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Abstract  For any finite group G, we impose an algebraic condition, the G™!-coset condition, and prove
that any finite Oliver group G satisfying the G®-coset condition has a smooth action on some sphere
with isolated fixed points at which the tangent G-modules are not isomorphic to each other. Moreover, we
prove that, for any finite non-solvable group G not isomorphic to Aut(A4g) or PXL(2,27), the Gl-coset
condition holds if and only if rg > 2, where rg is the number of real conjugacy classes of elements of
G not of prime power order. As a conclusion, the Laitinen Conjecture holds for any finite non-solvable
group not isomorphic to Aut(Ag).
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1. The Laitinen Conjecture

Let G be a finite group. A real G-module V is a finite-dimensional real vector space
equipped with a linear action of G, i.e. the action is given by a representation G — GL(V).

Let U and V be two real G-modules. Following [48], U and V are called Smith equiva-
lent if there exists a smooth action of G on a homotopy sphere X with exactly two fixed
points, say ¥ = {x,y}, at which the tangent G-modules are isomorphic to U and V,
respectively. The tangent G-modules are determined on the tangent spaces T, (X) and
T,(X) at « and y by taking the derivatives at « and y of the diffeomorphisms X' — X,
z+— gz, forall g € G.

Following [40], U and V are called Laitinen-Smith equivalent if U and V are Smith
equivalent and the action of G on X is such that for any element g € G of order 2* for
a > 3, the set X9 = {z € X' | gz = z} is connected. Here, G is not a cyclic group of order
2% for a > 3.

In 1960, Paul A. Smith posed a question which can be restated as follows.*

* The question is posed in [54], in the footnote on p. 406.
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Problem 1.1 (the Smith Equivalence Problem). Let G be a finite group. Is it true
that any two Smith equivalent (respectively, Laitinen—Smith equivalent) real G-modules
are isomorphic?

Following [24], for a finite group G, we denote by rg the number of real conjugacy
classes (g)* = (g) U (g7 1) of elements g € G which are not of prime power order.

In August 1996, Erkki Laitinen posed the following conjecture (see [24, Appendix], in
which the Laitinen—Smith equivalence is called 2-proper Smith equivalence).

Conjecture 1.2 (the Laitinen Conjecture). A finite Oliver group G has two non-
isomorphic Laitinen—Smith equivalent real G-modules if and only if rg > 2.

A finite group G is called a Laitinen group if G is not of prime power order and there
exist two non-isomorphic Laitinen—Smith equivalent real G-modules. So, the Laitinen
Conjecture predicts that a finite Oliver group G is a Laitinen group if and only if r¢ > 2.

Let Aut(Ag) be the group of automorphism of the alternating group Ag on six letters,
and let PXL(2,27) be the splitting extension associated with the exact sequence

1 — PSL(2,27) — PXL(2,27) — Aut(Fa7) — 1

for the projective special linear group PSL(2,27) and the group Aut(Fa7) of automor-
phisms of the field Fa7 of 27 elements. The groups Aut(Ag) and PXL(2,27) are not
solvable.

In Definition 5.1, for any finite group G, we impose the G™l-coset condition, which
implies that r¢ > 2. But, it may be that r¢ > 2 and G does not satisfy the G™l-coset
condition. In fact, for G = Aut(Ag) or PXL(2,27), rqg = 2 (see [40, Proposition 3.1]) but
neither Aut(Ag) nor PXL(2,27) satisfies the G™-coset condition (see Lemma 7.6).

Now, we are ready to state our main theorems (Theorems A, B and C).

Theorem A. If a finite Oliver group G satisfies the G™!-coset condition, then G is a
Laitinen group.

Theorem B. Let G be a finite non-solvable group not isomorphic to Aut(Ag) or
PXL(2,27). Then G satisfies the G™!-coset condition if and only if rg > 2.

Theorem C. Let G be a finite non-solvable group. Then G is a Laitinen group if and
only if r¢ > 2 and G is not isomorphic to Aut(Ag).

According to [29], for G = Aut(Ag), any two Smith equivalent real G-modules are
isomorphic. Therefore, the Laitinen Conjecture is not true for G = Aut(4g).

By Theorem C, the Laitinen Conjecture holds for any finite non-solvable group that is
not isomorphic to Aut(A4g). Theorem C was obtained earlier in the case where G is a finite
perfect group [24, Theorem A] or, more generally, a finite non-solvable gap group [40,
Theorem B3], except for G = PXL(2,27), the case covered by [30, Theorem 1.1].*

The results of [24, Theorem A], [30, Theorem 1.1] and [40, Theorems B1-B3, p. 851]
can be restated in the following way (see Theorems 1.3, 1.4 and 1.5 herein, respectively).

* We refer the reader to [35,57,58,62,63] for information about gap groups. We recall that Aut(Ag)
is not a gap group, while PXL(2,27) is a gap group.
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Theorem 1.3 (Laitinen and Pawalowski [24]). A finite perfect group G is a
Laitinen group if and only if rg > 2.

Theorem 1.4 (Pawalowski and Solomon [40]). If a finite Oliver group G is of
odd order or has a cyclic quotient of order pq for two distinct odd primes p and g, then
G is a Laitinen group. In particular, any finite abelian (more generally, nilpotent) Oliver
group G is a Laitinen group.

Theorem 1.5 (Pawalowski and Solomon [40]; Morimoto [30]). A finite non-
solvable gap group G, which is not isomorphic to PX1L(2,27), is a Laitinen group if and
only if r¢ > 2. PXL(2,27) is a Laitinen group, and therefore a finite non-solvable gap
group G is a Laitinen group if and only if rg > 2.

By [43, Propositions 5.3-5.6], the following proposition holds.

Proposition 1.6 (Pawalowski and Sumi [43]). In every case below, G is a finite
solvable Oliver group such that any two Smith equivalent real G-modules are isomorphic,
and so G is not a Laitinen group.

(i) G = S3 x Ay with r¢ = 2, in the GAP libraries [16]: G = SG(72,44).

)
(ii) G = (Z3 x Z3)* x Zy with rg = 2, in the GAP Iibraries [16]: G = SG(288,1025).
(i) G = Aff(2,3) with rg = 2, in the GAP libraries [16]: G = SG(432,734).

(iv) G = (A4 x Ay) x Z3 with rg = 3, in the GAP libraries [16]: G = SG(576,8654).

We refer the reader to [1,2,4,7,8,10-14,18,24,26-28,32,38-40,44-51,56-58] for
more results related to the Smith Equivalence Problem obtained before 2006. For the
results of 2006-2010, see [20,22,29, 30, 33,34, 41-43,59-63].

In §2, we recall the notions of Smith set Sm(G), primary Smith set PSm(G), and
Laitinen—Smith set LSm(G) of G, and we describe classes of finite groups G where
Sm(G) =0 for r¢ < 1, and LSm(G) # 0 for r¢ > 2 (Theorems 2.6 and 2.10).

In §3, for a finite group G and its normal subgroup H, we describe four subgroups
PO(G), PO(G, H), PLO(G), and PLO(G, H) of the real representation ring RO(G), and
we recall their basic properties (Lemmas 3.1, 3.4, 3.6, 3.8 and Corollary 3.9).

In §4, we define a subgroup PLO(G)¥ of RO(G) and a subset PSm®(G) of RO(G) such
that PSm®(G) C LSm(G) C PSm(G). Then, we prove the Smith Equivalence Theorem
(Theorem 4.9) asserting that PLO(G)XJ € PSm®(G) for any finite Oliver group G.

In §5, for H < G, we introduce the H-coset condition (Definition 5.1) and state our
first key algebraic result (Theorem 5.6), which we next use to construct smooth actions
of G on spheres with isolated fixed points at which the tangent G-modules are not
isomorphic to each other (Theorem 5.8). The result is a key ingredient in the proof of
Theorem A.

In §6, we prove Theorem 5.6. First, for H < G, we define a subgroup PO(G, H)¥{ of
the group PO(G, H) and we restate Theorem 5.6 by claiming that PO(G, G"")EF # 0
for any finite Oliver group G satisfying the G™!-coset condition (Theorem 6.1).
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In § 7, we prove our second key algebraic result, asserting that, except for G = Aut(Ag)
or PXL(2,27), any finite non-solvable group G with rg > 2 satisfies the G*°!-coset con-
dition (Theorem 7.1). The result is a key ingredient in the proof of Theorem B.

In §8, by using the material of §§2-7, we prove Theorems A—C. Theorems A and B
call for the new key algebraic results (Theorems 6.1 and 7.1, respectively), except for
G = Aut(Ag) or PXL(2,27); Theorem C follows from Theorems A and B.

In Appendix A, we recall the notion of Oliver group and quote results from [23,25,37].
Then, we introduce the notion of the Solomon group and restate some results from
[40,43]. At the end, we ask: is Sm(G) = 0 for any finite non-solvable Solomon group G ?

We refer the reader to the books of Bredon [3, Chapters III and VI], tom Dieck
[64, Chapters I and III] and Kawakubo [21, Chapters 3-5] for the basic material on
transformation groups that is needed in this paper.

2. The subsets Sm(G), PSm(G) and LSm(G) of RO(G)

Let G be a finite group. Two real G-modules U and V are called 2-matched if the
characters xy and xy of U and V, respectively, agree on any element of G of order 2¢
for a > 0.

By character theory arguments, x;; and xy agree on any element of G of order 1, 2 or
4 if U and V are Smith equivalent. Hence, if U and V are Laitinen—Smith equivalent, U
and V are 2-matched. The results of Atiyah and Bott [1, (7.27)] or Milnor [27, (12.11)],
as well as Sanchez [51, (1.11)] and the character theory arguments, yield the following
corollary.

Corollary 2.1 (Atiyah and Bott [1]; Milnor [27]; Sanchez [51]). Let G be a finite
group. Then for any two Smith equivalent (respectively, 2-matched Smith equivalent) real
G-modules U and V', xu(g) = xv (g) for every element g € G of order 1, 2, 4 or p*, where
p is an odd prime (respectively, p is a prime) and a > 1.

Let G be a finite group and let P(G) be the family of subgroups of G of prime power
order. Two real G-modules U and V are called P(G)-matched if for every P € P(G), U
and V are isomorphic as P-modules, i.e. xy(g) = xv(g) for any g € G of prime power
order.

Definition 2.2. For a finite group G, two real G-modules U and V are called primary
Smith equivalent if U and V are Smith equivalent and xy(g) = xv (g) whenever dim U9 =
dim V9 = 0 for an element g € G of order 2 for a > 3.

Note that two real G-modules U and V are primary Smith equivalent if and only if U
and V are 2-matched and Smith equivalent, which is equivalent to saying that U and V'
are P(G)-matched and Smith equivalent (cf. Corollary 2.1).

The Smith set Sm(G), the primary Smith set PSm(G) and the Laitinen—Smith set
LSm(G) of G are the subsets of the real representation ring RO(G) consisting of the
differences of two Smith equivalent, primary Smith equivalent and Laitinen—Smith equiv-
alent real G-modules, respectively. The last equivalence is defined for G % Zsa, where
a > 3.
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Clearly, Sm(G) = 0 (respectively, PSm(G) = 0, LSm(G) = 0) if and only if any two
Smith equivalent (respectively, primary Smith equivalent, Laitinen—Smith equivalent)
real G-modules are isomorphic. In the last case, we assume that G 2 Zga, a > 3. In
accordance with the fact that LSm(G) = 0 for G = Zy or Zg4, we set LSm(G) = 0 for
G = Zsa, a = 3. Now, for any finite group G, the sets Sm(G), PSm(G) and LSm(G) all
contain the zero of RO(G).

By the definition of Laitinen group given in § 1, a finite group G is a Laitinen group if
and only if G is not of prime power order and LSm(G) # 0.

By [24, Lemma 2.1] (cf. Lemma 3.1 of this paper), the following lemma holds and it
shows that in the Laitinen Conjecture the condition that r¢ > 2 is necessary.

Lemma 2.3 (Laitinen and Pawatowski [24]). Let G be a finite group with rg < 1.
Then LSm(G) = PSm(G) = 0.

Following [40, p. 853], we say that a finite group G satisfies the 8-condition if G does not
contain an element of order 8, or for any element g € G of order 2* with a > 3, dim V9 > 0
for any irreducible real G-module V' (see [24, Example 2.5] and [40, Examples E1-E3]).*

In general, LSm(G) C PSm(G) C Sm(G), but if G satisfies the 8-condition, the con-
verse inclusions also hold by [24, Lemma 2.6] or [40, the 8-condition lemma, p. 854].

Lemma 2.4 (Laitinen and Pawalowski [24]; Pawalowski and Solomon [40]).
If a finite group G satisfies the 8-condition, any two Smith equivalent real G-modules are
Laitinen—-Smith equivalent, and so LSm(G) = PSm(G) = Sm(G).

Lemmas 2.3 and 2.4 yield immediately the following corollary.
Corollary 2.5. If a finite group G satisfies the 8-condition and r¢ < 1, Sm(G) = 0.

We wish to find classes of finite groups G such that Sm(G) = 0 for r¢ < 1, and, for
rg 2 2, LSm(G) # 0, and therefore PSm(G) # 0 and Sm(G) # 0.

Theorem 2.6 (Atiyah and Bott [1]; Laitinen and Pawalowski [24]; Pawalow-
ski and Solomon [40]). Let G be a finite simple group. Then the Smith set Sm(G) = 0
for r¢ < 1, and the Laitinen—Smith set LSm(G) # 0 for rg > 2.

Proof. According to [1, (7.27)] or [27, (12.11)], Sm(G) = 0 and r¢ = 0 for G = Z,,
where p is a prime. Now, assume that G is a finite non-abelian simple group.

If r¢ < 1, G satisfies the 8-condition by [40, Theorem C1, p. 851, and Example E1,
p. 854], and therefore Sm(G) = 0 by Corollary 2.5.

If r¢ > 2, then LSm(G) # 0 by [24, Theorem A] (cf. Theorem 1.3 herein). O

Now, we shall describe other classes of finite groups G such that Sm(G) = 0 for r¢ < 1
and LSm(G) # 0 for r¢ > 2. First, we focus on two finite groups G with rg = 1,
which do not satisfy the 8-condition, and hence we cannot apply Corollary 2.5 to prove
that Sm(G) = 0. The groups of interest are the general linear group GL(2,3) and the
projective general linear group PGL(2, 7) of two-by-two matrixes with coefficients in the
fields F3 and F7, which consist of three and seven elements, respectively.

* In [24], a finite group G satisfying the 8-condition is called 2-proper.
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Proposition 2.7. Let G = GL(2,3). Then r¢ = 1, G does not satisfy the 8-condition,
and any two Smith equivalent real G-modules are isomorphic, i.e. Sm(G) = 0.

Proof. According to [15, §5.2] or [19, Chapter 28], the group G = GL(2, 3) of order
48 has eight conjugacy classes of elements of orders 1, 2, 2, 3, 4, 6, 8 and 8, respectively,
where the last two classes can be represented by the following two elements of order 8:

= (17) e (32).
11 12

It follows that there exists exactly one real conjugacy class (k)* in G of elements of order
8, and rg = 1 due to the unique real conjugacy class of elements of order 6.

By looking at the character table of G (see, for example, [15, p. 70] or [19, p. 327])
and computing the dimensions dimy” = %Zi:l x(h™) for the irreducible characters
x of G, we see that there exist characters y with dimy” = 0. Therefore, G does not
satisfy the 8-condition. However, G satisfies the 2-condition of [43, Definition 2.4], and
so Sm(G) = 0 by [43, Theorem 2.5]. O

Proposition 2.8. Let G = PGL(2,7). Thenrg = 1, G does not satisty the 8-condition,
and any two Smith equivalent real G-modules are isomorphic, i.e. Sm(G) = 0.

Proof. According to [55], the group G = PGL(2,7) of order 336 has nine conjugacy
classes of elements of orders 1, 2, 2, 3, 4, 6, 7, 8 and 8, respectively, where the last two
classes can be represented by the elements hZ(GL(2,7)) and h®Z(GL(2,7)) of order 8,

where
hzllandh3:32.
10 2 1

It follows that there are exactly two real conjugacy classes in G of elements of order 8,
and rg = 1 due to the unique real conjugacy class of elements of order 6.

Let N be the subgroup of the real representation ring of G consisting of the differences
U — V of real G-modules U and V with characters x = xy — xv such that x(g) = 0
for any element g € G of order |g| & {6,8}. Then N is spanned by the following three
elements:

(2Via ® Via) — (2Vip ® Vi), Voo — Ve and  (2Vzq @ Via) — (2Vre @ Vas),

where V,,, and V,,;, denote two distinct n-dimensional irreducible real G-modules and V7,
is the trivial G-module R. Just two of the G-modules Vi., Vis, Via, Ve, Vra, Vo, Vaa,
Vsp, namely Vi and Vz,, have zero-dimensional h-fixed point sets. So, G does not satisfy
the 8-condition.

If two real G-modules U and V are Smith equivalent, it follows from the description
of N and Corollary 2.1 that U —V € N and thus, dim U” = dim V" > 0 and dim Uk =
dim vV > 0. Hence, U and V are Laitinen—-Smith equivalent, proving that LSm(G
PSm(G) = Sm(G).* Consequently, as ¢ = 1, it follows from Lemma 2.3 that Sm(G) =

o=l

* By [61, Theorems 4.3 and 5.3], LSm(G) = PSm(G) = Sm(G) for G = PGL(2, q), g prime power.
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Consider the projective general linear groups PGL(n,q), the general linear groups
GL(n,q), and the affine groups Aff(n,q). By using the two canonical epimorphisms
Aff(n,q) — GL(n,q) and GL(n,q) — PGL(n,q), we see that TAff(n,q) 2= TGL(n,q) =
TPGL(n,q)-

Proposition 2.9. Let G = PGL(n,q), GL(n,q) or Aff(n,q) for any integer n > 2
and any prime power q > 2. Assume that rq = 0 or 1. Then Sm(G) = 0 and, except
for the case where G = GL(2,3) or PGL(2,7), G satisfies the 8-condition. Moreover, the
following hold:

r¢ =0: G =PGL(2,2),PGL(2,3),PGL(2,4), PGL(2,8), PGL(3, 2),
GL(2,2), GL(3,2) or Aff(2,2),

re =1: G=PGL(2,5),PGL(2,7),PGL(3,3),GL(2,3) or Aff(3,2).

Proof. By straightforward computation, or using [9], we obtain the complete list of
groups G with rg = 0 or 1 as in the conclusion, and we see that, except for the two cases
where G = GL(2,3) or PGL(2,7), every G listed above satisfies the 8-condition, and
therefore Sm(G) = 0 by Corollary 2.5. In the two exceptional cases, G does not satisfy
the 8-condition, and Sm(G) = 0 by Propositions 2.7 and 2.8, respectively. O

Theorem 2.10. In each of the cases (i)—(v), the Smith set Sm(G) = 0 for r¢ < 1,
and the Laitinen—Smith set LSm(G) # 0 for rg > 2.

(i) G =PSL(n,q) or SL(n,q) for any n > 2 and any prime power q.

(i) G = PSp(n,q) or Sp(n,q) for any even n > 2 and any prime power q.

)

) )
(iii) G = A, or S, for any n > 2.
(iv) G =PGL(n,q) or GL(n, q) for any n > 2 and any prime power q.
)

(v) G = Aff(n,q) for any n > 2 and any prime power q, except for (n,q) = (2, 3).

Proof. Cases (i)-(iii) are covered by [40]. For r¢ < 1, every group G in (i)—(iii)
satisfies the 8-condition by [40, Theorems C1-C3, pp. 851-852, and Examples E1-E3,
pp. 854-855], and thus Sm(G) = 0 by Corollary 2.5. For r¢ > 2, every group G in
(i)—(iil) is a non-solvable gap group, and thus LSm(G) # 0 by [40, Theorem B3, p. 851]
(cf. Theorem 1.5 herein).

Now, we deal with cases (iv) and (v). According to Proposition 2.9, Sm(G) = 0 when
re = 0 or 1. In [42, Proposition 5.5], it has been checked that the affine group G =
Aff(2,3) is a finite solvable Oliver group such that r¢ = 2 and Sm(G) = 0.

As PGL(n, q) is solvable ouly for (n, q) € {(2,2),(2,3)}, the groups PGL(n, ¢), GL(n, q)
and Aff(n,q) are non-solvable when (n,q) ¢ {(2,2),(2,3)}. So, if r¢ > 2 for G in (iv)
or (v), then G is non-solvable, and thus LSm(G) # 0 by Theorem C, completing the
proof. O

Theorems 2.6 and 2.10 immediately yield the following corollary.

https://doi.org/10.1017/50013091512000223 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091512000223

310 K. Pawatowski and T. Sumi
Corollary 2.11. For G as in Theorems 2.6 or 2.10, the following two claims hold:
(i) ifrg <1, then LSm(G) = 0, PSm(G) = 0 and Sm(G) = 0;

(ii) if rg > 2, then LSm(G) # 0, PSm(G) # 0 and Sm(G) # 0.

3. The subgroups PO(G, H) and PLO(G, H) of RO(G)

Let G be a finite group and let RO(G) be the Grothendieck ring of the differences U — V/
of real G-modules U and V. Recall that, as a group, the real representation ring RO(G)
is a finitely generated free abelian group whose rank, rk RO(G), is equal to the number
of real conjugacy classes (9)* = (g) U (¢~ !) of elements g € G.

Let PO(G) be the subgroup of RO(G) consisting of the differences U — V' of real
G-modules U and V which are P(G)-matched, i.e. U and V are isomorphic as real
P-modules for any P € P(G). By [24, Lemma 2.1], PO(G) = 0 for r¢ = 0 and
rkPO(G) = rg for rg > 1.

Let RO(G, G) be the kernel of the homomorphism RO(G) — Z that maps the difference
U — V into the difference dim U® — dim V. Set PO(G,G) = PO(G) NRO(G, G).

Lemma 3.1 (Laitinen and Pawalowski [24, Lemma 2.1]). For a finite group G,
the following two conclusions hold:

(i) PO(G,G) =0 forrg =0 or 1;
(ii) 1k PO(G,G) =rg —1 forrg > 2.

Lemma 3.2. Let G be a finite group acting smoothly on a disc (respectively, sphere)
M with two (respectively, three) or more isolated fixed points. If r¢ < 1, then at any
two points x and y fixed by the action of G on M the tangent G-modules T, (M) and
T, (M) are isomorphic.

Proof. Set U = T,(M) and V = T, (M). For any prime p dividing |G|, consider an
element g € G of order p® for a > 1. Then, by the Smith Theory, the set M9 = {z € M |
gz = z} is connected, and thus U and V are isomorphic as (g)-modules, where (g)
is the cyclic subgroup of G generated by g. Therefore, U and V are P(G)-matched,
ie. U—-V € PO(G).

As dimU% = dimVE = 0 by the Slice Theorem, U — V € PO(G, G), and hence if
rg <1, U and V are isomorphic by Lemma 3.1 (i). O

For H <4 G, let PO(G, H) be the subgroup of RO(G) consisting of the differences
U — V of real G-modules U and V which are P(G)-matched, i.e. U — V € PO(G), and
which are also G/H-matched, i.e. the fixed point sets UH and V! are isomorphic as real
G /H-modules, where G/H acts on U and V¥ in the standard way.*

* In [40], PO(G) and PO(G, H) are denoted by IO(G) and IO(G, H), respectively.
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Definition 3.3. Let G be a finite group. For a subgroup H < G, let (g, ) be the
number of real conjugacy classes (¢H)* in G/H such that the coset gH contains an
element of G that is not of prime power order. By the definition, r¢ ) > rg/ .

Lemma 3.4 (Pawalowski and Solomon [40, Second Rank Lemma, p. 856]).
For a finite group G' and any H < G, the inequality rc > 7, i) I true and the following
two conclusions hold:

(i) PO(G,H) =0 for r¢ = 7(G,m);
(ii) tk PO(G, H) = r¢ — 1(c,m) for r > (G m)-

Note that r(g gy = 0 if and only if rg = 0, and rg = 0 if and only if each element of
G has prime power order. Moreover, for H = G, one of the following three cases occurs:

rG ="1G,6) = 0, rg= raga =1 or rg>rgag = 1.

Therefore, r¢ = r(g,q) if and only if rg = 0 or 1. So, Lemma 3.4 generalizes Lemma 3.1.
For two subgroups H < G and K < G, consider the homomorphism

FixI"%: RO(K) - RO(K/(H N K))

given by Fix X" — v) = UHNK _ VHOK for two real K-modules U and V.
Recall that PO(G, H) consists of the differences U — V' of P(G)-matched and G/H-
matched real G-modules U and V. So,

PO(G, H) = PO(G) N Ker(FixZ : RO(G) — RO(G/H)).
Now, consider the induction homomorphism
md$: RO(K,H N K) — RO(G, H).
We wish to compute the rank of the image of PO(K, H N K') under the map Ind%.

Definition 3.5. Let G be a finite group. For two subgroups H < G and K < G,
define two numbers 7% and T(Ié ) 38 follows.

(1) rg is the number of real conjugacy classes in G represented by elements of K not
of prime power order. In particular, rg =rq.

(ii) r{é ) 18 the number of real conjugacy classes (¢H)T in G/H such that the coset
gH has an element of K not of prime power order. In particular, 7‘(GG7 H) = T(G,H)-

Lemma 3.6. For a finite group G, H < G and K < G, the inequality Tg > 7"(% H) is
true and the following two conclusions hold:

(i) IndF(PO(K, H N K)) =0 for rf§ =r(5,

(ii) rkInd%(PO(K, HNK)) = rE — T(KG,H) for rf > T(KG’H).

* In [40], rg and r(q, ;) are denoted by ag and bg, g, respectively.
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Proof. For a real K-module W, the Frobenius reciprocity law yields the equality
dim(IndG (W) = |G/HK|dim(WHNK),

Therefore, the homomorphism Ind%: RO(K) — RO(G) maps RO(K,H N K) to
RO(G, H). As Ind$%(PO(K)) < PO(G), it follows that Ind$(PO(K,H N K)) <
PO(G, H).

By comparing the character values, we obtain that (Ind% (W))H = Ind% . (U), where U
is regarded as the (H K )-module W™K with UH = U. The following diagram commutes:

PO(K,HNK) HPO(K)% RO(K/(HNK)) i>RO(HK/H)
Ind$ J/ nd$ l Ind§ l
FixZ

PO(G,H) — PO(G) ————=RO(G/H) ——— RO(G/H)
As the left-hand diagram above commutes, the following diagram also commutes:

Fixy

PO(K,HNK) PO(K) RO(HK/H)

Ind?( l Ind?( \L Indf{K l

inj

dS (PO(K, H N K)) — nd$ (PO(K)) —> (Tnd$, o FixZVF)(PO(K))

By [24, Lemma 2.1}, PO(G) = 0 for r¢ = 0 and rkPO(G) = r¢ for rg > 1. Moreover,
by the arguments at the end of the proof on [40, p. 857], the homomorphism

FixZ: PO(G) — RO(G/H)
has image of rank r(g ), rk Fixg(PO(G)) = 1(q,m)- More generally, for K < G,
rk Fixii"* (PO(K)) = r(mxm)
and rk Ind% (PO(K)) = rX. From the commutative diagram above, it follows that
rk(Fixg o Ind%)(PO(K)) = rk(Indf s o Fixg ™) (PO(K)) = r{g g
Therefore, rk Ind% (PO(K, K N K)) =& — T(IEHH), completing the proof. O

For a finite group G, let G™! (respectively, G**!) be the smallest normal subgroup of
G such that G/G™! is nilpotent (respectively, G/G*°! is solvable). Clearly, G*°! < G,
Recall that

Gnil — ﬂ OP(G),
pem(G)

where 7(G) is the set of prime divisors p of |G|, and OP(G) is the smallest normal
subgroup of G such that |G/OP(G)| = p® for an integer a > 0.

https://doi.org/10.1017/50013091512000223 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091512000223

The Laitinen Conjecture 313

A subgroup H of a finite group G is called a large subgroup of G if OP(G) < H for
some prime p. Let £(G) denote the family of large subgroups of G. A real G-module V
is called £(G)-free if dim VH =0 for all H € L(G).

For a finite group G, let PLO(G) be the subgroup of RO(G) consisting of the differences
U —V of two P(G)-matched and L(G)-free real G-modules U and V.*

More generally, for a normal subgroup H of G, let PLO(G, H) be the subgroup of
RO(G) consisting of the differences U — V' of two P(G)-matched, G/H-matched and
L(G)-free real G-modules U and V. Clearly, PLO(G, G) = PLO(G).

The following two lemmas essentially go back to [40, Subgroup Lemma, p. 858].

Lemma 3.7 (Pawalowski and Solomon [40, p. 858]). For a finite group G and
two subgroups H, K < G with H < K,

(i) PO(G,H) < PO(G,K) < PO(G,G) and
(i) PLO(G, H) < PLO(G, K) < PLO(G).

Lemma 3.8 (Pawalowski and Solomon [40, p. 858]). For a finite group G and a
subgroup H < G with H < G™,

PLO(G,H) = PO(G, H) < PO(G, G™!) < PLO(G) < ﬂ PO(G,0"(@Q)).
peT(G)
Lemmas 3.4 and 3.8 yield the following corollary.

Corollary 3.9 (Pawatowski and Solomon [40, p. 859]). For a finite group G, the
following two inequalities hold:

rg — T(G,G"“) § rk PLO(G) g min{rc - T(G,OP(G)) | p S W(G)}

4. The Smith Equivalence Theorem

Let G be a finite group. Let PH(G) be the set of pairs (P, H) of subgroups P < H < G
with P € P(G). For a real G-module V, consider the gap function dy: PH(G) — Z
given by

dy(P,H) = dimV? —2dim V¥ for any (P, H) € PH(G).

Definition 4.1. A real G-module V is called gap-positive (respectively, gap-non-
negative) if the gap function dy: PH(G) — Z is positive (respectively, non-negative)
on PH(G).

Definition 4.2. Let W be a real G-module. We say that W satisfies the weak gap
condition if W is gap-non-negative and in the case dw (P, H) = 0 for some (P, H) €
PH(G), [H : P] =2 and the following three additional conditions hold:

* In [40], the subgroup PLO(G) of RO(G) is denoted by LO(G).
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(i) dim WH# > dim WX +1 for any group K with H < K < G;

(ii) WH is oriented so that the map W — W s gz is orientation preserving for
any element g € Ng(H), the normalizer of H in G;

(iii) if dw (P, H') = 0 for some H' < G, then (H,H') ¢ L(G), where (H, H') is the
smallest subgroup of G containing the subgroups H and H' of G.

For a real G-module V' and a G-submodule W of V', denote by V —W the G-orthogonal
complement of W in V. Clearly, V= W @ (V — W) as real G-modules. Set

Veey=(V-V9) - @ (v-v)or@,
peT(G)

The real G-module V(g is the maximal £(G)-free G-submodule of V.

For a finite Oliver group G, set V(G) = R[G]z (), where R[G] is the regular real
G-module. Let PH1(G) = PH(G)\ PH2(G), where PHa(G) consists of (P, H) € PH(G)
such that

[H : P] = [HO*(G) : PO*(G)] = 2

and POP(G) = G for all odd primes p dividing the order of G.
Following [28], we say that V is G-oriented if for any H < G, subgroup V¥ is oriented
and the map g: VH — VH 2 g is orientation preserving for any g € Ng(H).

Theorem 4.3 (Laitinen and Morimoto [23, Theorem 2.3]). Let G be a finite
Oliver group. Then the gap function

dV(G) : PH(G) — 7
is positive on PH1(G) and vanishes on PHz(G). Moreover, the real G-module
W=IV(G)=V(G) & - ®dV(G), £ times,

satisfies the weak gap condition for any even integer ¢ > 2. Also, dim W = 0 if and
only if H € L(G). In particular, the real G-module W is G-oriented and L(G)-free.

As in [32] and [40], we say that a real G-module V is P(G)-oriented if for any P €
P(G), VT is oriented and the map g: V¥ — V¥ is orientation preserving for any g €
Ng(P).

Theorem 4.4. Let G be a finite Oliver group. Let V be a P(G)-oriented and L(G)-
free real G-module satisfying the weak gap condition. Then there exists a smooth action
of G on some sphere with exactly one fixed point at which the tangent G-module is
isomorphic to V @ {V(G) for any sufficiently large even integer £.

If V is G-oriented, Theorem 4.4 follows from [23, Theorem 4.1]. If V' is only P(G)-ori-
ented, Theorem 4.4 follows from [32, Theorem 36], which generalizes [28, Theorem 0.1].
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Lemma 4.5. Let G be a finite Oliver group. Let U and V be two P(G)-matched
and L(G)-free, gap-non-negative, real G-modules. Then, for any even integer { > 2, the
G-modules

X=UapValV(G) and Y =VaValV(Q)

are both P(G)-oriented and L(G)-free, and both satisfy the weak gap condition.

Proof. As U, V and V(G) are all L(G)-free, X and Y are L(G)-free. As U and V
are P(G)-matched, U &V is P(G)-oriented by [40, Key Lemma, p. 837]. Clearly, V &V
is G-oriented and so is £V (G), if ¢ is even. Therefore, the G-modules X and Y are both
P(QG)-oriented.

At (P,H) € PH(G), the gap functions dx, dy : PH(G) — Z take the values

dx (P, H) = dy (P, H) + dv (P, H) + ldy (P, H),
dy (P, H) = dy(P,H) + dy (P, H) + ldy (P, H).

As the gap functions dy, dy, and dy () are non-negative on PH(G), so are dx and dy.
Clearly, by Theorem 4.3, dx and dy are positive on PH;(G), and in the case where
dx(P,H) = 0 or dy(P,H) = 0 for some (P,H) € PHa(G), dy (P, H) = 0 and thus
[H : P] =2.

We claim that conditions (i)—(iii) in Definition 4.2 all hold for W = X or Y. In fact,
if W = X or Y, then for any subgroups H < K < G either dimW¥# = 0, and thus
dim WX =0 for H € L(G), or otherwise dim W > dim WX + ¢, proving that (i) hol