shear-thinning and shear-thickening
power-law index on the fibre radius, for m= 0.6, 0.8, 1 and 1.2. Figure 13(a) shows
that the fibre trajectory is not significantly influenced by m. The fibre angles (not
plotted for brevity) are likewise not much affected by m. Figure 13(b) shows the
leading-order apparent viscosity versus s for the cases studied, revealing that the
apparent viscosity is much lower for the flow with the smallest power-law index,
which is expected. What is not a priori known is that for shear-thinning fluids the
apparent viscosity varies non-monotonically with the arc length, initially decreasing,
reaching a minimum, and eventually increasing with s. It is vividly seen that, unlike
the shear-thinning cases (m < 1), the apparent viscosity of the shear-thickening
fluid (m = 1.2) increases initially until it reaches a maximum and then decreases.
Figure 13(c) also displays that the fibre radius for the smaller m flow initially lies
below the one for the larger m flow. However, at large s the fibre radii for all the
power-law index values reach nearly the same inviscid limit, independent of m (and
of Re, Fr and We). Practically, one of the most significant effects of decreasing m is
perhaps on the thinning rate of the fibre radius. Figure 13(d) shows the thinning rate
versus the arc length, showing that the fibre thinning rate for m = 0.6 at small s is
almost three times larger than that for m= 1. Interestingly, while the thinning rate at
the lower m is initially much larger compared to the higher m, at certain arc length,
|−Rs| of the lower m flow falls below that of the higher m flow. The cross-over arc
length is nearly the same for different values of m. However, the radius of all of
these fibres is almost the same at large s.
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FIGURE 13. (Colour online) Simulation results for Rb= 0.01 and Re=Fr=We= 0.1, for
m= 0.6 (solid line), m= 0.8 (dashed line), m= 1 (dash-dot line) and m= 1.2 (dotted line).

3.6. Zones of thinning of fibre radius

We have thus far found two main flow regimes for large and small Weber numbers,
i.e. the spiral and circular trajectory regimes. To end our discussion section, we now
present a thinning zone classification based on a simplified analysis, for perhaps the
most crucial fibre feature, i.e. the fibre radius versus s. For simplicity, we neglect
gravity, the effects of which on the flow were discussed above. In what follows,
for the sake of clarity, we will use the ‘∅’ symbol to denote a non-circular (spiral)
trajectory flow and the ‘E’ symbol to indicate a circular trajectory flow.

Let us begin with the spiral trajectory regime, for which the effects of surface
tension can be ignored. For these flows, we have observed that while the fibre radius
initially remains close to unity at very small s (no-thinning regime), at a critical s
the fibre transitions to a regime of significant thinning (intense-thinning regime), and
finally at another larger critical s, the fibre reaches a third regime, which is nearly
inviscid, with a much slower thinning rate (slow-thinning regime). To perform our
simplified analysis, we concentrate only on the axial momentum balance equation.
For small s, the viscous stress term in this equation is of order s−m−1Re−13(m+1)/2u
balancing the centrifugal term that is of order Rb−2, furnishing the fibre radius as

∅
Rit ≈ s−(m+1)/23(m+1)/4Rb Re−1/2. (3.11)
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FIGURE 14. (Colour online) Comparison between the simulation fibre radii (thick lines)
and the fibre radii of the three thinning zones (dash-lines) discussed in the text. The
vertical dash-dot lines mark the transition between the zones. (a) Spiral trajectory flows
for Rb= 0.01, Re=Fr=We= 0.1 and m= 0.6. (b) Circular trajectory flows for Rb= 0.01,
Re= 0.1, Fr→∞, m= 1 and We= 0.001.

On the other hand, the fibre radius in the no-thinning and slow-thinning regimes are

∅
Rnt ≈ 1, (3.12)

and
∅
Rst ≈

4
√

Rb2/2s, (3.13)

respectively. Thus, the transition arc length between the no-thinning and intense-

thinning regimes can be simply approximated through satisfying
∅
Rnt =

∅
Rit, furnishing

∅
snt−it ≈ 31/2Rb2/(m+1)Re−1/(m+1), (3.14)

while the transition arc length between the intense-thinning and slow-thinning regimes

is similarly obtained through
∅
Rit =

∅
Rst, providing

∅
s it−st ≈ 3(m+1)/(2m+1)21/(2m+1)Re2/(2m+1)Rb−2/(2m+1). (3.15)

To test the simple expressions developed, figure 14(a) compares a simulation fibre

radius with a spiral trajectory against
∅
Rnt,

∅
Rit and

∅
Rst as well as the transition arc

lengths, presenting reasonable agreement.
Now for the circular trajectory regime, a similar approach can be employed and

after some algebra, three fibre radius regimes can be found as

©

Rnt ≈ 1, (3.16)

©

Rit ≈

(
Re(3m−1Res2(m+1)Rb23−2m

+ 233−(m+1)/2We2s(3+m))

23We2s2Rb2

−
Re(3−(m+1)Rbs(m+1)

[Res2(Res2mRb2
+ 243(m+1)/2We2s(m+1))]

1/2
)

23We2s2Rb2

)−1/2

, (3.17)
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and
©

Rct ≈ Rc, (3.18)

where the subscript ‘ct’ indicates a ceased-thinning regime, where the fibre radius
approaches Rc, i.e. the fibre radius in the circular trajectory regime calculated
earlier. On the other hand, the transition arc length between the no-thinning and

intense-thinning regimes of circular trajectory flows,
©

s nt−it, is the positive real root of

©

Rit(Rb, Re,We,m,
©

s nt−it)− 1= 0, (3.19)

which can be readily found for a given set of dimensionless parameters. The transition
arc length between the intense-thinning and ceased-thinning regimes for circular

trajectory flows,
©

s it−ct, can be calculated through finding the positive real root of

©

Rit(Rb, Re,We,m,
©

s it−ct)−
©

Rct = 0, (3.20)

which can be likewise found for a given dimensionless parameter set. It must be noted

that
©

s it−ct is introduced here to maintain the integrity of the simplified analysis and
place an arc length end boundary on the intense-thinning regime, although one could
use the circular trajectory fibre arc length, `c≈ 1/2κ2

c (discussed in § 3.4.1), as a more
accurate prediction of the arc length where the constant fibre radius is reached.

To evaluate the performance of the simple expressions developed for the thinning
zone classification of circular trajectory flows, figure 14(b) compares a simulation fibre

radius against
©

Rnt,
©

Rit and
©

Rct as well as the transition arc lengths, showing reasonable
agreement.

4. Summary

In this work, we developed for the first time the three-dimensional string model
equations for a shear-thinning power-law fluid, for which we implemented a general
curvature regularization approach, enabling robust solutions for the parameter ranges
of interest to nanofibre formation by centrifugal spinning methods. We exploited the
model for a range of typical dimensionless parameters, i.e. Rb, Re, Fr, We and m,
to provide a fundamental understanding about the curved jet features. We found that
while decreasing Rb leads to thinner fibres throughout the arc length, decreasing Re
merely influences the thinning at short arc lengths. In the same manner, shear-thinning
properties strongly impact the fibre thinning rate only at small arc lengths. We also
found that while gravity mainly influences the fibre vertical angle close to the orifice,
the effects of surface tension can be more significant. In fact, we were able to classify
in detail the circular and spiral trajectory flows, for which the transition occurs at a
critical Weber number. Finally, as the arc length increases, we quantified boundaries
of the no-thinning, intense-thinning and slow-thinning (for spiral trajectory flows) or
ceased-thinning (for circular trajectory flows) zones describing the thinning of the fibre
radius with fibre arc length. Future directions will include an extension of the model to
include non-stationary solutions, viscoelastic constitutive models and stability analyses.
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Appendix A. Momentum stress terms
In this section, the stress terms in equation (2.4) are presented in detail. First,

defining S=−
√

X2
ss + Y2

ss + Z2
ss and S̃= XssXsss+ YssYsss+ ZssZsss, the viscous terms in

the three directions (s, n and ϕ) can be given:

Vs =
1
ρ

η

nhs

[
n2

h2
s

cos(ϕ)
S̃
S

(
∂u
∂s
+ S(v cos(ϕ)−w sin(ϕ))

)
+

n
hs

(
−uS+

∂2u
∂s2
+ S(v cos(ϕ)−w sin(ϕ))+ 2S

(
∂v

∂s
cos(ϕ)−

∂w
∂s

sin(ϕ)
))

+ (1+ 2n cos(ϕ)S)
∂u
∂n
+ nhs

∂2u
∂n2
−
∂u
∂ϕ

sin(ϕ)S+
hs

n
∂2u
∂ϕ2

]

+
2
ρh2

s

(
∂u
∂s
+ S(v cos(ϕ)−w sin(ϕ))

)
∂η

∂s

+
1
ρhs

(
∂v

∂s
− S cos(ϕ)u+ hs

∂u
∂n

)
∂η

∂n

+
1
ρn

(
1
n
∂u
∂ϕ
+

1
hs
S sin(ϕ)u+

1
hs

∂w
∂s

)
∂η

∂ϕ
, (A 1)

Vn =
1
ρ

η

n

[
n2

h2
s

cos(ϕ)
S̃
S

(
∂v

∂s
Su cos(ϕ)

)

+
n
hs

(
−vS2cos2(ϕ)+

∂2v

∂s2
+

S̃
S

cos(ϕ)u− 2S
∂u
∂s

cos(ϕ)

)

+ (1+ 2n cos(ϕ)S)
∂v

∂n
+ nhs

∂2u
∂n2
+wS2 cos(ϕ) sin(ϕ)

−

(
∂v

∂ϕ
−w

)
sin(ϕ)S+

hs

n

(
∂2v

∂ϕ2
− v − 2

∂w
∂ϕ

)]

+
1
ρhs

(
∂v

∂s
− Su cos(ϕ)+ hs

∂u
∂n

)
∂η

∂s

+
2hs

ρ

(
∂v

∂n

)
∂η

∂n
+

hs

ρn

(
1
n
∂v

∂ϕ
−

w
n
+
∂w
∂n

)
∂η

∂ϕ
, (A 2)
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Vϕ =
1
ρ

η

n

[
n2

h2
s

cos(ϕ)
S̃
S

(
∂w
∂s
+ Su sin(ϕ)

)

+
n
hs

(
−wS2sin2(ϕ)+

∂2w
∂s2
−

S̃
S

sin(ϕ)u+ 2S
∂u
∂s

sin(ϕ)

)

+ (1+ 2n cos(ϕ)S)
∂w
∂n
+ nhs

∂2w
∂n2
+wS2 cos(ϕ) sin(ϕ)

−

(
∂w
∂ϕ
+ v

)
sin(ϕ)S+

hs

n

(
∂2w
∂ϕ2
−w+ 2

∂v

∂ϕ

)]

+
1
ρhs

(
∂w
∂s
+ Su sin(ϕ)+

hs

n
∂u
∂ϕ

)
∂η

∂s

+
hs

nρ

(
∂v

∂ϕ
−w+ n

∂w
∂n

)
∂η

∂n
+

2hs

ρn2

(
v +

∂w
∂ϕ

)
∂η

∂ϕ
. (A 3)

The gravitational terms in each direction can be derived as

Gs =−gYs. (A 4)

Gn = g
(

ZssXs sin(ϕ)− ZsXss sin(ϕ)+ Yss cos(ϕ)
S

)
, (A 5)

Gϕ = g
(

ZssXs cos(ϕ)− ZsXss cos(ϕ)+ Yss sin(ϕ)
S

)
. (A 6)

Finally, the rotational terms are

ROs = 2Ω
(
−
v(ZsXss cos(ϕ)− ZssXs cos(ϕ)+ Yss sin(ϕ))

S

+
w(ZsXss sin(ϕ)− ZssXs sin(ϕ)− Yss cos(ϕ))

S

)
+Ω2

(
Xs(X + s0)+ ZZs + nYs

(
ZssXs sin(ϕ)− ZsXss sin(ϕ)+ Yss cos(ϕ)

S

))
,

(A 7)

ROn = 2Ω
(
−

u(ZssXs cos(ϕ)− ZsXss cos(ϕ)− Yss sin(ϕ))
S

−wYs

)
−Ω2

(
(X + s0)(ZsYss sin(ϕ)− ZssYs sin(ϕ)+ Xss cos(ϕ))

S

−
Z(YsXss sin(ϕ)− YssXs sin(ϕ)+ Zss cos(ϕ))

S

+
n(((ZsYss − ZssYs) sin(ϕ)+ Xss cos(ϕ))2)

S2

+
n(((YsXss − YssXs) sin(ϕ)+ Zss cos(ϕ))2)

S2

)
, (A 8)

ROϕ = 2Ω
(
−

u(ZsXss sin(ϕ)− ZssXs sin(ϕ)− Yss cos(ϕ))
S

− vYs

)
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+Ω2

(
−
(X + s0)(ZsYss cos(ϕ)− ZssYs cos(ϕ)− Xss sin(ϕ))

S

−
Z(YsXss cos(ϕ)− YssXs cos(ϕ)− Zss sin(ϕ))

S

+ n
(

(ZsYss − ZssYs) sin(ϕ)+ Xss cos(ϕ)
S2((ZsYss − ZssYs) cos(ϕ)− Xss sin(ϕ))−1

)
+ n

(
(YsXss − YssXs) sin(ϕ)+ Zss cos(ϕ)

S2((YsXss − YssXs) cos(ϕ)− Zss sin(ϕ))−1

))
. (A 9)

REFERENCES

AHO, J. & SYRJÄLÄ, S. 2008 On the measurement and modeling of viscosity of polymers at low
temperatures. Polym. Test 27 (1), 35–40.

ARNE, W., MARHEINEKE, N., MEISTER, A. & WEGENER, R. 2010 Numerical analysis of Cosserat
rod and string models for viscous jets in rotational spinning processes. Math. Models Meth.
Appl. Sci. 20 (10), 1941–1965.

ARNE, W., MARHEINEKE, N. & WEGENER, R. 2011 Asymptotic transition from Cosserat rod to string
models for curved viscous inertial jets. Math. Models Meth. Appl. Sci. 21 (10), 1987–2018.

BADROSSAMAY, M. R., MCLLWEE, H. A., GOSS, J. A. & PARKER, K. K. 2010 Nanofiber assembly
by rotary jet-spinning. Nano Lett. 10 (6), 2257–2261.

BATCHELOR, G. K. 2000 An Introduction to Fluid Dynamics. Cambridge University Press.
COBBLE, M. H., SMITH, P. R. & MULHOLLAND, G. P. 1973 Nonlinear motion equations for a

non-Newtonian incompressible fluid in an orthogonal coordinate system. Rheol. Acta. 12 (2),
212–216.

DECENT, S. P., KING, A. C. & WALLWORK, I. M. 2002 Free jets spun from a prilling tower.
J. Engng Maths 42 (3–4), 265–282.

EBAGNININ, K. W., BENCHABANE, A. & BEKKOUR, K. 2009 Rheological characterization of
poly(ethylene oxide) solutions of different molecular weights. J. Colloid Interface Sci. 336
(1), 360–367.

EGGERS, J. 1997 Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69 (3),
865–929.

FENG, J. J. 2002 The stretching of an electrified non-Newtonian jet: a model for electrospinning.
Phys. Fluids 14 (11), 3912–3926.

GÖTZ, T., KLAR, A., UNTERREITER, A. & WEGENER, R. 2008 Numerical evidence for the non-
existence of stationary solutions of the equations describing rotational fibre spinning. Math.
Models Meth. Appl. Sci. 18 (10), 1829–1844.

HAWKINS, V. L., GURNEY, C. J., DECENT, S. P., SIMMONS, M. J. H. & UDDIN, J. 2010 Unstable
waves on a curved non-Newtonian liquid jet. J. Phys. A 43 (5), 055501.

HOHMAN, M. M., SHIN, M., RUTLEDGE, G. & BRENNER, M. P. 2001 Electrospinning and electrically
forced jets. II. Applications. Phys. Fluids 13 (8), 2221–2236.

HUANG, Z. M., ZHANG, Y. Z., KOTAKI, M. & RAMAKRISHNA, S. 2003 A review on polymer
nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol.
63 (15), 2223–2253.

LU, Y., LI, Y., ZHANG, S., XU, G., FU, K., LEE, H. & ZHANG, X. 2013 Parameter study and
characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process. Eur.
Polym. J. 49 (12), 3834–3845.

MAHADEVAN, L. & KELLER, J. B. 1996 Coiling of flexible ropes. Proc. R. Soc. Lond. A 452
(1950), 1679–1694.

MARHEINEKE, N., LILJEGREN-SAILER, B., LORENZ, M. & WEGENER, R. 2016 Asymptotics and
numerics for the upper-convected Maxwell model describing transient curved viscoelastic jets.
Math. Models Meth. Appl. Sci. 26 (03), 569–600.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

27
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.279


234 S. Noroozi, H. Alamdari, W. Arne, R. G. Larson and S. M. Taghavi

MARHEINEKE, N. & WEGENER, R. 2009 Asymptotic model for the dynamics of curved viscous
fibres with surface tension. J. Fluid Mech. 622, 345–369.

MARY, L. A., SENTHILRAM, T., SUGANYA, S., NAGARAJAN, L., VENUGOPAL, J., RAMAKRISHNA,
S. & GIRI DEV, V. R. 2013 Centrifugal spun ultrafine fibrous web as a potential drug delivery
vehicle. Express Polym. Lett. 7 (3), 238–248.

MISHRA, S., SONAWANE, S., MUKHERJI, A. & MRUTHYUNJAYA, H. C. 2006 Effect of nanosize
CaSO4 and Ca3 (PO4)2 particles on the rheological behavior of polypropylene and its
simulation with a mathematical model. J. Appl. Polym. Sci. 100 (5), 4190–4196.

NAYAK, R., PADHYE, R., KYRATZIS, I. L., TRUONG, Y. & ARNOLD, L. 2011 Recent advances in
nanofiber fabrication techniques. Text. Res. J. 82 (2), 129–147.

PADRON, S., FUENTES, A., CARUNTU, D. & LOZANO, K. 2013 Experimental study of nanofiber
production through forcespinning. J. Appl. Phys. 113 (2), 024318.

PANDA, S. 2006 The dynamics of viscous fibres. PhD thesis, Technische Universität Kaiserslautern.
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