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Abstract

If T = ((,,) is an n x n matrix with non-negative integer entries, we define a transformation
T:C" -> C" by z' = Tz where

We consider functions /i(z), • • -,/p(z) of n complex variables which satisfy functional equations
of the form

fi(z)=alf,(Tz)+bl(z) ( l S i S p )

and we obtain conditions under which the values of these functions at algebraic points are
algebraically independent.

1. Introduction

This paper is a sequel to our earlier paper under this title and which we
refer to hereafter as (I). We extend the results of Mahler (1930) and prove the
algebraic independence of the values of functions in several complex variables
satisfying a certain type of functional equation. Recent related work by the
authors and, independently, by Kenneth K. Kubota and Kurt Mahler is
described in our survey paper on transcendence and algebraic independence
by a method of Mahler (1977). It is inappropriate to attempt to detail here the
most general result we obtain and accordingly we mention only some more or
less amusing instances covered by our main theorem.

The functions
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394 J. H. Loxton and A. J. van der Poorten [2]

satisfy the respective functional equations

G t ( z 2 ) = G k ( z ) - ( z / ( l + z)) \

It follows that the functions Gk(z) are algebraically independent over the
field of rational functions in z and, if aua2,- •-,<*„, are multiplicatively
independent algebraic numbers satisfying 0 < | a , | < l , then the numbers

are algebraically independent over the field of rational numbers. For exam-
ple, if pt = 2, p2 = 3, p3 = 5, • • • is the sequence of rational primes, then the
numbers p\\p2\ • • • are appropriate multiplicatively independent algebraic
numbers, and so the numbers

are algebraically independent. In particular, if Fh = 22" + 1 is the h-th Fermat
number, then the numbers

X Fh
h
X h

k

h-0

are algebraically independent. (This last result is already implied by Mahler
(1930).)

Let fh be the h-th Fibonacci number, defined by f0 = 0, /i = 1 and
fh+2 = fh+i + fh for h s 0. The functions

satisfy the respective functional equations

, z\z2

-z^i+zui i+zur
As before, the functions Hk(zi,z2) are algebraically independent over the
field of rational functions in z, and z2. If a,, ft (j = 1,2, • • •, m) are pairs of
non-zero algebraic numbers such that the series for Hk(ah ft) converge and,
in addition, there is no choice of the 2m rational integers fi,,-•-,fim,
vi, • • •, vm not all zero such that

•n

for infinitely many non-negative integers h, then the numbers
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[3] Arithmetic properties of functions 395

are algebraically independent. In particular, we can take a = 1 and /3 =
- 1), so that fj[ = V5/3'/(l - ( - l)'/321), and it follows that the numbers

are algebraically independent. In a similar spirit, we can show by considering
the series

that the numbers

are algebraically independent.
Let w be a quadratic irrational. Mahler (1929) shows that for algebraic a

satisfying 0 < | a | < 1, the number

E [hco]ah

is transcendental. It follows from our results that if a,, ••- ,«„ are algebraic
numbers satisfying 0 < | a, | < 1 and an appropriate independence condition,
namely that their absolute values are multiplicatively independent, then the
numbers

t,[hu>]a1 (/ = 1.2, • • - , » ! )
h - l

are algebraically independent.
The remainder of the paper is set out as follows. Sections 2 to 4 contain a

number of definitions and preliminary lemmas which describe the ingredients
of the main algebraic independence theorem. The main theorem itself
appears in section 5 and its proof is given in sections 6 to 8. Finally, section 9
contains some remarks justifying the examples instanced above.

2. Some properties of non-negative matrices

Let T = (ty) be an nXn non-negative integer matrix. We define the
spectral radius r(T) of T to be, as usual, the maximum of the absolute values
of the eigenvalues of T. By a theorem of Frobenius (see, for example,

https://doi.org/10.1017/S1446788700020772 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020772


396 J. H. Loxton and A. J. van der Poorten [4]

Gantmacher (1959), Chapter 3), r(T) is itself an eigenvalue of T. We make the
following hypotheses about the matrix T.

DEFINITION 1. An n x n matrix T with non-negative integer entries is of
class ST if it is non-singular, it has a positive eigenvector belonging to the
eigenvalue r(T), and none of its eigenvalues is a root of unity.

We remark that the spectral radius of such a matrix T is greater than 1,
by a well-known theorem of Kronecker (1857). This observation and the
existence of a positive eigenvector of T are the most crucial properties of T
required later. An explicit necessary and sufficient conditon for the existence
of a positive eigenvector of T can be found in Gantmacher (1959). (In (I), we
took this property as the defining property of class J, but here we need the 2
additional conditions of Definition 1).

Suppose T is a matrix of class ST and let Ai, • • •, As be the eigenvalues of T
of maximum absolute value r(T). As in (I), Lemma 3, there is a partial
spectral decomposition

T = 2 A,E, + F,
/ - i

where E, is the canonical projection onto the eigenspace belonging to A;
( l g y g s) and F has spectral radius r(F)<r(T). Set

U = 0 im E, and V = h ker £,,
i - 1 > - 1

so that U 0 V is a decomposition of the underlying space as a direct sum of
invariant subspaces of T. We call U the dominant eigenspace of T and we call
the projection on- U along V the projection on the dominant eigenspace of T.

Given an n x n non-negative integer matrix T, we define a transforma-
tion T: C —> C as follows: If z = (zu • • •, zn) is a point of C, then z' = Tz is
the point with coordinates

We adopt the usual vector notation for multi-indices, that is, if
((j.,, • • •, nn), then we write

and

2" = z f - - - 2 : - (2 in C").

Note that

(Tzy=z»T (2 in C"),
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[5] Arithmetic properties of functions 397

where the exponent fiT on the right is the usual product of the row vector /x
and the matrix T.

We denote by C*" the set of points z=(zu---,zn) in C" with
z,z2 • • • zn^ 0 and, for z in C*", we define L(z) to be the real vector

DEFINITION 2. For a matrix T of class 3~, we denote by °IL(T) the set of
all points z in C*" such that the projection of the vector L(z) on the
dominant eigenspace of T is positive. Thus °U(T) is an open neighbourhood
of the origin in C*".

LEMMA 1. Let Tbe a matrix of class 3~ with spectral radius r. If a is a point
of°lL(T) and /x is a non-negative integer vector, then there is a positive constant
Ci, independent of k, such that

for all sufficiently large positive integers k.
(See (I), Lemma 4).

3. The functional equations

Throughout this section, we suppose T is a non-singular n x n non-
negative integer matrix, none of whose eigenvalues is a root of unity. In the
sequel, we shall study functions of n complex variables which are regular in
some neighbourhood of the origin and satisfy functional equations of the
shape

f{z)=af{Tz)+b{z),

where a is a non-zero constant and b(z) is a rational function of z. The
function b(z) is also necessarily regular in some neighbourhood of the origin.
We remark two lemmas concerning the existence and uniqueness of solutions
of such equations.

LEMMA 2. Let a be a non-zero constant. If f(z) can be expressed as the
quotient of 2 functions regular in some neighbourhood of the origin and satisfies
the functional equation f(z) = af(Tz), then f(z) is constant.

(This is Lemma 1 of our paper on hypertranscendental functions).

LEMMA 3. Suppose a is a non-zero constant and b(z) is regular in some
neighbourhood of the origin. Then the general solution of the functional
equation f(z) = af(Tz)+ b(z) which is regular in some neighbourhood of the
origin is given by
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2 ak{b(Tkz)-b(0)}, ( l -2
lc=O

PROOF. It is easy to check that the formula of the lemma does define a
regular solution of the functional equation and Lemma 2 guarantees that it
gives all regular solutions.

4. Admissible points

The notion of an admissible point sums up the remaining conditions
needed in order to apply the main theorem. Throughout this section, T
denotes a matrix of class J.

DEFINITION 3. A point a of C" has Property (A) if, for every function
f(z) of n complex variables which is regular in some neighbourhood of the
origin and is not identically zero, there are infinitely many positive integers k
such that f(Tka)^0.

The analysis of (I) suggests that, roughly speaking, any algebraic point a
in °U(T), whose coordinates satisfy an appropriate independence condition,
has Property (A). More precisely, we can state the following 2 criteria which
were practically proved in (I), but escaped our notice at the time. We showed
in Theorem 2 of (I) that, if \a,\,- • -,\an\ are multiplicatively independent,
then a has Property (A). The hypotheses can be slightly weakened as follows.

PROPOSITION 1. Let Tbe a matrix of class 3~ and let a. be an algebraic point
of <%(T). // there is no non-zero integer n-tuple n such that |a"T* | = 1 for
infinitely many k, then a has Property (A).

PROOF. Choose e > 0 and let /x be a non-zero integer n-tuple. By
hypothesis, [« "T"k J ^ 1 for all sufficiently large k, so by an inequality of Baker
for linear forms in logarithms (see (I), Lemma 12, for the formulation
appropriate to the present case), we have

for all sufficiently large fc. Now, if f{z) = 2 a^z" is a power series convergent
in some neighbourhood of the origin, it follows as in (I), Lemma 11, that the
series for f(Tka) has a single dominant term for all sufficiently large k and so
a has Property (A).

The much more complicated argument of Theorem 4 of (I) allows us to
remove the absolute value in the criterion of Proposition 1 in case the matrix
T is triangular. This gives the following criterion.

PROPOSITION 2. Let T be a triangular matrix of class ?F and let a be an
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algebraic point of %(T). If there is no non-zero integer n-tuple /JL such that
a"Tk = 1 for infinitely many k, then a has Property (A).

PROOF. The proposition is implicit in the argument of sections 10 and 11
of (I).

Now suppose /i(z), • • -,/P(z) are functions regular in some neighbour-
hood of the origin and satisfying the respective functional equations

(1) f,(z)=a,f,(Tz)+b,(z) (ISigp),

where a,, • • •, ap are non-zero constants and the functions b,(z), • • •, bp(z) are
rational.

DEFINITION 4. A point a of C is admissible (more explicitly, admissible
with respect to the matrix T and the functional equations (1)) if a is in °U{T)
and has Property (A) and the numbers

b,{Tka) (i = 1,2, - - - . p ; k =0 ,1 ,2 , •••)

are all defined.

5. Statement of the main theorem

We are now in a position to give a precise statement of the algebraic
independence theorem.

THEOREM. Let T be a matrix of class ?f. Suppose that fx(z), • • -,/p(z) are
functions regular in some neighbourhood of the origin, that their power series
expansions about the origin have algebraic coefficients and that they satisfy the
respective functional equations

f{z)=a,f(Tz)+bi(z) ( l i i i p ) ,

where a,,---,ap are non-zero algebraic numbers and bi(z),---,bp(z) are
rational functions with algebraic coefficients. Finally, let a be an admissible
algebraic point. If the functions /i(z), • • -,fP(z) are algebraically independent
and f\(a), •••, fp(a) are defined, then the numbers / i (a) , • • -,fp(a) are
algebraically independent over the rationals.

We remark that the algebraic independence of the functions
fi(z), • • -,fp(z) in the theorem is easily recognised because, essentially, the
only possible algebraic dependences are linear ones. Indeed, suppose
/i(z), • • -,/p(z) satisfy the respective functional equations (1) and are algebrai-
cally dependent and put
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Then there is an index i (1 S i g p) and constants d, not all 0 such that the
function

is rational. (This is Theorem 2 of our paper on hypertranscendental func-
tions).

The proof of the theorem is quite difficult and depends on a number of
technical lemmas. However, as usual, the basic step consists of constructing
an auxiliary function which we then show to have properties incompatible
with the assumption that the numbers f,(a),---,fp(a) are algebraically
dependent.

6. The auxiliary function

Let the matrix T, the functions / ,(z), • • -,/p(z) and the point a satisfy all
the requirements of the theorem. Assume, in addition, that the numbers
fi(a), • • -,fp(a) are algebraically dependent. Thus there is a relation

(2) F(a;aj) = X «*/,(«)"• • • • / , («)* ' = 0'

where the components wM of w are rational numbers, not all 0, indexed by the
p-tuples fi = (JU.I, • • •, /xp) of non-negative integers with 0 § / i i S mh say. By
Lemma 3 and our hypotheses, the coefficients of the power series expansions
of each of the functions f,(z), • • \fP(z) about the origin all lie in some fixed
algebraic number field, so there is an algebraic number field K of finite
degree, d say, over Q which contains all the coefficients of the power series
expansions of /i(z), • • \ / p ( z ) , the numbers a,,-••, ap and the coefficients of
the rational functions bi(z), • • -,bp(z) appearing in the functional equations,
and all the coordinates of a = (a,,- ••,«„) and a> = (ov)- ' n t n e following
work, cuc2,- • • denote positive constants depending only on the quantities
already introduced and, in particular, not depending on the parameters k and
p which will appear shortly.

Now, introduce m (say) = (m, + 1) • • • (mp + 1) new variables w = (w^)
indexed in the same way as w by the p-tuples /u. = (/u,, • • -,/JiP) of non-
negative integers with 0 § / i , § m,. We define a linear transformation flk (u) of
the variables w = ( w j , for u = (uu • • •, up) and k = 1,2, • • •, by

the summation being over all p-tuples v — (vu • • •, vp) of non-negative
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integers with O ^ i ' i S m>. By iterating the functional equations (1), we obtain
the further equations

f,(z)=akf{Tkz)+b\k\z),

where

b\kXz)=f, a>,b,(T'z)

(i = 1,2, • • - ,p ; k = 1,2, • • •). It is convenient to adopt the abbreviation

(3) a>tt> = Clk(b?)(a),--;b™(a))a> (Ik = 1,2, • • • )•

An easy calculation shows that the function

is invariant under the transformation z —» Tkz, w —> £lk(b\k)(z), • • •, b(k\z))w,
so that by (2), we have

(4) F(T"a;w( k ) ) = 0 (fc = 1,2,-• •)•

Denote by 9 the ring of polynomials in w = (wf) with coefficients in K
and denote by 5P(w) the subset of 0> comprising those polynomials p(w) such
that p(flk(u)w) is identically zero in u = (ut, • • •, up)for k = 1,2, • • •. Further,
denote by si the ring of power series E(z; w) = "2plL(w)z>l in z = (z,, • • •, zn)
with coefficients p^(vv) in ^ and converging in some neighbourhood of the
origin. We define the index of E(z;w) at u> to be the least non-negative
integer h for which there is a coefficient p^(w) of E(z; w) with |/n | = h and
such that fv(>v) is not in ^ (w) . If all the coefficients of £ ( z ; w) are in ^(w),
we define the index of E(z; w) at a< to be x.

LEMMA 4. The index of the product of two functions in sd is the sum of the
indices of the two factors.

PROOF. The lemma follows at once from the observation that ^ ( w ) is a
prime ideal of &. To prove this assertion, suppose p(w) and q(w) are
polynomials in 9 such that p(w)q(w) is in $P(w). Using the definition of
flk(«), we can write

2 £
, - \ ; -1

where the rf; are distinct non-zero constants and the P,(M) and <jf,-(u) are
polynomials whose coefficients are independent of k. By restricting fc to a
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suitable arithmetic progression, we may suppose the numbers d\, • • •, dk are
distinct for each k. The hypothesis that p(w)q(w) is in ^(w) implies that
either 2 d)pj(u) = 0, or 2 d)qj(u) = 0 for each k. By a well-known theorem of
van der Waerden (1971), one of these alternatives, say the first, must hold for
N consecutive values of k in arithmetic progression. The N equations
X d)pj(u) = 0 for these N values of k, considered as equations for the
coefficients of the /?>(«)> have non-zero determinant, so they imply that the
Pi(u) are identically 0, whence p(w) is in 8P(a>), as required.

For a non-negative integer p, let 0"p and SPp(w) denote the sets of
polynomials in 9" and 3P(<o) respectively of degree at most p in each of the
variables w^. Thus, 0>p is a vector space of dimension (p + l)m over K and
0>P(w) is a subspace of <3>p. We set Sp(w) = dim(2Pp/@p(<o)).

LEMMA 5. 82p((o)§2m8p(a>).

PROOF. First observe that a polynomial of SPP is in ^p(a>) if and only if its
coefficients satisfy a certain set of 8P(&>) independent linear homogeneous
conditions. Now any polynomial p(w) in $>2p can be written in the form

where the e^w) are the 2m monomials of degree at most 1 in each wM and the
Pi(w) are in 0*,. Clearly, if each p;(w) is in ^P((o), then p(w) is in &>

2p(a>), so
by the first remark of the proof, we have 52p(w)S2m5p(w).

The first step in the actual proof of the theorem is the construction of the
auxiliary function Ep(z;w).

LEMMA 6. Let /i(z), • • \fP(z) be functions satisfying the hypotheses of the
theorem and put

F(z;w)=*Z wMzp • • • fp(zT'.

Then, for each p s c2, there are p + 1 polynomials po(z; w), • • •, pp(z\w) of
degree at most p in each of the variables z, and wM, with coefficients algebraic
integers of K and withpo(z; w) having finite index at co, such that the function

Ep(z;w)= 2, pj(z;w)F(z;wy
i-o

is not identically zero, but its index at co is at least 2 2 m/''p1+1/p.

PROOF. The p + \ polynomials p,(z;w), subject to the restriction that
each has finite index at a> or vanishes identically, together possess
(p + 1)P+1(5P(«) independent coefficients. On the other hand, we can write
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[11] Arithmetic properties of functions 403

Ep{z;w) = % Pj(z;w)F(z;wy = 2 BA">)z",
7-0 M

where the coefficients B^(vv) are in 0>2p, so the requirement that the index of
Ep(z; w) at w exceed c3p

>+1'p gives at most (c3p
1+1/p + l)p52p(<o) homogeneous

linear equations in the coefficients of the polynomials pj(z; w). If c3 < 2 '"m/p

and p is sufficiently large, the number of these equations is at most

(Cp^"" + l)"S2p(w)g2'"^c?(p + l)p+1SP(o>)< (p + l)p+'5p(o>),

by Lemma 5, so the system has a non-trivial solution in K which we can
normalise so that it consists of algebraic integers. Let / be the least integer
with O g / g p such that the polynomial Pi(z; w) has finite index at to. The
function F(z; w) clearly has finite index, h say, at co, so by Lemma 4, the
index at w of the function

exceeds

providing p is sufficiently large. So the polynomials p,(z; w), • •-,pp(z; w),
together with / polynomials identically zero, fulfil the requirements of the
lemma. Since /i(z), • • -,fp(z) are algebraically independent, the function
Ep(z;w) obtained in this way is not identically zero.

The proof of the theorem will be completed in the next 2 sections as
follows. Denote the spectral radius of T by r. We show first in Lemma 7 that

(5) log |E p (r k a ; W < k ) ) |S-c 4 ry + 1 / p ,

providing p ^ c2 and k is sufficiently large compared to p. Then we show in
Lemma 12 that providing p g c2, there is an infinite sequence of values of k
such that

(6) log|Ep(Tka;a><k))|s - c5r"p.

Now, fixing the parameter p by

p = c6(say) > max {c2, (c5/c4)
p},

we find that the inequalities (5) and (6) conflict for some suitable large integer
k and this contradiction proves the theorem.

7. An upper bound for |Ep(r*a; w(4>)|
LEMMA 7. Suppose T is a matrix of class Sf with spectral radius r, a is an

admissible point and Ep(z; w) is the function constructed in Lemma 6. Then
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providing p g c2 and k is sufficiently large compared to p.

PROOF. AS in the proof of Lemma 6, we write

where the coefficients B^(w) are in £P2p- By Lemma 1 and the definition (3) of
the o)(k>, we have

log | ( r o ) " | ̂  - c,rk |/i |, log| wlk)\ g c7fe,

for all sufficiently large k, so that

| £ -cBrk\ti\

whenever k is sufficiently large compared to p and B,,(co(k))/0. Thus the
series for Ep(T

ka; o>(k)) is convergent whenever k is sufficiently large
compared to p and, by the construction of Lemma 6,

whenever p ^ c2 and fc is sufficiently large compared to p.

8. A lower bound for \Ep(T"a; a>'k))\

For each B in K, we can find a non-zero rational integer den B, a
denominator for B, such that (den /3)/3 is an algebraic integer. It is convenient
to write

||/3|| = max{|<r/3|,|den/3|},

where <x runs through the d distinct embeddings of K into C. If B is a
non-zero algebraic number in K, we have the fundamental inequality
n) log|/3|g-2<nog||/3| |.

The inequality follows easily from the observation that the norm of (den B)B-
has absolute value at least 1. (See, for example, Lang (1966), page 3).

LEMMA 8. Let T be a matrix of class 3~ and a be an admissible point. Let
d\, • • -,dN be distinct non-zero constants and let gi(z), • • •, gn(z) be functions
regular in some neighbourhood of the origin and not all identically zero. Then
there are infinitely many positive integers k such that
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PROOF. We prove the lemma by induction on N, the case N = 1 being
just the definition of Property (A). Suppose that

for all sufficiently large k and that gN(z), say, is not identically zero. Then, for
all sufficiently large k,

S' (d,/dN)kh,(Tka) = 0

where

Mz)=g,(z)gN(rz)-(4/dN)g,(Tz)gN(z) ( l i / ^ - i ) .

By the induction hypothesis, the h,(z) are all identically zero and so, by
Lemma 2, the g:(z) (1 S j S N - 1) are all identically zero and we are back to
the case N = 1.

LEMMA 9. Assume the notation and hypotheses of the theorem.. If p{z;w)
is a polynomial in the variables z = (zu- • •, zn) and w=(»v(1), then the
following assertions are equivalent:

(i) p(z; w) has finite index at w;
(ii) p(Tka; u>ik))^ 0 for infinitely many positive integers k.

PROOF. Using the definition (3) of the a>(k), with 6jk)(z) =
/ , ( z ) - akf,(Tkz), we obtain the representations

N

(8) p(Tkot; aj<k') = 2J dkPjij\{Tket),' • • , / p (Tka) ; Tkct),

where the <i; are distinct non-zero constants and the P,(«; z) are polynomials
in u = («,, • • •, Up) and z = (z,, • • •, zn) whose coefficients are independent of
k. If p(Tka; w(k>) = 0 for all sufficiently large k, then the functions
Pi(f,(z), • • -,fp{z); z) are all identically zero, by Lemma 8, and so, by the
algebraic independence of / ,(z), •- , / p(z) , the polynomials Pj{u;z) are all
identically zero. It now follows from (8) that

is identically zero in u and z for each k and, finally, that p(z;flk(u)u>) is
identically zero in u and z for each k. Thus (i) implies (ii). The converse is
immediate.

For a polynomial p(z) = Sp^z*1 with coefficients in K, we define ||p|| =
^(|. Further, we say the polynomial q(z) = Sq(lz

>* dominates p(z),
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written p(z)< q(z), if the coefficients of q(z) are rational integers and
||/V || g qp for each fx. These definitions extend in the obvious way to
polynomials in z and w.

LEMMA 10. Let T be a matrix of class ST with spectral radius r and let p(z)
be a polynomial with coefficients in K and degree at most p in each variable. If
a is a point with coordiantes in K, then

\og\\p(Tka)\\^\og\\p\\ + c9r
kp.

(See (I), Lemma 8).

LEMMA 11. Let T be a matrix of class 3~ with spectral radius r and let a be

an admissible point with coordinates in K. Letp(z ;w) be a polynomial in z and

w with coefficients in K and degree at most p in each variable. Then

log | | p ( r « ;«<k))ll Slog ||p | |+ci nrV

PROOF. By applying Lemma 10 to the numerators and denominators of
the rational functions bt(z), we have

i=o
log \\b !*>(«) ||= log

As in the proof of Lemma 9, we write

Clt(ii)o>)=2 dk,Pj(u;z),

where the dj are distinct elements of K and the P,(w; z) axe polynomials with
coefficients in K and degrees at most p in z and at most mBp in u, with
m0 = Mi + • • • + mp. Further,

iog||4||§cI2p, log || p, || s log ||p II + c!3P.

Now

Pk(u;z)<\\Pk || ft (1 + U,)"" ft (1 + z,y,
i -1 / - 1

so by the previous remarks,

LEMMA 12. Assume the notation and hypotheses of the theorem. Denote
the spectral radius of the matrix T by r and let Ep(z;w) be the function
constructed in Lemma 6. If p i? c2, then there is an infinite sequence of values of
k such that

log | Ep{Tka;^k)\m-c,rkp.
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PROOF. By (4) and the construction of Lemma 6, we have
Ep(T

ka;colk)) = po(T
ka;<i)w). Since po(z;w) has finite index at to,

p0(T
ka;co(k))/0 for infinitely many k, by Lemma 9. Finally, by (7) and

Lemma 11, for each such k,

log|p0(T*a;<B<fc))|S -2d\og\\p\\-2ci0drk
P^ ~ c5r

kp,

providing that k is sufficiently large compared to p. This proves the assertion.
As explained in section 6, this completes the proof of the theorem.

9. Concluding remarks

There is a plethora of examples additional to those briefly mentioned in
the introduction. We refer the reader to our papers cited below, as well as to
Mahler (1929) and (1930). The principal generalisations of Mahler's earlier
work that we effect is that our transformation matrices T need not satisfy the
very restrictive conditions found necessary there, namely that the characteris-
tic polynomial of T be irreducible and that T have a single eigenvalue whose
absolute value is greater than 1 and greater than the absolute values of all the
other eigenvalues of T. As indicated in the introduction, we can use our more
general result to deduce the algebraic independence of the values of a suitable
function at different points. This may be done by the following stratagem.

Let f(z) be a transcendental function of the n complex variables
z = (zi, • • •, zn) satisfying an appropriate functional equation

(9) f(z)=af(Tz)+b(z)

of the shape described in the theorem. Let a(1>, • • •, a(p) be distinct algebraic
points of C. We introduce the functions

F(Z) = F,(zll\ • • ; z(p>) = /(z(i)) (1 g i g p)

of the np complex variables Z = (z(1), • • •, z(p)), and the np x np matrix S with
p copies of T along its main diagonal. Then the functions Ft(Z) satisfy the
respective functional equations

(10) Fi(Z)=aFi(SZ)+b(zw).

Also, the functions Ft(Z) are clearly algebraically independent over the field
of rational functions in Z. Now, if the np-tuple A = («(1), • • •, a(p') is admissi-
ble with respect to the matrix S and the functional equations (10) then it
follows from the theorem that the numbers Fi(A), • • •, FP(A) are algebraically
independent. But this is just to say that the numbers / (a 0 ) ) , ' " s/(«<P)) are
algebraically independent, which is what we set out to show.

We should remark that the point A = (a(1), • • •, a(p)) above is admissible
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with respect to the matrix S and the functional equations (10) if each a(l) is
admissible with respect to the matrix T and the original functional equation
(9) and, in addition, the only set of integer n-tuples fi°\ • • -,fiip) such that

for infinitely many k is the trivial solution with

After Proposition 1, the last condition guarantees that the point A =
(a°\ ••-, a(p)) has Property (A).

The examples of the introduction can now be readily demonstrated.
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