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CONICAL INVERSE MAPPING THEOREMS

HELENE FRANKOWSKA

We prove a high order conical inverse mapping theorem for set-valued maps on
complete metric spaces. An application to a control problem is provided.

1. INTRODUCTION

Inverse mapping theorems are known to be an efficient tool in analysis of a wide
range of problems. A number of them were obtained for maps between two vector
spaces. However, their application in control theory is not always straightforward: they
are either ill adapted to the nature of the problem or too weak.

Let us recall a functional analysis result (known under the names of Graves' or
Ljusternik's theorem) stating that if a continuously differentiable map / : X i—> Y
between two Banach spaces has a surjective derivative f'{x) at some x £ X, then the
inverse image f~1(-) enjoys Lipschitzian behaviour around f{x).

This statement is not strong enough to answer many questions arising in Control
Theory and Optimisation:

First of all, it happens quite often while dealing with control systems that the set
of admissible controls is not an open subset of a Banach space. This creates a need for
inverse mapping theorems on closed sets or, more generally, on metric spaces. Some
problems (such as the small time controllability one) lead to set-valued maps. Finally,
in many cases, the first order criterion may fail (f'(x) is not surjective) and higher
order sufficient conditions for invertibility are required. This also leads to "covering
conditions" of a conical nature.

In summary there is a need for high order inverse mapping theorems for nonsmooth
and even set-valued maps defined on metric spaces. This leads us to a cross-road, where
a choice has to be made between

y designing new took better adapted to our purposes
\ twisting the problems at hand to make them applicable with classical inverse

mapping theorems (for instance by finding nice smooth selections.)
We shall follow the first strategy, since very fortunately one can approach set-valued

maps on the same footing as single-valued ones. We refer to Set- Valued Analysis [1] for
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a basic treatment of several questions dealing with set-valued maps and to [2]-[6] for
higher order extensions of inverse mapping theorems. In [8] the above approach was
used to prove an "angular open mapping principle" related to the shape of reachable
sets for smooth affine control systems.

The aim of this paper is to prove a general Conical Inverse Mapping Theorem
which, in particular, may be used to study reachable sets of a wider range of control
systems than those considered in [8]. The proofs we provide here are also much simpler
than those given in [4], where a less general result was obtained.

2. PRELIMINARIES

To denote set-valued maps we shall use the "smooth" flush: ~>.
Consider a set-valued map G : X ~» Y from a metric space X with the metric dx

to a normed space Y with the norm ||-||. That is for every x £ X, G(x) is a (possibly
empty) subset of Y. The graph of G is a subset of the product space X X Y given by:

Graph(G) = {(«,») 6 X x Y | y G G(x)}

A set-valued map G is called closed if its graph is closed in (X x Y,d).
The inverse set-valued map G-1 : Y ~* X is defined by

Vy &Y, G-^y) = {x e X \y € G(x)}

For all x £ X, h > 0, denote by Bk[x) the closed ball in X of center x and radius
h > 0 and by B, the closed unit ball in Y. We also set Boo{x) = X. For a subset
L C X and x £ X, the distance from x to L is denned by

dist (a;, L) = inf dx(x,y)

When L is empty, then dist (x,L) — +oo. Finally G(L) denotes the image of L by
the map G, given by

G(L)= \jG(y)

THEOREM 1 . 1 . Consider a closed set-valued map G from a complete metric
space (X,dx) to a noimed space Y and a bounded subset K C Y. Let (zo,2/o) G
Graph(G), k > 0, e > 0, Sx > 0, 6y E [0, +oo] be given. Assume that for some

0 < a < 1 and for all (x,y) e Grapi(G) n ( ^ ( x o ) X BSy(yo)),

(1) V h 6 [0, e], y + hkK c G(Bh{x)) + ahkK.
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Define c = sup ||y||. Then, tor every (x,y) G Graph(G) and h € [0,e], satisfying
K

dx(x,x0) + h < Ss and \\y - yo\\ + chk(l + a) (l - a1/*) < 6y

we have y + (l - alk)k hkK C G(Bh(x)).

PROOF: Fix (z,y) G Graph(G), h > 0 as in the conclusion and let y G y +

(l-a1/1*)* hkK. We construct x G BK{x) satisfying y G G(x) as the limit of a

sequence we shall build. Set (uo,vo) = (*)!/)• By (1), there exists (ui,i>i) G Graph(G)

such that

(l - «1/A) fc and y G wi + (a1 / 4 (l - a1/*) hf K.

Hence ||«i — j / | | ^ cat (l —a1/4) /ifc. Assume that we already constructed (UJ,V{) G

Graph(G), t = 1, . . . ,n such that

(2) dx(ui-ltui)^ai-lf

(3) y£vi+ (a''h ( l - a1/*) h)k K.

Then
n n—1

(4) dx(x,un) ^ Y,d^i-Wi) ^^{l- a1/*) ^ a'
0

' / *

t = 0

Therefore dx{xo,un) ^ fz and using (3) we obtain

||yo - vn\\ ^ ||y0 - y\\ + \\y - y\\ + ||y - "nil

< llvo - y\\ + c ( l - a1/*)* hk + can ( l - a1/*)* h" ^ 6y.

By (3) and (1) applied to (vn ,vn) , there exists (un4.i,vn+i) G Graph(G) satisfying

(2) and (3) with i = n + 1.

Inequality (2) implies that {UJ} is a Cauchy sequence converging to some x and

inclusion (3) implies that lim V{ = y. Since Graph(G) is closed, y G G{x). Moreover,
s—»oo

by taking the limit in (4), we obtain dx(x,x) ^ h.

3. CONICAL INVERSE MAPPING THEOREM

Let T be a metric space and {AT}T£T be a family of subsets of a metric space X.
The lower limit Lim inf of AT at To G T are closed sets defined by

Lim infT^T0^T = {v G X \ lim dist (v,AT) = 0}.
T-.ro
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DEFINITION 2.1: [4] Consider (x,y) e Graph(G), Jfe > 0. The k-th order variation
of G at (x,y) is the closed subset of Y defined by

where —»o denotes the convergence in Graph(G).

In other words v £ Gk(x,y) if and only if for all sequences hi > 0, {xi,y,) €
Graph(G), converging to zero and (x,y) respectively, there exists a sequence «,• £ Y

such that

Vt ^ 1, Vi + h*vi e )

Properties of variations are summarised in the following theorem.

THEOREM 2 . 2 . [4] Let (x,y) e Graph(G), Jb > 0. TJien:

(i) For all K > Jfe, R+G*(x,y) C Gif(a:,y). In particular, t i e sequence
{ G*(x,y) }jb>o is nondecreasing.

(ii) For all Aj ^ 0, v> <E Gk(x,y), i = 0 , . . . ,m with £ A,- = 1,

»=0

Thus G1(x,y) is convex and Gk(x,y) is starshaped at zero.
(iii) If Jfe > 1, then co (G*(a;,i/)) C R+Gk{x,y). Furthermore, if the dimen-

sion of Y, dim(y^), is finite, then

co {Gk(x,y)) C (dim(y) + I )*" 1 Gh(x,y).

(iv) UA^O AG*(«, y) = Y <=> 0 G Int (co (Gk{x, y))) . Moreover, if Y is finite
dimensional, then

(5) ( J AGfc(x, y) = Y <^ 0 6 Int {Gk(x, y))

which is also equivalent to

3vi, . . . , vp £ Gk(x,y) such that 0 G Int(co{wi, . . . , wp}) .

https://doi.org/10.1017/S000497270003700X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003700X


[5] Conical inverse mapping theorems 57

THEOREM 2 . 3 . Let X be a complete metric space, G : X ~* R n be a closed

set-valued map and x £ X, y G G(x),k > 0. Consider a nonempty convex compact

subset Q C Int(G*(x,y)) and 0 < 7 < 1.

Then for all (x,y) e Graph(G) near (x,y) and all h > 0 small enough,

y + 7h"QcG{Bh(x)).

Furthermore, if

(6) m:= inf sup ||?'|| > 0
°**e<? ( )

then for all (xi,yi) G Graph(G) near (x,y) and all 3/2 near y satisfying yi G J/i
we have

dist (Xl, G-'M) 1/fc l /*

PROOF: Let 0 < A < 1 be such that 7 = (l - (1 - A)1/fc) and e > 0 be such

that Q + eB C Gk(x,y). By Theorem 2.2 (ii) the set

Fix v € Q\. Then there exists Sv > 0 such that for all 0 ^ h ^ 6r and (a;,y) G
Graph(G) satisfying dx{x,x) ^ Sv, \\y - y|| < Sv we have

y + hkv G G(Bfc(*)) + ^ ( 1 - X)hkB.

Hence for all w G Qi such that \\w — v\\ < e := eA(l — A)/2 and all x,y,h as
above we have

(7) y + hkw G G{Bh{x)) + eA(l - A)hfcB.

Since Qi is compact, there exist t;,- G (?ii* = 1, . . . ,m such that

Let ^ = mini-i^.^m 6Vt and consider 0 < h < ^ and (a,j/) € Graph(G) with
rfy(a;,5) < S, \\y — y\\ < S. Fix tu G <3i and let 1 ^ 1i ^ m be such that ||io — «j|| < e.
Then, by the choice of S, (7) holds true. Since w G Q\ is arbitrary we proved that

y + hk\(Q + eB) c G{Bh{x)) + eA(l - X)hkB.
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Adding (1 — X)h Q to both sides of the above inclusion and using that Q is convex we
get

y + hk{Q + eXB) c G{Bh{x)) + (1 - X)hk{Q + eXB).

Applying Theorem 1.1 we deduce that for all (x,y) £ Graph(G) near (x,y) and all
h > 0 sufficiently small

y + jhkQ c y + ( l - (1 - A)1/fc) * hk(Q + e\B) c G(Bh(x)).

To prove the second statement fix (a!i,2/i) £ Graph(G) near (x,y) and j/2 £ I/i + R+Q
sufficiently close to y. It is enough to consider the case j/2 7̂  l/i • Then for some h > 0
and q E Q different from zero, J/2 = J/i + ~fhkq. By (6) we may assume that ||<7|| ^ m .
By the first statement 1/2 € G(-Bfc(a;i)). Consequently,

dist (*!, G - 1 ( y 2 ) ) < ^ ( 7 | | g | | r | | / i y 2 | |

D
The above theorem yields the following "conical open mapping principle".

COROLLARY 2 . 4 . (Conical Open Mapping Principle) Let X bea complete met-
ric space, G : X ~» R n be a closed set-valued map and ~x £ X, y £ G(x),k > 0.
Consider a nonempty convex compact subset Q C Int(G*(^, j/)) and 0 < 7 < 1. TAen
{or all (x,y) £ GrapA(G) near (x,y) and all h > 0 small enough

y + [0,-r]hkQcG(Bh(x)).

PROOF: By Theorem 2.3 for all (x,y) £ Graph(G) near (x,y) and all h > 0
small enough

y + -YhkQcG(Bh(x)).

Hence for every 0 ^ A ̂  1 we have

y + y\khkQ C G(BXh(x)) C G{Bh{x)).

4. APPLICATION: GEOMETRY OF REACHABLE SETS

Let U be a complete separable metric space and / : R™ x U >-» R n be a continuous

function, XQ £ R n . We assume that

(a) 3e > 0,1 > 0 such that Vw £ U,f(,u) is Z-Lipschitz on Be(x0);

(b) for some u £ U,f(xo,u) = 0, that is, xo is an equilibrium;

(c) for all x near xo,f(x,U) is a convex, compact subset of R n .
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Consider the control system

1 *(0) = x0

where UT denotes the set of measurable maps u : [0,T] i-> U.
An absolutely continuous function x G W1>1(0,T) (the Sobolev space) is called

a solution to the control system (8) if x(0) = xo and there exists u G UT such that
x'(t) = f(x(t),u(t)) almost everywhere in [0,T].

For all T > 0 the reachable set of the system (8) at time T is given by

R(T) = {x(T) | x G W ^ O . T ) is a solution to (8)}.

The following notion was introduced in [2] to study small time local controllability.
DEFINITION 3.1: A vector v G Rn is called a variation of R(-) at zero of order

k ^ 1 if for all t ^ 0

The set of all variations of order k ^ 1 at zero is denoted by V*.

THEOREM 3 . 2 . [2, 7] Under the above assumptions, V* = -R*(0,xo). Conse-

quently co(Vk) C(n + I ) * " 1 V*.

Hence Theorem 2.3 yields

THEOREM 3 . 3 . Let k ^ 1 and Q be a nonempty convex compact subset of the

set Int(Vk) not containing zero. Then for some M > 0,e > 0, for all small t ^ 0, for

all x G R(t) and y G Be(xa) satisfying y G x + R+Q we have

The following corollary extends the result of [8].

COROLLARY 3 . 4 . Let C denote the (convex) cone spanned by Vt and K be a
closed convex cone which does not contain any whole Une such that K\{0} C Int(C).
Then tAere exist 6 > 0,M > 0 such that for all small t ^ 0 and all x G R(t) we have

PROOF: Since A"\{0} C Int(C) and C is spanned by the set co(Vfc) containing
zero, there exists e > 0 such that K D eB c ~cb\Vk)- Hence

Ql :=co{x £ K \ \\x\\ = e} Cco{Vk).

On the other hand, the cone spanned by Q\ is equal to K. Since A"\{0} C Int(C),
we have Qi C Int i~o(Vk)- Using the assumption that K does not contain any whole
line, we deduce that 0 £ Qi. By Theorem 2.2 we have Q := (n + I)1"**?! C Int(VjO.
Theorems 3.2 and 3.3 end the proof. D
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