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1. Introduction

Recently J. Cresp and R. P. Sullivan (1975) investigated those rings R
with the following properties:

(*) every multiplicative subsemigroup of R is a subring.
(**) every multiplicative subsemigroup of R containing 0 is a subring.
For rings with (*) they obtained the following characterization.

P R O P O S I T I O N 1 . A r i n g R h a s ( * ) if a n d o n l y if e i t h e r \ R \ = l o r \ R \ = 2

and R2 = 0.
For rings with (* *) they characterized all such rings with an identity by

employing a result of Gluskin (1963).

PROPOSITION 2. A ring R containing an identity has (* *) if and only if it is
a finite field such that | R — 01 is a prime number.

The purpose of this note is to furnish a characterization of those rings
with (* *) without assuming an identity and the use of Gluskin's result. Also
we will consider some generalizations.

2. Subsemigroups of rings

A subset S of a ring (R, + ,.) will be called a subsemigroup of R if it is a
subsemigroup of (R,.). As usual, for each x in R,{x) denotes the cyclic
subsemigroup of R generated by x. In this section we characterize completely
those rings with property (* *). Our theorem follows from a series of lemmas.

LEMMA 1. Let R be a ring with (* *). / / there is e ^ 0 in R such that e2 = e,
then x + x = 0 for all x in R.

PROOF. Since {0, e} is a subsemigroup, it follows that e + e = 0. Hence
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ex + ex = (e + e)x = 0 and xe + xe = x(e + e) = 0 for all x in R. Thus
{0, e}U(x + x) is a subsemigroup of R, and since R has (**), we see that
e + x + x equals 0, e or (x + x)' for some positive integer /. If e + x + x = 0,
then x + x = e and ex + ex = e2 = 0, a contradiction. If e + x + x = (x + x)\
then e = e(e + x + x) = e(x + x)' = (ex + ex)(x + x)'~' = 0, a contradiction.
Thus the remaining case yields the fact the e + x + x = e and x + x = e + e =
0.

LEMMA 2. Ler R be a ring with (**). 7/ tfiere is e2 = e/0 in R, then
ex = xe = x for all x in R.

PROOF. From Lemma 1, A: + x = 0 for each x in R. Suppose exe + e x / 0.
Also exe + ex/ e. For if not, exe + ex = e implies that 0 = exe + exe = e2.
Thus {0, e} U (exe + ex) is a subsemigroup and it follows that exe + ex + e
equals 0, e or (exe + ex)1 for some positive integer /. Now exe + ex + e = 0
implies that exe + ex = e and exe + exe = e2 = 0, a contradiction. Similarly,
exe + ex + e = e implies that exe + ex = 0. Thus we must have that
exe + ex + e = (exe + ex)'. Hence (exe + ex + e)e = (exe + ex)'~'(exe + exe)
= 0. But this means that exe + exe + e = 0 and e = 0, a contradiction. Hence
exe + ex = 0 and exe = ex. By a similar argument, exe = xe and it follows that
ex = xe for each x in R.

Next we wish to establish that ex = x for each x in R. Observe that
ex + x = e implies that ex + ex = e2 = 0. Thus ex + x/ e. Suppose ex + x/ 0.
Then {0, e } U ( e x + x ) is a subsemigroup. Again, ex + x + e equals 0, e or
(ex + x)'. It can be checked as in the above argument that each of the three
possibilities gives a contradiction. Thus we conclude that ex + x = 0 and
ex = x for each x in R.

LEMMA 3. Let R be a ring with (* *). If there is an x in R such that for all
positive integers n,x"/0, then there is an e2 = e/ Q in R.

PROOF. Suppose x" / 0 for each positive integer n. Then x + x = 0. For if
not, since {0}U(x) is a subsemigroup, - x = x' for some positive integer
j>\. Hence x2 = ( - x ) ( - x ) = x2'. Thus there is an integer k such that
(xk)2 = x \ Thus xk — e = e2. But by Lemma 1, x + x = 0, a contradiction.

From above it follows that x' + x' — 0 for each positive integer i. Again
from the subsemigroup {0} U (x), we have that x + x2 = x',j = 3 and observe
that (x + x' ')x = x = x(x + x'~'), or x + x2 = 0 (in which case we let e = x).
Now we wish to show that (x + x'~') is an idempotent: it follow from the
calculation below.
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(x + x'-')(x + xi~') = x2+xi +x'' + xi''x'''

= x +xj~\x + x'"1)

' = X + X1'1.

Now we are ready to state and prove our main result.

THEOREM 1. A ring R has property (* *) if and only if either | R | = 1 or
I R | = 2 and R2 = 0 or R is a finite field and \ R - 01 is a prime number.

PROOF. Suppose R has (**) and there is an element x^ 0 in R such that
x " ^ 0 for each positive integer n. By Lemma 3, there is an e = e 2 ^ 0 in R
and by Lemma 2, e is the identity of R. By Proposition 2, R is a finite field
and \ R — 0 | is a prime number. Now suppose | R | > 1 and every x ^ 0 in R is
nilpotent. By following the proof of Theorem 1 by Cresp and Sullivan (1975)
we see that | R | = 2 and R2 = 0.

The converse is immediate and thus the proof of the theorem is
complete.

3. Generalizations

In this section we extend Propositions 1 and 2 to the class of near-rings
and Gluskin's result (1963) will not be needed in one of the proofs (Theorem
3). For definitions and basic facts about near-rings, see Ligh (1969). Further-
more, replace "subring" by "sub-near-ring" in the definition of property (*)
and (**).

THEOREM 2. A near-ring R has property (*) if and only if either \ R | = 1
or \R | = 2 and R2 = 0.

PROOF. Using a similar argument to the first part of the proof of
Theorem 1 by Cresp and Sullivan (1975), we have that x2 = 0 for each x in R.
Thus Ox = (Ox)(Ox) = 0 and {0, x} is a subsemigroup. It follows that x + x = 0
for each x in R and (R, + ) is commutative.

Now suppose x/ 0 and y/ 0 are in R. Then x(x + y)(x + y) = 0 implies
(x2 + xy)(x + y) = 0 and hence xyx = 0. Thus {0, x, xy} is a subsemigroup and
by (*), x + xy = 0, x or xy. A quick calculation shows that xy = 0. Similarly
yx =0 .

Now consider the subsemigroup {0, x, y}. It follows that x + y = 0 and
x = y. Hence | R | = 2 and R2 = 0.

THEOREM 3. Let R be a near-ring with identity l.IfR has property (**),

then R is a near-field. Furthermore, if R is finite, then R is a field such that

\R — 0| is a prime number.
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PROOF. Since {0,1} is a subsemigroup, 1 + 1 = 0 and hence (R, + ) is
abelian. Suppose x ̂  0, 1 is in R. Then {0,1} U (x + 1) is a subsemigroup of R,
and by (* *), x = 1 + (1 + x) - (1 + x)' for some / g 2. On the other hand,
{0,1} U (x) is also a subsemigroup, thus (1 + x) = x' for some s § 2 . Hence
there is a positive integer n g 2 such that x" = x and suppose n is the
smallest. Again from the subsemigroup {0, l}U(x), we have that (1+ *""')
equals 0, 1 or x'. Since the second and third possibilities give a contradiction,
it follows that x" ' = 1 and hence each x ̂  0 in R has a multiplicative inverse
and R is therefore a near-field.

Suppose the near-field R is finite. Since 1 + 1 = 0 in R, R has characteris-
tic 2 and by Corollary 2 in Ligh, McQuarrie and Slotterbeck (1972), the order
of R is 2" for some positive integer n. Let 2" — I = p"1 • • • p"> where each p, is
an odd prime. Since (R — 0,.) is a group, for each p"\ there is a subgroup 5, of
order p"\ Thus the semigroup 0 U S, has order pT'+ 1 = 2"\ By Theorem 1 in
Ligh and Neal (1974), n, = 1 for each i. Hence

By expanding the right-hand side of the above equation, one gets a contradic-
tion if j g 2. Thus 2" — 1 = p and (R - 0,.) is a commutative group. It follows
that R is a field.
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