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On an application of the complex

nonlinear complementarity problem

J. Parida and B. Sahoo

A theorem on the existence of a solution under feasibility

assumptions to a convex minimization problem over polyhedral

cones in complex space is given by using the fact that the

problem of solving a convex minimization program naturally leads

to the consideration of the following nonlinear complementarity

problem: given g : u -*• (f1 , find z such that g(z) € S* ,

z € S , and Re(g{z), z) = 0 , where S is a polyhedral cone

and 5* its polar.

1. Introduction

In [5] and [6], the authors have studied the existence and uniqueness

of a solution to the following nonlinear complementarity problem: given

g : C •*• C , find s such that

g(z) € S* , z € 5 ,

(1.1)
Re<g(z), z) = 0 ,

where S is a polyhedral cone in C and S* the polar cone of 5 . The

purpose of this paper is to apply the existence theorem of [5] to study the

extent to which the existence of a feasible solution ensures the existence

of an optimal solution to the following convex program:

MINIMIZE Re f(z, 1)
(1.2)

SUBJECT TO g(z) £ L* , z (. P ,
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where L and P are polyhedral cones in C and C respectively,

g : U -*• Cy is an analytic mapping concave with respect to L* on P ,

and / : Q •* C is an analytic mapping having a convex real part with

respect to R+ on {(2, 3) : z 6 P} . Here the linear manifold Q is

given by

Q = {(s, w) € Cn x cn : w = J\ .

We show that the above problem has an optimal solution if the feasible

region of the problem is bounded and has a nonempty interior. Further we

show that the above conclusion also holds if the boundedness of the

feasible region is relaxed, but in that case, we have to impose more

restrictions on the growth of the mapping / .

2. N o t a t i o n s and d e f i n i t i o n s

Let C [if ] denote the w-dimensional complex [ r e a l ] space wi th

he rmi t i an [ euc l idean ] norm ||*|| and the usua l inner product < • , •> .

if denotes t h e nonnegat ive o r than t of if . I f A i s a m a t r i x , then

T — HA , A, A denote i t s transpose, complex conjugate, conjugate transpose.

For any x € R71 , ||a:|| = max{a;. : 1 £ i S n\ denotes the I -norm.

A nonempty set S c C is a polyhedral cone if, for some positive

integer k and A d C ,

5 = {Ax : x € ffy .

S* = {a € CT : y € S =* Re<z/, z > 5 o}

i s t h e p o l a r of S . For a r e a l s c a l a r p > 0 , we denote

1 2 1 S 2
z(p) = [Ax : x- = p, i = 1 , 2 , . . . , k) . For any z , z € 5 , z 2 s

1 2 1 5 2 1 2
s t a t e s t h a t 3 - 3 € S while s > 3 means t h a t z - z i i n t 5 .

3. Solvability of the convex program

A sufficient condition [4] for z d C to be an optimal point of

(1.2) is the existence of an u € C such that
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3° € P , «° € L ,

(3.1) 3°) P*

= 0

Re<?(2°), w°> = 0 ,

where J \z ) denotes the m x n matrix whose i, j'-th element is
9

817.(3 1/32. . Let the function G{z, u) be defined by

(3.2) , u) =

(3.3)

for all (3, M) E (T . Now it is easy to see that the point [z , u )

satisfying (3.1) is a solution of the system

(3, u) € P x L , G(z, u) i P* x L* ,

Re<G(s, M ) , (3, M)> = 0 ,

which is of the form (l.l). So we have:

REMARK 3.1. If (s , u ) is a solution to the nonlinear

complementarity problem, as given by (3.3)> then 3 solves the convex

program (1.2).

THEOREM 3.2. Let f : Q •* C and g : d1 •* d71 be analytic in Q

and Cr respectively. Let f have a convex real part with respect to R+

on {(2, z) : z € P) and g be concave with respect to L* on P .

Suppose that

(i) the set K = {z € P : g{z) € L*} be bounded,

(ii) there be a z € P such that g{z) € int L* .

Then there exists a z which is optimal for problem (1.2).

Proof. Since P, L are polyhedral cones, there exist matrices B, E

and positive integers q, r such that
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P = {Bs : s € ^ } ,

L = {Et : t € R^) .

For each p € R , def ine

D±(p) = {z = Bs € P : ||S||OT £ min(p, p ) }

P 2 (p) = {a = Et € £ : ||t||M 5 p} ,

where p is a positive number such that 3(p) 2 3 for all z i K . Since

D{p) is a nonempty, compact, convex set, from Theorem 3-1 of [5] it

follows that there exists a t, = (z, u) (• D(p) such that

(3.U) Re<ffU), £'-£> £ 0

for all C1 = (s' , u') € D(p) . If t, = (s, M) satisfies (3-1*), then a

satisfies

(3.5) Re(vs/(s, 2)+V-/(3, z)-J
1(z)u, 2r-s)> 0

for all z' € 0 (p) , and w satisfies

(3.6) Re<#U), M'-M> > 0 for all u' € Z?2(p) .

This can be checked by setting «' = u and z' = z in (3.U) separately.

Note that for each p € R+ , we get a point (s, w) € D(p) satisfying

(3.*+). Let V denote the set of all such points. We shall show that V

is bounded. Assume to the contrary that V is unbounded. This implies

that there is a sequence { [z , u )} in V such that

(3.7) HsX + ||*X -» as i +» .

But each z is in the compact set D (p) , and consequently, from (3-

we get that lit̂ ll̂  •* °° as i -*•<*>. Hence we can assume that ||*'*" |loo 2 p

for -i = 1, 2 Noting that (s, 0) € D{p) for each p 2 p , from

(3-1+)-(3.6) we obtain
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Re( T + T - «T [z } —.—, z-z ) > 0 ,
x l l* lL 11**11. ff II* L '

(3.8)

Now the point — j — € i>2(l) for i = 1, 2, ... . Thus the sequence

lies in the compact set D, (p) x D?(l) , and therefore there is a

subsequence which converges to some (z, u) in the compact set. If we

retain the same superscripts to denote the subsequence and go for the limit

of (3-8), we get

Re(jf(S)5, z-z) < 0 ,

(3.9)
Re<g{z), u) 5 o .

From the concavity of g with respect to L* on P and u € L , we have

Re<^(3), u) ,

and by (3.9), Re<g'(s), u) S 0 . This contradicts the assumption that

g[z) € int L* . Thus we have shown that V is bounded.

0 ~The boundedness of V implies that there exists a p > p such that

u(p°) 5 M if (s, M) € V . Let (s°, w°) satisfy (3.U) for all

(s1, u') € Z?(p°) . Thus, for u(p°) % u ,

Re(g(z°), u'-u°) > 0 for all u' € D2{p°) ,

and by Lemmas 3.2 and k.1 of [5],

u° € L , ff(8°) « £ * , Re< S( 2°), W°> = 0 .

Hence z i K . This implies that for z{p ) > z ,
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> 0

for all z' € D [p ) . Again using the lemmas quoted just above, we obtain

2° 6 P . V(,°, 7) + V(.°, 7) - /(2°)M° € P* ,

( 2 ), s 2 } = 0 .

Thus we prove that (s , u J is a solution to the nonlinear

complementarity problem, as given by (3.3)- Now, from Remark 3.1, it

follows that z is an optimal solution to the convex program (1.2).

In the above theorem, the set K of the feasible solutions to (1.2)

is assumed to be bounded. In the next theorem, we shall show that this

boundedness of K can be relaxed by imposing stricter conditions on the

function / .

LEMMA 3.3. Let f have a convex real part with respect to E+ on

{(2, z) : z f P) and g be concave with respect to L* on P . Then

G{z, u) , as given by (3.2)j is monotone over P * L .

Proof. Since g is concave with respect to L* on P , for

x, y d P and u, v € L ,

(3-10) Re^{u-v)H[g(x)-g(y))-(x-yf\j"g(x)u-J
H
g(y)vJ^ > 0 .

From the convexity of Re / , we have

(3.11) Ke(x-yf{Vzf(x, x)+V^f(x, x)-V./(j/, y)-^(y, j)) > 0

Now adding (3.10) and (3.11), the result of the lemma follows.

THEOREM 3.4. Let f and g be defined as in Theorem 1.2, and let

there be a s € P such that

Vs/(2, z) + V-/(S, 2) € in t P* ,

g{z) i in t L* .

Then there exists a solution to the convex minimization problem (1 .2) .

Proof. From the assumption of th is theorem and Lemma 3.3, i t follows
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that G(z, u) is monotone over P x L , and for (s, 0) € P x L ,

G(z, 0) € int(P x L)* . Now, applying Theorem k.2 of [5], we get a point

(3 , u ) that solves (3.3). The conclusion of the theorem then follows

from Remark 3.1.

REMARKS 3.5. Recently, Kojima [2] has studied the existence of a

solution to a convex minimization problem over orthant domains in real

space. If L = R , P = R , and /, g are real-valued continuously

differentiable functions on if , then Theorem 3.2 reduces to the result of

Kojima [2, page 269]. Moreover, our Theorem 3.4 suggests an alternate set

of hypotheses under which the result of Kojima holds.

— 7? 77

If / is defined by f{z, z) = a z + %s Ms for some positive semi-

definite hermitian matrix M and c € C , then the assumptions of Theorem

3.k precisely mean that Re / is bounded below on the nonempty polyhedral

convex set K of the feasible points of (1.2). If this is the case, then

the conclusion of Theorem 3.1+ follows from the Complex Frank-Wolfe Theorem

[3, Theorem It.3.6], [/].
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