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Abstract

The representation of iceberg calving in numerical models is a key source of uncertainty in
century-scale sea-level rise projections. Parameters central to model representations of calving,
including the tensile strength of glacier ice, remain poorly constrained. Grain-size and sample-
size dependence make it difficult to reconcile laboratory and in situ estimates of ice tensile
strength. Further, assumptions of various numerical models obscure comparison of the ‘strength’
parameter with a physically observable value. Here, we address the problem of fracture during
calving using an analogous natural laboratory: a viscoelastic analysis of observed surface deform-
ation and associated stresses in the 2015 collapse of eastern Skaftá cauldron, Vatnajökull ice cap,
Iceland. We find that the ice within the cauldron could have experienced instantaneous elastic
stress on the order of several MPa. We observe surface crevasses at the cauldron edges and center,
but find that large areas of ice remain intact despite high stress. Our findings suggest a tensile
strength of glacier ice on the order of 1 MPa, consistent with laboratory estimates but exceeding
previous glacier-specific estimates.

1. Introduction

Iceberg calving is a key source of uncertainty in future projections of global sea-level rise
(Church and others, 2013). Recent modeling efforts, including the use of continuum damage
mechanics and discrete element models, have made considerable progress toward a dynamic-
ally consistent representation of calving. However, many models still rely on poorly con-
strained parameters. One parameter appearing in several studies is the strength of glacier
ice (e.g. Pralong and others, 2003; Duddu and Waisman, 2013; Åström and others, 2013;
Krug and others, 2014; Benn and others, 2017). Here, we refer to ice strength as a bulk prop-
erty equaling the maximum stress intact ice can sustain before fractures appear at macroscale,
and we focus specifically on the tensile stress regime. Although there are some constraints on
the tensile strength of glacier ice from laboratory experiments (Currier and Schulson, 1982; Lee
and Schulson, 1988; Xian and others, 1989; Druez and others, 1989) and field observations
(Vaughan, 1993), the ranges derived from the different methods barely overlap. Further,
models disagree about what part of the observed range is relevant to glacier modeling and
even what style of deformation – viscous, elastic or a combination – determines the stresses asso-
ciated with fracture (e.g. Bassis and Ma, 2015; Ma and others, 2017; Borstad and others, 2017).

A major challenge in constraining the strength of glacier ice is that estimates derived from
laboratory experiments do not agree with the limited estimates from in situ observations.
Laboratory estimates range from 0.7 to 3.1 MPa (review by Petrovic, 2003) for laboratory
and lake ice; Druez and others (1989) found tensile strength as high as 5 MPa for laboratory-
grown glaze ice. In situ observations of glaciers, meanwhile, suggest a tensile strength ranging
from 0.09 to 0.32 MPa for glacier ice (Vaughan, 1993). Part of the discrepancy may be the
grain-size dependence of the tensile strength of ice (Currier and Schulson, 1982).
Laboratory experiments conducted with finer-grained ice than is typical in glaciers may over-
estimate the tensile strength. In addition, failure can be detected at millimeter scale in the
laboratory (Currier and Schulson, 1982) but only at multi-meter scale in existing field and
remote-sensing observations (Colgan and others, 2016). Another source of discrepancy is
that stress is difficult to observe in situ (Pfeffer and others, 2000; Colgan and others, 2016),
so estimates derived from glacier-scale observations, such as Vaughan (1993), must assume
a rheology to convert observable strain rates into stresses. Assuming a viscous, Glen’s law-type
rheology will produce quantitatively different stresses, and therefore different estimates of ice
strength, than would an elastic or viscoelastic rheology (Reeh and others, 2003; Borstad and
others, 2017). Further, Dempsey and others (1999) found that the measured tensile strength
of sea ice scaled with sample size, implying that tests across a wide range of sample scales
are needed to relate fracture mechanics observed in the laboratory with field-scale processes.

A second challenge in determining a consistent tensile strength of glacier ice is that various
numerical models select different ice strengths according to the demands of their fracture- or
damage-modeling framework. For example, Åström and others (2013, 2014) and Benn and
others (2017) implement an elastic stress threshold to break ‘beams’ connecting elements of
ice. The stress threshold σc ranges from 0.1 to 1 MPa, within the range of both laboratory
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and field estimates. Yet the numerical model used in those studies,
the Helsinki Discrete Element Model, uses a Young’s modulus an
order of magnitude too low for glacier ice to offset the effect of
model elements several orders of magnitude larger than glacier
ice grains (Benn and others, 2017). Because elastic stress is
dependent on Young’s modulus (see Eqns (1–3) below), and
the strength of glacier ice is grain-size dependent (Currier and
Schulson, 1982), it is unclear that the stress threshold σc is the
same physical quantity measurable in the laboratory or field.

By contrast, Krug and others (2014) use a tensile stress thresh-
old for fracture of 0.20 MPa in their continuum damage
mechanics framework. Pralong and others (2003), Pralong and
Funk (2005) and Duddu and Waisman (2013) use a similar
threshold, with tensile strength ranging from 0.20 to 0.50 MPa,
based on the macroscale condition derived by Vaughan (1993).
This entire range is below even the lowest laboratory estimate of
ice tensile strength (Petrovic, 2003). The authors write that the
stresses their model produces are too small to reach any higher
damage threshold. However, the stresses they model with a
Glen’s law rheology are active over timescales much longer than
the viscoelastic relaxation time of ice (Maxwell time tr≈ 8–12 h,
see Table 1), and thus do not capture instantaneous, elastic fluc-
tuations of stress that could be more important in exceeding the
stress threshold for crevasse propagation. Indeed, Banwell and
others (2019) estimated maximum elastic stress due to the flexure
of an Antarctic ice shelf to reach 0.5 MPa without any associated
fracturing.

Ice subsidence events offer a novel avenue to examining ice
strength at geophysical scale. A number of theoretical results
have taken advantage of the defined loading at ice cauldrons
and supraglacial lake sites. For example, Banwell and others
(2013) used the elastic-plate analysis derived by Sergienko
(2005) to compute the fracture spacing associated with supragla-
cial lake drainage on Antarctic Peninsula ice shelves. Evatt and
Fowler (2007) computed fracture spacing associated with caul-
dron collapse on the basis of viscous beam theory derived in
Evatt and others (2006). Even extraterrestrial ice subsidence has
supported studies of ice stress and fracture: Walker and Schmidt
(2015) computed the stress and surface morphology associated
with collapse of ice over trapped water pockets on icy satellites,
using a model of ice shell flexure with an elastic fracturing layer
(Walker and others, 2012a).

Here, we build on previous studies of subsidence events to
estimate the surface stress associated with a single ice cauldron
collapse event. We apply a new viscoelastic analysis to interpret
detailed observational data of the 2015 collapse of eastern
Skaftá cauldron, Vatnajökull ice cap, Iceland. Our Maxwell visco-
elastic rheology accounts for both short-term elastic and longer-
term viscous deformation (for viscoelastic treatment of glacier
ice see Gudmundsson, 2011; Goldberg and others, 2014;
MacAyeal and others, 2015; Robel and others, 2017), but we
focus on the elastic stress active over the short timescale of cre-
vasse nucleation and propagation. Our analysis is well constrained
by observations, including high-resolution, time-dependent
digital elevation models of the cauldron surface to constrain the
magnitude of collapse (Porter and others, 2018) and an in situ
GPS record that constrains the timescale of collapse. We are
thus able to estimate the maximum stress that the cauldron
collapse could have produced, and we compare the maximum
stress field with the observed crevasse locations to constrain
glacier tensile strength.

2. Physical setting of eastern Skaftá cauldron

The Eastern and Western Skaftá ice cauldrons are two spots of
elevated geothermal heat flux located in the southwest of

Vatnajökull ice cap, Iceland (Fig. 1). Locally warm conditions at
the base of 400 m thick ice lead to enhanced subglacial melting
and eventual flotation, creating a 300 m thick ‘internal ice shelf’
confined on all sides by grounded, temperate ice. Water builds
up at the base of the cauldrons for 2–5 years (Guđmundsson
and others, 2016) and finally is drained by glacial outburst floods
( jökulhlaups) lasting hours to days (Björnsson, 1992). Sudden
drainage of the cauldrons leads to high strains and stresses in
the cauldron ice, producing rings of fractures. In quiescent
years, the cauldrons can be identified by persistent, kilometer-
wide depressions on the glacier surface (Einarsson and others,
2016).

Between 29 September and 3 October 2015, subglacial water
that had accumulated over 5 years drained from the eastern
Skaftá cauldron in a jökulhlaup of record proportion: peak dis-
charge downstream in the river Skaftá exceeded 3000 m3 s−1

(Jóhannesson and others, 2016). The cauldron collapse created
a roughly circular surface depression, approximately 110 m deep
at its center and 2.7 km in diameter. Rings of fractures are visible
at the ice surface in optical imagery and in the 2 m resolution
Arctic Digital Elevation Model (‘ArcticDEM’; Porter and others,
2018) snapshot acquired on 10 October 2015, just 7 days after
the end of the drainage event. Figures 2 and 3 show satellite, aerial
and cross-sectional views of the cauldron and its crevasses.

A GPS station, placed near the center of the cauldron by the
Icelandic Meteorological Office, recorded vertical displacement
during the collapse with temporal resolution of 5 s
(Guđmundsson and others, 2018). Figure 3 shows the net subsid-
ence and subsidence rate recorded between 27 September and 10
October 2015. We note two distinct phases of collapse: an initial
rapid collapse, with peak subsidence rates of 3 m h−1, followed by
a prolonged period of slower (0.5 m h−1) settling.

3. Maximum stresses in intact and fractured ice

We will use two complementary methods to compute the max-
imum instantaneous stress associated with the cauldron collapse.
Motivated by the temporal pattern of subsidence described above,
we treat glacier ice as a viscoelastic material (e.g. Reeh and others,
2003; Gudmundsson, 2011; Rosier and others, 2014). The max-
imum instantaneous stress in a viscoelastic cauldron collapse is
elastic in nature and sustained during an initial period shorter
than the Maxwell time tr. As the system approaches time tr, vis-
cous dissipative effects become dominant. In both regimes, stress
is highest at the surface and base of the ice, a distance of half the
ice thickness h from a central neutral plane of deformation (e.g.
Ugural, 2018). In Section 3.1, we ignore time-dependence to esti-
mate the largest-magnitude linear elastic stress that could have

Table 1. Material parameters and settings used in the analysis of Sections 3.1
and 3.2

Parameter
Representative

value Range tested Notes

g 9.8 m s−2 - Acceleration due to gravity
ρi 920 kg m−3 - Density of ice
E 1.0 × 109 Pa 1.0 × 108− 1.0 × 1010

Pa
Young’s modulus

η 1.5 × 1013 Pa s 5.0 × 1012− 5.0 ×
1014 Pa s

Dynamic viscosity of ice

ν 0.30 0.10 − 0.48 Poisson’s ratio
(dimensionless)

tr 11 h 0.3 − 4100 h* Maxwell relaxation time,
2η(1 + ν)/E

R 1535 m 1500 − 3000 m Cauldron radius
h 300 m 250 − 500 m Cauldron ice thickness

*min/max corresponding to ranges of η, ν, E.
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arisen from the observed surface curvature. The GPS record
(Fig. 3) suggests, however, that there was a non-negligible period
of slow subsidence lasting several days, consistent with viscous
settling. In Section 3.2, we account for these viscous effects
using a Maxwell linear viscoelastic rheology applied to an idea-
lized circular cauldron.

3.1. Purely elastic stress estimate

We first investigate the maximum stress possible under a linear
elastic collapse. Stress concentration around any pre-existing frac-
tures would tend to limit stress near the surface of a collapsing ice
plate; here, we examine the large-magnitude stresses that could be
produced if the entire surface of the eastern Skaftá cauldron were
intact prior to collapse. Assuming initially intact ice also facilitates
an estimate of surface stress directly from the observed surface
slope.

In the purely elastic regime, the normal stresses σxx, σyy and
shear stress τxy at the surface of a sagging two-dimensional ice
plate are related to the surface curvature (Ugural, 2018):

sxx = − Eh
2(1− n2)

kxx + nkyy
( )

, (1)

syy = − Eh
2(1− n2)

kyy + nkxx
( )

, (2)

txy = − Eh
2(1+ n)

kxy, (3)

where h is the ice thickness, ν is Poisson’s ratio, E is Young’s
modulus and curvature κij is the second derivative with respect
to spatial coordinates i, j of surface elevation S. Representative
values of h, ν, E are given in Table 1. We note that our analysis
uses parameter values calibrated to reflect the magnitude and
speed of observed cauldron deformation, which should not be
interpreted to constrain their true material value. For example,
our effective Young’s modulus E = 1.0 GPa produces appropriate
subsidence but is at the low end of estimated material Young’s
modulus of ice (e.g. 0.8 GPa in Vaughan, 1995; 4–10 GPa in
Rist and others, 2002).

From the stress components of Eqns (1–3), we compute the
maximum principal stress

s1 =
sxx + syy

2
+

��������������������
sxx − syy

2

( )2
+t2xy

√
, (4)

with the sign convention that σ1 > 0 is compression and σ1 < 0 is
tension.

We used Eqns (1–4) to deduce the largest-magnitude elastic
stress that the 2015 eastern Skaftá cauldron collapse could have
generated. First, we approximated an ‘intact’ ice surface from
the 10 October 2015 ArcticDEM data. We applied a median filter
with a 10 m × 10 m window to the 2 m ArcticDEM surface
(Porter and others, 2018) and used a high-pass filter with 1 m
threshold to identify and mask crevasses. The resulting mask is
shown in Figure 4a. We then fit a two-dimensional, 5th-order
B-spline to the filtered and masked surface elevation (Fig. 4b)
using built-in functions of SciPy v1.2.1 and calculated the surface
curvatures kij = ∂2ijS. Next, we calculated the stress components
with Eqns (1–3) and maximum principal stress with Eqn (4)
(Fig. 4c). Finally, we examined the maximum principal stress in

Fig. 1. Location of eastern Skaftá cauldron (blue triangle) on the Vatnajökull ice cap
and in Iceland (inset). In the inset map of Iceland, dark stripes indicate volcanic
regions, white patches indicate glaciers and ice caps, and the red rectangle indicates
the region of interest. Surface topography is from ETOPO1 (Amante and Eakins,
2009), with contours at intervals of 250 m a.s.l (light) and 1000 m a.s.l. (heavy con-
tours). Light blue sinuous lines are rivers, white is ice cover, and brown and green
are non-ice surface. The figure was made using the Generic Mapping Toolbox
(GMT; Wessel and others, 2013).

Fig. 2. Comparison of the surface of eastern Skaftá cauldron in (a) October 2012 and
(b) October 2015 based on hillshade view of ArcticDEM surface elevation data (Porter
and others, 2018); and (c) an oblique aerial view (photo by Ragnar Axelsson, used
with permission) of the cauldron following its collapse. In panel (b), a red triangle
indicates the location of a GPS station maintained by the Icelandic Meteorological
Office, a blue line indicates the transect shown in Fig. 3, and an area with no data
appears white. Horizontal scale shown in panel (a) is maintained in panel (b).
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the areas we had identified as crevassed (or ‘fractured’) and
un-crevassed (or ‘intact’).

3.2. Distribution of elastic stresses in intact versus fractured
areas

Figure 4 shows the post-collapse surface and pattern of maximum
principal stress we computed. There are alternating, roughly con-
centric areas of high tensile (− ) and high compressive (+) stress.
The edge of the cauldron generally shows high tensile stress,
though stress is lower and ice remains intact in two regions
where the radial symmetry is distorted (Figs 4a, c). There is
another area of high stresses, both compressive and tensile, near
the center of the cauldron, where a bump creates steeper surface
curvature. Guđmundsson and others (2016) suggest that the
bump is an area of thicker ice rather than a bedrock protrusion.
We observe crevasses in the high-stress areas at both the edge
and the center of the cauldron. In between, the ice surface appears
intact.

Figure 5 summarizes the distribution of stresses in areas
coinciding with intact (gray) or fractured (white) ice. We
sampled the maximum principal stress field shown in
Figure 5 for all points in the domain on the 2 m × 2 m
ArcticDEM grid. In areas of intact ice, which accounts for
89% of the ice surface, the distribution of surface maximum
principal stress peaks near 0 MPa. However, the intact ice
area also includes locations of higher stress; more than 20%
of the intact ice sampled is found where maximum principal
stress exceeds 1 MPa in tension. By contrast, the surface max-
imum principal stress distribution for crevassed areas (9.1%
of the ice surface) is flatter, with greatest frequency around
5 MPa tension. The stress distributions for intact and crevassed
areas are distinct: Less than 3% of the fractured sample had
maximum principal stress 0 − 500 kPa in tension, and tensile
stresses up to 2.5 MPa are more common in intact than in cre-
vassed areas.

3.3. Stress associated with viscoelastic collapse

Because the 2015 eastern Skaftá cauldron collapse took place
over several days, viscous deformation likely played a role in pro-
ducing the observed post-collapse surface. As a result, deducing
stress from final observed surface curvature as in Section 3.1 will
tend to overestimate the maximum principal stresses that could
have been active during the elastic phase of collapse. We now
introduce a Maxwell viscoelastic rheology to account for both
viscous and elastic effects. Several previous authors have applied
Maxwell viscoelasticity to glacial ice under transient loading
(Gudmundsson, 2011; Goldberg and others, 2014; MacAyeal
and others, 2015; Banwell and MacAyeal, 2015; Robel and
others, 2017); in particular, Gudmundsson (2011) shows that
Maxwell viscoelasticity is an appropriate simplification from
Burgers viscoelasticity as implemented by Reeh and others
(2003).

A Maxwell viscoelastic material combines viscous and elas-
tic elements in series. At short timescales (t < tr), the deform-
ational response to forcing is elastic, while at longer timescales
(t > tr) viscous deformation dominates. Following Howell and
others (2009), the Maxwell constitutive relation for linear visco-
elasticity is

h

m

∂sij

∂t
+ sij = h

m

∂

∂t
ldij1kk + 2m1ij
( )

, (5)

with η the dynamic viscosity, μ the shear modulus, σij the Cauchy
stress tensor, εij the strain tensor, λ the first Lamé parameter and
δij the Kronecker delta. The elastic moduli of Eqn (5),

m = E
2(1+ n)

, l = nE
(1+ n)(1− 2n)

= 2mn
1− 2n

, (6)

are defined in terms of Young’s modulus E and Poisson’s ratio ν.
The ratio of dynamic viscosity η to shear modulus μ defines the

Fig. 3. (a) Surface elevation on 15 October 2012 (labeled
‘Pre-collapse’) and 10 October 2015 (labeled ‘Post-collapse’)
from ArcticDEM (Porter and others, 2018) along transect P − P′

shown in Figure 2. Red triangle indicates GPS station location,
with a representative vertical path during subsidence indicated
by dotted line. (b) GPS record of net subsidence from initial eleva-
tion of 1660 m; (c) GPS vertical displacement rate during the 2015
collapse. Horizontal axis labels on lower panels indicate 2015 cal-
endar date.
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characteristic Maxwell relaxation time tr over which stress decays
in the material subject to constant strain loading:

tr = h

m
= 2h(1+ n)

E
. (7)

Previous authors studying timescales between the Maxwell time
and the long-timescale viscous limit have allowed non-linear,
Glen’s law creep in the viscosity η (Goldberg and others, 2014;
Robel and others, 2017). Here, by contrast, we study the cauldron
system close to the Maxwell time tr, such that the response to for-
cing is predominantly elastic with viscous deformation becoming
apparent only later. For this reason, we take viscosity η to be lin-
ear. Linear viscosity also appears as a simplifying assumption in
notable previous theoretical studies of glacial flow (Nye, 1970;
Iken, 1981; Fowler, 1986) and is applied in the Burgers viscoelas-
tic model of Reeh and others (2003). Lastly, choosing a linear
viscoelastic constitutive relation simplifies our analysis by exploit-
ing the Laplace transform correspondence of linear elastic and
viscoelastic constitutive relations (Jull and McKenzie, 1996;
Segall, 2010).

The Laplace transform L of a function g(t) and its inverse L−1

are given by

L{g} = g(s) =
∫1
0
g(t) e−st dt, (8)

L−1{g} = g(t) = 1
2pi

∫c+i1

c−i1
g(s) esx ds, (9)

respectively, where t [ R, the Laplace variable s [ C, and Re(s) = c
(see e.g. Mathews and Walker, 1964).

Assuming negligible initial stress in the cauldron ice, the
Laplace transform of Eqn (5) is

sij = 2
hs

1+ trs
1ij +

l+ 2
3m+ ltrs

1+ trs
1kkdij, (10)

where bars denote transformed variables. Defining the

Fig. 4. (a) Mask distinguishing intact ice (dark gray, 3 964 764 of 4 443 505 pixels or 89% of the surface) from unmasked fractured ice (402 396 pixels or 9.1% of the
surface); (b) smooth interpolated post-collapse surface elevation; and (c) corresponding maximum principal stress field for eastern Skaftá cauldron. All images
include hillshading from ArcticDEM to reveal surface crevasses, and hatching indicates no-data areas in the ArcticDEM observations (1.7% of the surface). Ticks
on the outside of each panel appear at 500 m intervals.

Fig. 5. Normalized histogram of maximum elastic stresses within the
cauldron, at locations identified as intact (dark gray) or fractured
(white) from the ArcticDEM surface observations (Porter and others,
2018). Red shading denotes the tensile regime and blue shading the
compressive regime. Vertical dashed line indicates 1 MPa tensile
stress, which we suggest as the tensile strength of glacier ice in
Section 4.
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transformed Lamé parameters

m = m
trs

1+ trs

( )
, l = l+ 2m

3(1+ trs)
, (11)

assuming isotropy and neglecting shear, Eqn (10) takes the form
of the constitutive relation for an isotropic, linear elastic material
in transformed space (Landau and Lifshitz, 1959):

sij = 2�m1ij + �l1kkdij. (12)

This elastic-viscoelastic correspondence allows us to derive a
linear viscoelastic model by taking the inverse Laplace transform
of an elastic deformation equation. We therefore proceed with
analyzing a linear elastic collapse in Laplace space.

For simplicity, we approximate the cauldron as a circular plate.
A radially symmetric plate deforms according to the plate-
bending equation,

�D∇4�w = −�f , (13)

where �D is the transformed bending modulus, �w is the trans-
formed deflection from initial position, and �f is the transformed
loading (Landau and Lifshitz, 1959; Howell and others, 2009).
Here, the plate is sagging downward under its own weight, and
the loading in physical space is simply f = ρi g h, with ρi the dens-
ity of glacier ice, g the acceleration due to gravity and h the ice
thickness. The transformed loading is �f = f /s, with s the
Laplace variable.

The Laplace-transformed elastic bending modulus in Eqn (13) is

�D =
�Eh3

12(1− �n2)
, (14)

with bars again denoting transformed variables, and the trans-
formed Young’s modulus and Poisson’s ratio

�E = 2�m+ �m�l

�m+ �l
, �n = n

s
. (15)

Note that �D depends on the Laplace variable s via the transformed
parameters (�l, �m, �n) so our eventual viscoelastic solution will have a
time-dependent bending modulus D(t).

We choose a coordinate system with origin at the center of the
collapsing cauldron, radial dimension r increasing outward and
vertical dimension z increasing upward from the central neutral
plane. In this coordinate system, the axisymmetric differential
operator ∇4 is

∇4 = ∂4

∂r4
+ 2

r
∂3

∂r3
− 1

r2
∂2

∂r2
+ 1

r3
∂

∂r
, (16)

and we have the general solution to Eqn (13):

�w = −
�f

64�D
r4 + c1 ln r + c2r

2 + c3
2
r2 ln r + c4, (17)

with ci constants.
Around the edges of the cauldron (r = R), collapsing ice meets

intact ice. Background viscous flow of the intact ice is on the order
of 0.2 m d−1, far slower than the deformation observed within the
cauldron during its collapse (> 1 mh−1; see Fig. 3), and we do not
include it in this analysis. We therefore apply clamped boundary

conditions, i.e.

�w|r=R; 0, (18)

∂�w
∂r

∣∣∣∣
r=R

; 0. (19)

Subject to these conditions and the requirement that w(r = 0) be
finite, we find the particular solution

�w = −
�f

64�D
r2 − R2
( )2

, (20)

(see also Landau and Lifshitz, 1959).
From Eqn (20), we can define the slope w and in-plane dis-

placement ur as

w(r) = ∂�w
∂r

=
�f r
16�D

r2 − R2
( )

, (21)

ur(r) = −zw(r), (22)

where ζ denotes vertical distance from the neutral plane of the
plate, such that at the ice surface ζ = h/2. The in-plane radial
and hoop strains are

1rr = ∂ur
∂r

= −
�f z
16�D

R2 − 3r2
( )

, (23)

1uu = ur
r
= −

�f z
16�D

r2 − R2
( )

, (24)

respectively, and tensile stress toward the cauldron center is then

srr =
�E

1− �n2
1rr + n1uu( ). (25)

At last, taking the inverse Laplace transform, we find the
expressions for viscoelastic deflection and stress:

w(r, t) = − fR4

64D(t)
r2

R2
− 1

( )2

, (26)

srr(r, t) = Ef z
16 1− n2( )D(t) (n+ 1)R2 − (n+ 3)r2

( )
. (27)

In our simple viscoelastic cauldron collapse model, we use the
symbolic mathematics package SymPy v0.7.6 to find
D(t) = L−1{�D(s)}. Representative values for all parameters are
summarized in Table 1. The thickness of the ice plate
(h/R ≈ 0.2) suggests that some non-linear geometric effects are pre-
sent in the natural system but not captured in our simple model
(Howell and others, 2009), which could be remedied with a
small (� 15%) correction for thick-plate deformation (Wang and
others, 2004).

Figure 6 shows three example transects taken across the caul-
dron, and the deformed surfaces we compute for each using
Eqn (26). We have selected representative transects that cross
the deepest point of the cauldron, start and end in intact ice
around the cauldron edge, and include some visible crevasses in
the 2015 surface. All three transects show an initial elastic drop
(solid purple curves) accounting for part of the observed
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deformation, with subsequent viscous profiles (dashed curves)
settling closer to the observed final configuration. The final visco-
elastic profiles at time t = 4 d reasonably approximate the
observed surface on transects I and II. That is, Eqn (26) produces
realistic deformation and we can expect the corresponding stress
computed from Eqn (27) will be realistic. On transect III, which
has a shorter effective cauldron radius R, the viscoelastic profiles
we compute underestimate the true subsidence. To mitigate over-
and under-estimates of deformation and stress from slight asym-
metry of the cauldron, we calculate stress using an idealized effect-
ive cauldron radius as described below.

3.4. Radial stress and crevasse locations

We define the deepest point in the ArcticDEM observations as
the cauldron center, and the area of minimal difference
between 2012 and 2015 observations as the cauldron edge.
We take the mean radial distance from edge to center as the
cauldron ‘radius’ for the axisymmetric approximation. We

calculate peak instantaneous stress along an idealized cauldron
radius, at the moment the lake level drops and the cauldron
loses support, according to Eqn (27). We then sample the
observed ice surface elevation along 100 evenly-spaced radii
from the center to the cauldron edge, and we identify crevasses
using a one-dimensional analog to the crevasse-detection algo-
rithm in Section 3.1.

Figure 7 summarizes the radial location of crevasses and corre-
sponding peak radial stress along all 100 sampled cauldron radii.
Again, as in Section 3.1, we find crevasses clustered in areas of
high peak stress, with large areas of intact ice in between. Surface
stress is lowest where the stress regime transitions from compressive
(positive y-values in Fig. 7) to tensile (negative y-values). We note
an area of intact ice on all radii between approximately 700 < r <
1050 m, where the peak radial surface stress we compute ranges
from 15MPa compressive to 8MPa tensile. The peak radial stresses
we compute using this approach span a slightly larger range than
the surface maximum principal stresses computed in Section 3.1,
but they are of comparable magnitude.

Fig. 6. (a) Difference in eastern Skaftá cauldron surface elevation post-collapse versus pre-collapse (i.e. the difference of Figs 2a, b). (b) Three transects with
observed surface elevations from 2012 (dotted black lines) to 2015 (solid black lines), and surfaces of idealized elastic (solid purple) and viscoelastic (dashed)
collapse. Viscoelastic profiles shown are at 2 and 4 days after onset of collapse. All transects share horizontal and vertical scale, with 5:1 vertical exaggeration.

Fig. 7. Peak surface radial stress σrr (black curve) as a function of radial coordinate r (Eqn (27)). Vertical lines show locations of observed crevasses, with line color
indicating stress regime. Positive stress values and blue colors indicate compression; negative stress values and red colors indicate tension. A gray overlay indicates
a region of intact ice (no crevasses observed) at effective radii 700 < r < 1050 m.
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4. Discussion

The cauldron collapse we study here resulted in pronounced
deformation of the ice surface and large, deep surface crevasses
(Figs. 2, 3). High-resolution observations of the ice surface from
before and after the collapse allow us to estimate the surface elas-
tic stress field throughout the cauldron (Section 3.1) and identify
the distribution of maximum principal stress in crevassed and
intact areas (Figs. 4, 5). With our linear viscoelastic model
(Section 3.2), we are able to produce realistic post-collapse ice sur-
face profiles (Fig. 6). The same model gives us an independent
estimate of the largest-magnitude surface stress during collapse
(Fig. 7), which agrees with our first-order elastic estimate in
order of magnitude and radial pattern.

The crevasses we identify in the ArcticDEM surface (Porter
and others, 2018) are several meters wide and tens of meters
deep. Most crevasses are in concentric arcs around the outer
rim of the cauldron, though there is another set of crevasses
apparent near the cauldron center. The remaining cauldron sur-
face appears generally intact. Indeed, our median filtering algo-
rithm (Section 3.1) identifies 89% of the surface as intact ice,
9% as fractured and the remaining 2% areas of missing data.
We find that crevasses coincide with areas where maximum stress
was higher (Fig. 5).

The maximum instantaneous stresses we estimate in
Sections 3.1 and 3.2 are large, of order 1–10MPa. For compari-
son, the viscous beam stress calculated by Evatt and Fowler
(2007) for rapid cauldron collapse is of order 1MPa. Our meth-
ods in both sections do tend to overestimate stress, though for dif-
ferent reasons. In Section 3.1, we ignore time dependence and
assume an instantaneous, fully elastic collapse. Because eventual
viscous deformation would tend to reduce stress (Howell and
others, 2009), Eqn (4) will tend to overestimate the elastic stress
that contributed to the observed surface deformation.
Nevertheless, we can constrain the magnitude of overestimate.
For example, assuming cylindrical symmetry for simplicity, we
can approximate the stress components of Eqns (1–2) as

se � Eh
2(1− n2)

1
R
w
R
, (28)

with ∂2rw � (1/R)(w/R) replacing the curvature κij and all other
terms as before. We can then use representative parameter values
from Table 1 in Eqn (28) to deduce that elastic subsidence of only
10 m would be sufficient to induce elastic stress up to 1MPa. To
induce instantaneous stress of up to 10MPa requires
predominantly-elastic subsidence on the order of 100 m. The
GPS record (Fig. 3) confirms that subsidence of 10 m or more
took place during the initial elastic phase of collapse
(30 September), but that total subsidence approaching 100 m
was not reached until the viscous phase (3 October). Thus, we
conclude that instantaneous stress of order 10MPa is an overesti-
mate due to our simple method and unlikely in reality, but that
instantaneous stress of 1 MPa and higher likely did arise during
the elastic collapse.

In Section 3.2, we account for viscous effects in Eqn (27) but
overestimate stress by assuming initially intact ice. Existing near-
surface crevasses would reduce the effective thickness of the ice
plate (h in Eqn (14)) and prevent stress transmission at the ice
surface, where stress in an intact plate would be highest.
Furthermore, pre-existing fractures would tend to concentrate
stresses and thereby relieve stress in surrounding intact ice
(Rice, 1968; Weertman, 1973). The minimum length a0 of pre-
existing cracks that could concentrate stress depends on the stress

and fracture toughness (see e.g. Liu and Miller, 1979):

a0 = 1
p

K0

�������
1− n2

√

Ys

( )2

, (29)

where σ is the applied stress, K0 is the fracture toughness,
�������
1− n2

√
is a correction for plane strain stress conditions and Y is a
geometric factor. Here we use Y = 1.12 for an edge crack in semi-
infinite geometry (Broberg, 1999). We can use Eqn (29) to
compute the maximum stress σ that could be sustained before
fracture. In initially intact ice, ice grain boundaries themselves
could serve as initial ‘cracks’ concentrating stresses. With a typical
grain size of glacier ice as the initial crack length, a0≈ 5 mm
(Budd and Jacka, 1989), and a fracture toughness for glacier ice
of K0 = 150 kPa m1/2 (Rist and others, 1999), we find that applied
stress σ≥ 1MPa would concentrate along grain boundaries to
nucleate fractures. Pre-existing fractures of ∼ 5 m in length
could have concentrated stresses as low as 30 kPa, reducing even
further the largest-magnitude stress that could have been active
at the surface. Although observations in Guđmundsson and
others (2016) and Porter and others (2018) do not indicate pre-
existing surface fractures, we cannot rule out the presence of ini-
tial flaws at depth or smaller than the 2–4 m spatial resolution of
those datasets. Based on initial flaw size analysis with Eqn (29), we
conclude that peak instantaneous stress of order 10MPa is an
unrealistic overestimate, but that stress of order 1MPa could
have occurred and produced the surface crevasses observed after
the 2015 event.

An alternative interpretation of the eastern Skaftá cauldron
collapse might describe the observed subsidence as an entirely vis-
cous phenomenon, with no elastic component. According to the
usual power-law viscous rheology invoked for glacier ice (Glen,
1955), strain rate 1̇ increases with the third power of deviatoric
stress τ, which suggests that the cauldron ice could subside rapidly
under the stress induced by loss of water pressure below. We
would expect lower maximum stress in this case due to continual
viscous-regime deformation. For example, experimental results
(summarized in Goldsby and Kohlstedt, 2001) indicate that devia-
toric stresses on the order of 10MPa produce strain rates on the
order of 10−3 s−1, so the center of a cauldron of radius 1000 m
could subside at rates exceeding 1 m s−1 and rapidly relieve stress.
However, the same relationship implies that stress on the order of
1 MPa would produce cauldron-center subsidence of only
0.3 m h−1, which is insufficient for the sustained rapid subsidence
(1−3 m h−1) indicated in the GPS record (Fig. 3). Thus, Glen’s
law viscosity also suggests peak instantaneous stresses at the caul-
dron surface of 1MPa and greater.

Even in light of the overestimates inherent in our methods, our
analyses show that the collapse of eastern Skaftá cauldron and
similar events could produce peak instantaneous stress equaling
or exceeding the 0.7−3.1 MPa tensile strength of ice estimated
in laboratory experiments summarized by Petrovic (2003).
Despite such high stress, 89% of the cauldron surface area appears
intact. Indicators of ice yield observed in other settings, such as
the complete ring fractures and nearly vertical inner walls visible
on the 1996 Gjálp eruption cauldrons (Guđmundsson and others,
2004; Evatt and Fowler, 2007), are not visible in the 2015 eastern
Skaftá surface observations. Furthermore, we find intact ice with
higher frequency than fractured ice at peak tensile stress of 1
MPa and even higher (Fig. 5). If the threshold stress for fracture
were as low as 0.2− 0.5 MPa, as suggested by the glacier-specific
estimates of Vaughan (1993) and as used in continuum damage
mechanics studies (Pralong and others, 2003; Duddu and
Waisman, 2013; Krug and others, 2014), we would expect more
surface crevasses throughout the cauldron than the eastern
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Skaftá observations indicate. Both our analysis and the viscous
analysis of Evatt and Fowler (2007) support a tensile strength of
glacier ice that is consistent with laboratory values rather than
previous glacier-specific estimates.

Although we deduce tensile strength from the elastic stress
active over the short timescale of crevasse nucleation and propaga-
tion, our results are generalizable to glacier flow modeling. A gla-
cier tensile strength on the order of 1MPa is easily implementable
in short-term, process-scale modeling such as Åström and others
(2013), which already uses elastic bonds between ice ‘grains’ and
tests fracture thresholds up to 1MPa. Stress fluctuations in longer-
term, viscous ice-sheet modeling (Krug and others, 2014; Jouvet
and others, 2011) are generally too small to reach a fracture thresh-
old of 1MPa. Yet future refinements in continuum representation
of fracture and damage could implement a fracture threshold
informed by the observations and analysis we present here. In par-
ticular, a Maxwell viscoelastic rheology accounts for both short-
term elastic effects and longer-term viscous deformation. That is,
localized, short-term (t < tr) increases in stress can generate an
elastic response and propagate crevasses even as background
flow remains viscous in response to the global stress field. We
do not suggest that all ice-sheet models be redeveloped to incorp-
orate viscoelasticity. However, previous authors have successfully
applied a viscoelastic rheology to model ice damage evolution
over hours to days (Mobasher and others, 2016), tidal variability
of ice stream flow over days to weeks (Walker and others, 2012b;
Rosier and others, 2014, 2015; Robel and others, 2017) and ice
stream and ice shelf motion over months to years (Reeh and
others, 2003; Gudmundsson, 2011; Goldberg and others, 2014;
MacAyeal and others, 2015; Banwell and MacAyeal, 2015).

5. Conclusions

We have applied two complementary methods to constrain the ten-
sile strength of glacier ice from remote sensing and in situ observa-
tions. Our analysis suggests that the 2015 collapse of eastern Skaftá
cauldron, Iceland, induced tensile stress on the order of 1MPa over
much of the cauldron surface. That stress, together with pre-
existing flaws, produced a set of crevasses around the cauldron
rim and center but left much of the cauldron ice apparently intact.
Our findings support an estimate of ice tensile strength on the
order of 1MPa, broadly consistent with laboratory estimates but
exceeding previous estimates from in situ observations of glaciers.
As numerical model development advances toward more physically
consistent representation of glacier flow and fracture, we suggest
that model parameters be brought in line with natural-scale obser-
vations such as those presented here.
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