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Abstract Suppose that G is an abelian group and that A ⊂ G is finite and contains no non-trivial
three-term arithmetic progressions. We show that |A + A| �ε |A|(log |A|)1/3−ε.

Keywords: sumset; arithmetic progressions; Fourier transform

2000 Mathematics subject classification: Primary 11P55; 11B25

1. Introduction

In [6] Frĕıman proved the following qualitative theorem.

Theorem 1.1 (Frĕıman). Suppose that A ⊂ Z is finite and contains no non-trivial∗

three-term arithmetic progressions. Then (by slight abuse of notation) |A + A|/|A| → ∞
as |A| → ∞.

The best known quantitative version of this theorem is achieved by inserting Bourgain’s
most recent bound for Roth’s theorem (see [3]) into a result of Ruzsa’s (see [20]).

Theorem 1.2 (Bourgain–Ruzsa). Suppose that A ⊂ Z is finite and contains no
non-trivial three-term arithmetic progressions. Then

|A + A| � |A|
(

log |A|
(log log |A|)3

)1/6

.

This theorem is interesting in its own right but has also been applied (independently)
by Schoen in [23] and Hegyvári et al . in [17] to give a witty proof of the following result
regarding restricted sumsets.

If A, B are subsets of an abelian group then we write

A +̂ B := {a + b : a ∈ A, b ∈ B and a �= b},

and call this the restricted sum of A and B.
∗ A trivial three-term arithmetic progression is one in which all three elements are the same.
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Theorem 1.3 (Schoen–Hegyvári–Hennecart–Plagne). Suppose that A and B

are two finite non-empty sets of integers, or residues modulo an integer m > 1, and set
n := |A + B|. Then

|A +̂ B|
|A + B| = 1 + O

(
(log log n)3

log n

)1/6

.

Recently, a lot of work has been done on generalizing additive problems in the integers
to other abelian groups (see, for example, [9,13,14,18]) and in this paper we not only
improve the bounds in Theorems 1.2 and 1.3 but we also extend them to cover arbitrary
abelian groups. Specifically, our main result is the following theorem.

Theorem 1.4. Suppose that G is an abelian group and that A ⊂ G is finite and
contains no non-trivial three-term arithmetic progressions. Then

|A + A| � |A|
(

log |A|
(log log |A|)3

)1/3

.

This translates easily to an improvement of Theorem 1.3.

Theorem 1.5. Suppose that A and B are two finite non-empty subsets of an abelian
group G and set n := |A + B|. Then

|A +̂ B|
|A + B| = 1 + O

(
(log log n)3

log n

)1/3

.

There are three main aspects to our arguments. Firstly, to effect a complete passage
to general abelian groups we have to work slightly harder when the sets in question have
elements which differ by an element of order 2. To deal with this we use a generalization
of the Bohr set technology of [2], as developed in [10].

Secondly, we use an energy increment argument in the style of Heath-Brown [16] and
Szemerédi [25] to prove a local version of Roth’s theorem that is particularly efficient
(essentially because of limitations in the modelling results of Green and Ruzsa [9]) in our
situation; this type of argument was previously deployed in [21].

Finally, we use a result which might be called a weak partially polynomial version of
the celebrated Frĕıman–Ruzsa theorem. This type of result was first proved for finite
fields in [15]; the more general case we use was proved in [10].

The paper now splits into seven further sections. In §§ 3 and 4 we set up the basic
machinery of ‘local’ Fourier analysis, which lets us prove our local version of Roth’s
theorem in § 5. In § 6 we prove the partially polynomial version of the Frĕıman–Ruzsa
theorem, before completing the main arguments in § 7.

In the final section, § 8, we discuss improvements for particular groups G and possible
further questions.

2. Notation

The book [19] serves as a general reference for the Fourier transform, which we use
throughout the paper.
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Suppose that G is a finite abelian group. Ĝ denotes the dual group of G, i.e. the group
of homomorphisms γ : G → S1, where S1 := {z ∈ C : |z| = 1}, and we write M(G) for
the space of measures on G endowed with the norm ‖ · ‖ defined by ‖µ‖ :=

∫
d|µ|.

There is one element of M(G) worthy of particular note: the Haar probability measure
µG. This measure is used to define the Fourier transform which takes a function f : G → C

to
f̂ : Ĝ → C; γ �→

∫
x∈G

f(x)γ̄(x) dµG(x) =
1

|G|
∑
x∈G

f(x)γ̄(x).

We use the Haar probability measure, µG, on G to define an inner product on functions
f, g : G → C by

〈f, g〉 :=
∫

x∈G

f(x)g(x) dµG(x).

Since µG is normalized to be a probability measure, Plancherel’s theorem states that

〈f, g〉 =
∑
γ∈Ĝ

f̂(γ)ĝ(γ).

Similarly, we use µG to define the convolution of two functions f, g : G → C:

f ∗ g(y) :=
∫

x∈G

f(y − x)g(x) dµG(x),

and a simple calculation tells us that f̂ ∗ g = f̂ ĝ.
Finally, it will sometimes be necessary to consider the Fourier transform of a particu-

larly complicated expression E. In this case we may write E∧ in place of Ê.

3. Bourgain systems

In [2], Bourgain showed how to extend some of the techniques of Fourier analysis from
groups to a wider class of ‘approximate groups’; in [10] this was taken further when the
notion of a Bourgain system was introduced. We refer the reader to that paper for a
more comprehensive discussion of Bourgain systems and limit ourselves to recalling the
key definitions and tools that we shall require.

Suppose that G is a finite abelian group and d � 1 is real. A Bourgain system B of
dimension d is a collection (Bρ)ρ∈(0,2] of subsets of G such that the following axioms are
satisfied.

• Nesting. If ρ′ � ρ we have Bρ′ ⊆ Bρ.

• Zero. 0 ∈ Bρ for all ρ ∈ (0, 2].

• Symmetry. If x ∈ Bρ then −x ∈ Bρ.

• Addition. For all ρ, ρ′ such that ρ + ρ′ � 1 we have Bρ + Bρ′ ⊆ Bρ+ρ′ .

• Doubling. If ρ � 1 then there is a set X with |X| � 2d and

B2ρ ⊂
⋃

x∈X

x + Bρ.
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We define the density of B = (Bρ)ρ to be µG(B1) and denote it by µG(B). Frequently
we shall consider several Bourgain systems B,B′,B′′, . . . ; in this case the underlying sets
will be denoted (Bρ)ρ, (B′

ρ)ρ, (B′′
ρ )ρ, . . . , and we shall write B, B′, B′′, . . . for the sets

B1, B
′
1, B

′′
1 , . . . .

Example 3.1 (Bohr sets). There is a natural valuation on S1 defined by ‖z‖ :=
(2π)−1|arg z|, where arg is taken as mapping into (−π, π]. If Γ ⊂ Ĝ and δ ∈ (0, 1], then
we set

B(Γ, δ) := {x ∈ G : ‖γ(x)‖ � δ for all γ ∈ Γ},

and call such a set a Bohr set.
It turns out that the system (B(Γ, ρδ))ρ is a Bourgain system of density at least δ|Γ |

and dimension 2|Γ |, as the next lemma shows. By a slight abuse we call this the Bourgain
system induced by the Bohr set B(Γ, δ).

Lemma 3.2. Suppose that B(Γ, δ) is a Bohr set. Then

µG(B(Γ, δ)) � δ|Γ |

and there is a set X of size at most 4|Γ | such that

B(Γ, 2δ) ⊂
⋃

x∈X

x + B(Γ, δ).

The proof of this lemma is a simple averaging argument which may be found, for
example, in [26, Lemma 4.20].

Returning to Bourgain systems in general, we say that a Bourgain system B′ is a
subsystem of B′′ if B′

ρ ⊂ B′′
ρ for all ρ. We shall be very interested in subsystems and

consequently the following dilation and intersection lemmas will be important. The first
lemma is immediate.

Lemma 3.3. Suppose that B is a Bourgain system of dimension d and λ ∈ (0, 1] is a
parameter. Then λB := (Bλρ)ρ is a Bourgain system of dimension d and density at least
(λ/2)dµG(B).

Lemma 3.4. Suppose that B(1), . . . ,B(k) are, respectively, Bourgain systems of dimen-
sions d1, . . . , dk. Then

k⋂
i=1

B(i) :=
( k⋂

i=1

B(i)
ρ

)
ρ

is a Bourgain system of dimension at most 2(d1 + · · · + dk) and density at least
4−(d1+···+dk−1)2−dk

∏k
i=1 µG(B(i)).

Proof. The conclusion is trivial apart from the doubling and density estimates. For
each i with 1 � i � k there is a set Ti with |Ti| � 4di such that B

(i)
2ρ ⊂ Ti + B

(i)
ρ/2. Define a

set T as follows: for each (t1, . . . , tk) ∈ T1 ×· · ·×Tk place one element of
⋂k

i=1 (ti + B
(i)
ρ/2)

in T if and only if that set is non-empty.
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Now, if t0 ∈
⋂k

i=1 (ti + B
(i)
ρ/2) then the map t �→ t − t0 maps

⋂k
i=1 (ti + B

(i)
ρ/2) into⋂k

i=1 B
(i)
ρ , whence

k⋂
i=1

B
(i)
2ρ ⊂ T +

k⋂
i=1

B(i)
ρ ,

and the intersection has dimension at most 2(d1 + · · · + dk).
The density estimate proceeds similarly. For each i with 1 � i � k − 1 let Ti be

a maximal subset of G such that the sets (t + B
(i)
1/4)t∈Ti are disjoint. It follows that

|T | � 4d1µG(B(i))−1 and

G ⊂ B
(i)
1/4 − B

(i)
1/4 + Ti ⊂ B

(i)
1/2 + Ti.

Thus, there are some x1, . . . , xk−1 ∈ G such that

µG

( k−1⋂
i=1

(xi + B
(i)
1/2) ∩ B

(k)
1/2

)
� 4−(d1+···+dk−1)2−dk

k∏
i=1

µG(B(i)).

Now, for fixed x0 ∈
⋂k−1

i=1 (xi + B
(i)
1/2) ∩ B

(k)
1/2, the map x �→ x − x0 is an injection from

k−1⋂
i=1

(xi + B
(i)
1/2) ∩ B

(k)
1/2

into
⋂k

i=1 B
(i)
1 . The result follows. �

Not all Bourgain systems behave as regularly as we would like; we say that a Bourgain
system B of dimension d is regular if

1 − 23d|η| � µG(B1)
µG(B1+η)

� 1 + 23d|η|

for all η with d|η| � 2−3. Typically, however, Bourgain systems are regular, a fact implicit
in the proof of the following proposition.

Proposition 3.5. Suppose that B is a Bourgain system of dimension d. Then there
is a λ ∈ [ 12 , 1) such that λB is regular.

Proof. Let f : [0, 1] → R be the function f(α) := −(1/d) log2 µG(B2−α) and note
that f is non-decreasing in α with f(1) − f(0) � 1. We claim that there is an α ∈ [ 16 , 5

6 ]
such that |f(α + x) − f(α)| � 3|x| for all |x| � 1

6 . If no such α exists, then for every
α ∈ [ 16 , 5

6 ] there is an interval I(α) of length at most 1
6 having one endpoint equal to α

and with ∫
I(α)

df >

∫
I(α)

3 dx.

These intervals cover [ 16 , 5
6 ], which has total length 2

3 . A simple covering lemma allows
us to pass to a disjoint subcollection I1 ∪ · · · ∪ In of these intervals with total length at
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least 1
3 . However, we now have

1 �
∫ 1

0
df �

n∑
i=1

∫
Ii

df >

n∑
i=1

∫
Ii

3 dx � 1,

which is a contradiction. It follows that there is an α such that |f(α + x) − f(α)| � 3|x|
for all |x| � 1

6 . Setting λ := 2−α, it is easy to see that

(1 + |η|)−3d � µG(Bλ)
µG(B(1+η)λ)

� (1 + |η|)3d

whenever |η| � 1
6 . But, if 3d|η| � 1

2 , then (1 + |η|)−3d � 1 + 6d|η| and (1 + |η|)−3d �
1 − 6d|η|; it follows that λB is a regular Bourgain system. �

4. Fourier analysis local to Bourgain systems

Regular Bourgain systems are the ‘approximate groups’ to which we extend Fourier
analysis; there is a natural candidate for ‘approximate Haar measure’ on B: if (Bρ)ρ is a
Bourgain system, then we write βρ for the normalized counting measure on Bρ and simply
β for β1. We adopt similar conventions to before for the Bourgain systems B′,B′′, . . . . It
is worth noting that the normalized measures introduced here are different from those
in [10], where positivity of the Fourier transform was also desired.

Lemma 4.1 (approximate Haar measure). Suppose that B is a regular Bourgain
system of dimension d. If y ∈ Bη, then ‖(y + β) − β‖ � 24dη.

Proof. Note that supp ((y + β) − β) ⊂ B1+η \ B1−η, whence we obtain

‖(y + β) − β‖ � µG(B1+η \ B1−η)
µG(B1)

� 24dη,

by regularity. �

The next two lemmas reflect two ways in which we commonly use the property of
regularity.

Lemma 4.2. Suppose that B is a regular Bourgain system of dimension d. If f : G →
C, then

‖f ∗ β − f ∗ β(x)‖L∞(x+βη) � 24‖f‖L∞(µG)dη.

Proof. Note that

|f ∗ β(x + y) − f ∗ β(x)| = |f ∗ ((−y + β) − β)(x)|
� ‖f‖L∞(µG)‖(−y + β) − β‖.

The result follows by Lemma 4.1. �
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Lemma 4.3. Suppose that B is a regular Bourgain system of dimension d and κ > 0
is a parameter. Then

{γ : |β̂(γ)| � κ} ⊂ {γ : |1 − γ(x)| � 24dκ−1η for all x ∈ Bη}.

Proof. If γ ∈ {γ : |β̂(γ)| � κ} and y ∈ Bη, then

κ|1 − γ(y)| � |β̂(γ)| |1 − γ(y)|

=
∣∣∣∣
∫

γ(x) d((y + β) − β)(x)
∣∣∣∣ � 24dη

by Lemma 4.1. The lemma follows. �

The final result of the section is a version of Bessel’s inequality local to Bourgain
systems. Such a result was essentially proved in [11, Corollary 8.6], and serves to replace
some of the many applications of Parseval’s theorem in the local setting.

Proposition 4.4 (local Bessel inequality). Suppose that B is a regular Bourgain
system of dimension d. Suppose that f : G → C and ε ∈ (0, 1] is a parameter. Write
Lf := ‖f‖−1

L1(β)‖f‖L2(β). Then there is a Bourgain system B̃′ of dimension 22ε−2L2
f such

that B′ := B̃′ ∩ B has
µG(B′) � 4−(d+2ε−2L2

f )µG(B)

and

{γ : |f̂ dβ(γ)| � ε‖f‖L1(β)} ⊂ {γ : |1 − γ(x)| � 27(1 + d)ε−2L2
fη for all x ∈ B′

η}.

To prove this we require an almost-orthogonality lemma due to Cotlar [5].

Lemma 4.5 (Cotlar’s almost-orthogonality lemma). Suppose that v and (wj)
are elements of an inner product space. Then∑

j

|〈v, wj〉|2 � 〈v, v〉 max
j

∑
i

|〈wi, wj〉|.

Proof of Proposition 4.4. Let

S := {γ ∈ Ĝ : |β̂(γ)| � 1
2ε2L−2

f }

and

∆ := {γ : |f̂ dβ(γ)| � ε‖f‖L1(β)}.

Pick Λ ⊂ ∆ maximal such that all the sets (λ + S)λ∈Λ are disjoint. Now if γ ∈ ∆, then
there is a λ ∈ Λ such that λ+S ∩γ +S �= ∅ by maximality. It follows that γ ∈ λ+S −S,
i.e. ∆ ⊂ Λ + S − S.

By Cotlar’s lemma (Lemma 4.5) we have∑
λ∈Λ

|f̂ dβ(λ)|2 � ‖f‖2
L2(β) max

λ∈Λ

∑
λ′∈Λ

|β̂(λ − λ′)|

� ‖f‖2
L2(β)(1 + 1

2 |Λ|ε2L−2
f ),
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since λ, λ′ ∈ Λ and λ − λ′ ∈ S implies that λ = λ′. Since Λ ⊂ ∆, we conclude that

|Λ|ε2‖f‖2
L1(β) �

∑
λ∈Λ

|f̂ dβ(λ)|2.

Combining all this we obtain |Λ| � 2ε−2L2
f .

Let B̃′ be the Bourgain system induced by the Bohr set B(Λ, 1) so µG(B̃′) = 1 and
dim B̃′ � 2|Λ| � 22ε−2L2

f . Recalling that

|1 − γ(x)| =
√

2(1 − cos(4π‖γ(x)‖)) � 4π‖γ(x)‖,

we certainly have

Λ ⊂ {γ : |1 − γ(x)| � 26(1 + d)ε−2L2
fη for all x ∈ B̃′

η}.

By Lemma 4.3 S is contained in

{γ : |1 − γ(x)| � 25dε−2L2
fη for all x ∈ Bη},

and so, by the triangle inequality,

S − S ⊂ {γ : |1 − γ(x)| � 26dε−2L2
fη for all x ∈ Bη}.

It follows that

∆ ⊂ Λ + S − S ⊂ {γ : |1 − γ(x)| � 27(1 + d)ε−2L2
fη for all x ∈ Bη ∩ B̃′

η}.

The result follows by Lemma 3.4 on letting B′ := B̃′ ∩ B. �

5. A variant of the Bourgain–Roth theorem

If G is a finite group and A ⊂ G, then we can count the number of three-term arithmetic
progressions in A using the following trilinear form:

Λ(f, g, h) :=
∫

f(x − y)g(x)h(x + y) dµG(x) dµG(y). (5.1)

This form has a well-known Fourier expression gained by substituting the inversion for-
mulae for f , g and h into (5.1):

Λ(f, g, h) =
∑
γ∈Ĝ

f̂(γ)ĝ(−2γ)ĥ(γ).

In this section we shall prove the following result.

Theorem 5.1. Suppose that B is a regular Bourgain system of dimension d. Suppose
that A ⊂ G has α := ‖1A ∗ β‖L∞(µG) (that is, the relative density of A on the translate
of B on which it is largest) positive, and A − A contains no elements of order 2. Then

Λ(1A, 1A, 1A) �
(

α

2(1 + d)

)224d log α−1+252α−3(log α−1)2

µG(B)2.
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We prove Theorem 5.1 by iterating the following lemma.

Lemma 5.2 (iteration lemma). Suppose that B is a regular Bourgain system of
dimension d. Suppose that A ⊂ G has α := ‖1A ∗ β‖L∞(µG) > 0 and A − A contains no
elements of order 2. Then at least one of the following is true.

(i) (Lots of three-term progressions.)

Λ(1A, 1A, 1A) � α3

25

(
α3

244(1 + d)3

)d

µG(B)2.

(ii) (Density increment I.) There is a regular dilate B′′ of B with

µG(B′′) �
(

α2

225(1 + d)2

)d

µG(B)

such that ‖1A ∗ β′′‖L∞(µG) � α(1 + 2−12).

(iii) (Density increment II.) There is a regular dilate B′′′ of ({2x : x ∈ Bρ})ρ with

µG(B′′′) � α

22

(
α3

236(1 + d)3

)d

µG(B)

such that ‖1A ∗ β′′′‖L∞(µG) � α(1 + 2−8).

(iv) (Density increment III.) There is a Bourgain system B̃(iv) of dimension at most
213α−3 and a dilate B′′′ of ({2x : x ∈ Bρ})ρ such that their intersection, B(iv), is
regular with

µG(B(iv)) � α

22

(
α3

222(1 + d)

)213α−3(
α5

248(1 + d)3

)d

µG(B)

such that ‖1A ∗ β(iv)‖L∞(µG) � α(1 + 2−8).

Cases (ii)–(iv) are the outcomes of different parts of the proof; we separate them for
ease of understanding.

The proof of the lemma requires the following technical result, which converts energy
on non-trivial Fourier modes into a density increment.

Lemma 5.3 (�2-density increment lemma). Suppose that B is a regular Bourgain
system of dimension d. Suppose that A ⊂ G has α := 1A ∗ β(0G) > 0 and c > 0 is a
parameter. Write η := cα/210(1 + d) and suppose that B′ is a subsystem of ηB and that
there is a set of characters

Λ := {γ : |1 − γ(x)| � 1
2 for all x ∈ B′}

such that ∑
λ∈Λ

|((1A − α)1B)∧(λ)|2 � cα2µG(B).

Then ‖1A ∗ β′‖L∞(µG) � α(1 + c/23).
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Proof. Write f := 1A − α. The triangle inequality shows that if λ ∈ Λ, then

|β̂′(λ)| �
∫

dβ′ −
∫

|1 − λ| dβ′ � 1
2 ,

whereupon (from the hypothesis of the lemma)

cα2µG(B)/22 �
∑
γ∈Ĝ

|f̂1B(γ)β̂′(γ)|2.

Plancherel’s theorem (and dividing by µG(B)) then gives

〈(f1B) ∗ β′, (f dβ) ∗ β′〉 � cα2

22 .

We expand this inner product as follows:

〈(f1B) ∗ β′, (f dβ) ∗ β′〉 = 〈(1A1B) ∗ β′, (1A dβ) ∗ β′〉
− α〈1B ∗ β′, (1A dβ) ∗ β′〉
− α〈(1A1B) ∗ β′, β ∗ β′〉
+ α2〈1B ∗ β′, β ∗ β′〉. (5.2)

We estimate the last three terms: by Lemma 4.1 we have

‖β ∗ β′ ∗ β′ − β‖ �
∫

‖(y + β) − β‖d(β′ ∗ β′)(y)

� sup
y∈supp β′∗β′

‖(y + β) − β‖

� sup
y∈B′

2

‖(y + β) − β‖

� sup
y∈B2η

‖(y + β) − β‖

� cα

25 . (5.3)

Now
〈1B ∗ β′, (1A dβ) ∗ β′〉 = 〈β ∗ β′ ∗ β′, (1A1B)〉

and
|〈β ∗ β′ ∗ β′, 1A1B〉 − 〈β, 1A1B〉| � cα

25

by (5.3); 〈β, 1A1B〉 = α, so

|〈1B ∗ β′, (1A dβ) ∗ β′〉 − α| � cα

25 .

By symmetry,

|〈(1A1B) ∗ β′, β ∗ β′〉 − α| � cα

25
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and, similarly,

|〈1B ∗ β′, β ∗ β′〉 − 1| � cα

25 .

Inserting these last three estimates into (5.2) we get

〈(f1B) ∗ β′, (f dβ) ∗ β′〉 � 〈(1A1B) ∗ β′, (1A dβ) ∗ β′〉 − α2 +
cα2

23 .

We conclude that

α2
(

1 +
c

23

)
� 〈(1A1B) ∗ β′, (1A dβ) ∗ β′〉.

Finally,

〈(1A1B) ∗ β′, (1A dβ) ∗ β′〉 � ‖(1A1B) ∗ β′‖L∞(µG)‖(1A dβ) ∗ β′‖
� ‖(1A1B) ∗ β′‖L∞(µG)‖1A‖L1(β)‖β′‖
= ‖(1A1B) ∗ β′‖L∞(µG)α

� ‖1A ∗ β′‖L∞(µG)α;

we get the result on dividing by α. �

Proof of Lemma 5.2. Suppose that we are not in case (ii) of the lemma, so we may
certainly assume that, for all regular dilates B′′ of B with

µG(B′′) �
(

α2

225(1 + d)2

)d

µG(B),

we have
‖1A ∗ β′′‖L∞(µG) � α(1 + 2−12). (5.4)

Apply Proposition 3.5 to pick λ′ so that B′ := λ′B is regular and
α

216(1 + d)
� λ′ <

α

215(1 + d)
.

Apply Proposition 3.5 to pick λ′′ so that B′′ := λ′′B′ is regular and
α

28(1 + d)
� λ′′ <

α

27(1 + d)
.

Suppose that λ ∈ [λ′′λ′, λ′]. A trivial instance of Young’s inequality tells us that

‖1A ∗ β ∗ βλ − 1A ∗ β‖L∞(µG) � ‖1A‖L∞(µG)‖β ∗ βλ − β‖

�
∫

‖(y + β) − β‖ dβλ(y)

� sup
y∈Bλ

‖(y + β) − β‖

� 24dλ

� α

211
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by Lemma 4.1 and the fact that λ � λ′. Let x′ ∈ G be such that 1A ∗β(x′) = α. It follows
from the previous calculation that

|(1A ∗ βλ − α) ∗ β(x′)| � α

211 .

Moreover, by assumption (5.4) (applicable by Lemma 3.3 and the fact that λ � λ′′λ′)
we have

1A ∗ βλ − α � α

212 .

For functions g : G → C we write g+ := 1
2 (|g| + g) and g− := 1

2 (|g| − g) = g+ − g. Now,
combining our last two expressions yields

|1A ∗ βλ − α| ∗ β(x′) = (1A ∗ βλ − α)+ ∗ β(x′) + (1A ∗ βλ − α)− ∗ β(x′)

= 2(1A ∗ βλ − α)+ ∗ β(x′) − (1A ∗ βλ − α) ∗ β(x′)

� α

210 .

Applying this expression with λ = λ′ and λ = λ′′λ′, we get

α

29 � (|1A ∗ β′ − α| + |1A ∗ β′′ − α|) ∗ β(x′)

� inf
x∈G

(|1A ∗ β′(x) − α| + |1A ∗ β′′(x) − α|).

By translating A we may assume that the infimum on the right-hand side is attained at
x = 0G; we write

α′ := 1A ∗ β′(0G), α′′ := 1A ∗ β′′(0G), f ′ := 1A − α′ and f ′′ := 1A − α′′

and note that
|α′′ − α| � α

29 and |α′ − α| � α

29 .

Now by trilinearity of Λ we have

Λ(1A1B′ , 1A1B′′ , 1A1B′) = Λ(1A1B′ , 1A1B′′ , α′1B′) + Λ(α′1B′′ , 1A1B′′ , f ′1B′)

+ Λ(f ′1B′ , α′′1B′′ , f ′1B′) + Λ(f ′1B′ , f ′′1B′′ , f ′1B′). (5.5)

We can easily estimate the first two terms on the right-hand side using the following fact.

Claim 5.4. Suppose that g : G → C has ‖g‖L∞(µG) � 1. Then

|Λ(g1B′ , 1A1B′′ , 1B′) − α′′g ∗ β′(0G)µG(B′′)µG(B′)| � α′′α′µG(B′′)µG(B′)
22 .

Proof. Recall that Λ(g1B′ , 1A1B′′ , 1B′) equals∫
g(x − y)1B′(x − y)1A(x)1B′′(x)1B′(x + y) dµG(x) dµG(y)
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by definition. By the change of variables u = x−y and symmetry of B′ we conclude that
this expression is in turn equal to∫

g(u)1B′(u)1A(x)1B′′(x)1B′(u − 2x) dµG(x) dµG(u).

Now the difference between this term and∫
g(u)1B′(u)1A(x)1B′′(x)1B′(u) dµG(u) dµG(x) (= α′′g ∗ β′(0G)µG(B′′)µG(B′))

is at most

‖g‖L∞(µG)

∫
1B′(u)1A(x)1B′′(x)|1B′(u − 2x) − 1B′(u)| dµG(x) dµG(u)

in absolute value. But if x ∈ B′′, then 2x ∈ B′′
1 +B′′

1 ⊂ B′′
2 = B′

2λ′′ , whence if u ∈ B′
1−2λ′′ ,

then 1B′(u) = 1B′(u − 2x). It follows that this error term is at most

α′′µG(B′′)µG(B′
1 \ B′

1−2λ′′) � 24α′′dλ′′µG(B′′)µG(B′)

by regularity of B′. The claim follows in view of the earlier choice of λ′′ and the fact that
α′ � 1

2α. �

It follows by applying this claim with g = 1A that

|Λ(1A1B′ , 1A1B′′ , α′1B′) − α′′α′2µG(B′′)µG(B′)| � α′′α′2µG(B′′)µG(B′)
22 . (5.6)

Moreover, since f ′ ∗ β′(0G) = 0 the claim applied with g = f ′ gives

|Λ(α′1B′ , 1A1B′′ , f ′1B′)| � α′′α′2µG(B′′)µG(B′)
22 . (5.7)

In view of (5.6), (5.7) and the decomposition (5.5) we conclude (by the triangle inequality)
that

(i)

|Λ(1A1B′ , 1A1B′′ , 1A1B′)| � α′′α′2µG(B′′)µG(B′)
22 ,

and we are in case (i) of the lemma, or

(ii)

|Λ(f ′1B′ , α′′1B′′ , f ′1B′)| � α′′α′2µG(B′′)µG(B′)
23 ,

and it turns out that we are in case (iii) of the lemma, or

(iii)

|Λ(f ′1B′ , f ′′1B′′ , f ′1B′)| � α′′α′2µG(B′′)µG(B′)
23 ,

and it turns out that we are in case (iv) of the lemma.
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The first conclusion is immediate. The second and third are verified (respectively) in the
following two claims.

Claim 5.5. If

|Λ(f ′1B′ , α′′1B′′ , f ′1B′)| � α′′α′2µG(B′′)µG(B′)
23 ,

then we are in case (iii) of the lemma.

Proof. In view of the Fourier expression for Λ we get

α′2µG(B′′)µG(B′)
23 �

∑
γ∈Ĝ

|1̂B′′(2γ)| |f̂ ′1B′(γ)|2. (5.8)

It turns out that the characters for which |1̂B′′(2γ)| is large support a lot of the mass of
the sum on the right: let ε = α′/24 and set

Λ := {γ ∈ Ĝ : |1̂B′′(2γ)| � εµG(B′′)}.

Then ∑
γ �∈Λ

|1̂B′′(2γ)| |f̂ ′1B′(γ)|2 � εµG(B′′)
∑
γ∈Ĝ

|f̂ ′1B′(γ)|2

= εµG(B′′)µG(B′)‖f ′‖2
L2(β′),

by the triangle inequality and Parseval’s theorem. Now ‖f ′‖2
L2(β′) = α′ −α′2, so it follows

that this last expression is at most εα′µG(B′′)µG(B′) and hence by the triangle inequality
and (5.8) we have

α′2µG(B′)
24 �

∑
γ∈Λ

|f̂ ′1B′(γ)|2.

Note that ({2x : x ∈ B′′
ρ })ρ is a Bourgain system of dimension d. Apply Proposition 3.5

to pick λ′′′ so that B′′′ := λ′′′({2x : x ∈ B′′
ρ })ρ is regular and

α

211(1 + d)
� λ′′′ <

α

210(1 + d)
;

since B′′ is a dilate of B, B′′′ is a dilate of ({2x : x ∈ Bρ})ρ. By Lemma 4.3 we have that

Λ ⊂ {γ : |1 − (2γ)(x)| � 1
2 for all x ∈ B′′

λ′′′} = {γ : |1 − γ(x)| � 1
2 for all x ∈ B′′′}.

Now B′′′ is a subsystem of (α′/214(1 + d))B′ so we apply Lemma 5.3 with c = 2−4 to see
that

‖1A ∗ β′′′‖L∞(µG) � α′(1 + 2−7) � α(1 + 2−8).

It remains only to verify the bound on the density of B′′′. Note that

‖1A ∗ β′′
λ′′′ ∗ β′ − 1A ∗ β′‖L∞(µG) � 24dλ′′′λ′′ � 1

2α′
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by Lemma 4.1. Whence we obtain

1A ∗ β′′
λ′′′ ∗ β′(x′) � 1A ∗ β′(x′) − α′

2
� α

22 .

By averaging, it follows that there is some x′′ ∈ G such that 1A ∗ β′′
λ′′′(x′′) � α/22. Since

A − A contains no elements of order 2 we have that x �→ 2x is injective when restricted
to A; we conclude that

µG(2B′′
λ′′′) = µG(2(x′′ + B′′

λ′′′))

� µG(2(A ∩ (x′′ + B′′
λ′′′))),

µG(A ∩ (x′′ + B′′
λ′′′)) � α

22 µG(B′′
λ′′′)

� α

22

(
λ′λ′′λ′′′

2

)d

µG(B),

by Lemma 3.3. The claim follows. �

Claim 5.6. If

|Λ(f ′1B′ , f ′′1B′′ , f ′1B′)| � α′′α′2µG(B′′)µG(B′)
23 ,

then we are in case (iv) of the lemma.

Proof. In view of the Fourier expression for Λ we have

α′′α′2µG(B′′)µG(B′)
23 �

∑
γ∈Ĝ

|f̂ ′′1B′′(2γ)| |f̂1B′(γ)|2. (5.9)

As in the previous claim we may ignore the characters supporting small values of
f̂ ′′1B′′(γ): let ε = α′′α′/24 and set

Λ := {γ ∈ Ĝ : |f̂ ′′1B′′(2γ)| � εµG(B′′)}.

Then ∑
γ �∈Λ

|f̂ ′′1B′′(2γ)| |f̂ ′1B′(γ)|2 � εµG(B′′)
∑
γ∈Ĝ

|f̂ ′1B′(γ)|2

= εµG(B′′)µG(B′)‖f ′‖2
L2(β′),

by the triangle inequality and Parseval’s theorem. Now ‖f ′‖2
L2(β′) = α′ − α′2, so it follows

that the latter expression is at most α′′α′2µG(B′′)µG(B′)/24, and hence by the triangle
inequality and (5.9) we have

∑
γ∈Λ

|f̂ ′′1B′′(2γ)| |f̂ ′1B′(γ)|2 � α′′α′2µG(B′′)µG(B′)
24 .
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Since
‖f ′′1B′′‖L1(µG) = 2(α′′ − α′′2)µG(B′′),

we have |f̂ ′′1B′′(2γ)| � 2α′′µG(B′′) and so

∑
γ∈Λ

|f̂ ′1B′(γ)|2 � α′2µG(B′)
25 .

We apply Proposition 4.4 to obtain a system B̃′′′ with

dim B̃′′′ � 210α′′−1α′−2 � 213α−3,

such that B̃′′′ ∩ B′′ has

µG(B̃′′′ ∩ B′′) � 4−d−212α−3
µG(B′′)

and
Λ ⊂ {γ : |1 − (2γ)(x)| � 218α−3dη for all x ∈ B̃′′′

η ∩ B′′
η }.

Apply Proposition 3.5 to pick λ(iv) so that

B(iv) := λ(iv)(({2x : x ∈ B̃′′′
ρ })ρ ∩ ({2x : x ∈ B′′

ρ })ρ)

is regular and
α3

220(1 + d)
� λ(iv) <

α3

219(1 + d)
.

Set B̃(iv) := λ(iv)({2x : x ∈ B̃′′′
ρ })ρ and B′′′ := λ(iv)B′′. Now

Λ ⊂ {γ : |1 − (2γ)(x)| � 1
2 for all x ∈ B̃′′′

λ(iv) ∩ B′′
λ(iv)}

= {γ : |1 − γ(x)| � 1
2 for all x ∈ B(iv)}.

B(iv) is a subsystem of (α′/214(1 + d))B′ so we may apply Lemma 5.3 with c = 2−4 to
see that

‖1A ∗ β(iv)‖L∞(µG) � α′(1 + 2−7) � α(1 + 2−8).

It remains only to verify the bound on the density of B(iv). Note that

‖1A ∗ β′′′
λ(iv) ∗ β′ − 1A ∗ β′‖L∞(µG) � 24dλ(iv)λ′′ � 1

2α′

by Lemma 4.1. Whence,

1A ∗ β′′′
λ(iv) ∗ β′(x′) � 1A ∗ β′(x′) − α′

2
� α

22 .

By averaging it follows that there is some x′′ ∈ G such that 1A ∗β′′′
λ(iv)(x′′) � α/22. Since

A − A contains no elements of order 2 we have that x �→ 2x is injective when restricted
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to A; we conclude that

µG(2B′′′
λ(iv)) = µG(2(x′′ + B′′′

λ(iv)))

� µG(2(A ∩ (x′′ + B′′′
λ(iv))))

= µG(A ∩ (x′′ + B′′′
λ(iv)))

� α

22 µG(B′′′
λ(iv))

� α

22

(
λ(iv)

2

)d+213α−3

4−d−212α−3
(

λ′λ′′

2

)d

µG(B),

by Lemma 3.3. The claim follows. �

The lemma is proved. �

Proof of Theorem 5.1. We construct two sequences of Bourgain systems B̃k and B′
k;

we write d̃k for the dimension of B̃k, Bk+1 for the intersected system B̃k ∩ B′
k, dk for

the dimension of Bk, δk for the density of Bk, βk for the measure on Bk and αk :=
‖1Ak

∗ βk‖L∞(µG).
For k � 214 log α−1 we shall show inductively that these sequences satisfy the following

conditions:

(i) d̃k � 213α−3;

(ii) B′
k is a dilate of either Bk−1 or ({2x : x ∈ (Bk−1)ρ})ρ;

(iii) Bk is a regular Bourgain system;

(iv) dk � 2d + 214α−3k;

(v) δk � (α/(2(1 + d)))(2
8d+236α−3 log α−1)kµG(B);

(vi) αk � (1 + 2−12)kα.

We initialize the set-up with B0 = B (or, if preferred, B̃−1 as the trivial system and
B′

−1 = B) so that the properties are trivially satisfied. At stage k � 213 log α−1 apply
Lemma 5.2 to Bk. It follows that either

Λ(1A, 1A, 1A) � α3
k

25

(
α3

k

244(1 + dk)3

)dk

µG(Bk)2 (5.10)

or there is a (possibly trivial) Bourgain system B̃k with dimension d̃k � 213α−3
k � 213α−3

and another B′
k which is a dilate either of Bk or of ({2x : x ∈ (Bk)ρ})ρ such that

Bk+1 = B̃k ∩ B′
k is regular,

δk+1 � αk

22

(
α3

k

222(1 + dk)

)213α−3
k

(
α5

k

248(1 + dk)3

)dk

δk

�
(

α

2(1 + d)

)(28d+236α−3 log α−1)(k+1)

µG(B)
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and

αk+1 � (1 + 2−12)αk � (1 + 2−12)k+1α.

It remains to check the bound on dk+1, which follows by Lemma 3.4 on noting that Bk+1

is the intersection of a system of dimension d and k + 1 systems of dimension at most
213α−3.

In view of the lower bound on αk and the fact that αk � 1, it follows that there is
some k � 213 log α−1 such that (5.10) holds; this yields the result. �

6. An argument of Bogolioùboff and Chang

In this section we shall prove the following proposition, which draws on techniques of
Bogolioùboff [1] as refined by Chang [4]. An argument of this type is contained in [10].

Proposition 6.1. Suppose that G is a finite abelian group. Suppose that A ⊂ G has
density α > 0 and that |A + A| � K|A|. Then there is a regular Bourgain system B with

dim B � 25K log α−1 and µG(B) �
(

1
214K2(1 + log α−1)

)24K log α−1

such that

‖1A ∗ β‖L∞(µG) � 1
2K

.

We require Chang’s theorem [9, Proposition 3.2].

Proposition 6.2 (Chang’s theorem). Suppose that A ⊂ G is a set of density α > 0
and ε ∈ (0, 1] is a parameter. Let Λ := {γ ∈ Ĝ : |1̂A(γ)| � εα}. Then there is a set of
characters Γ with |Γ | � 2ε−2 log α−1 such that Λ ⊂ 〈Γ 〉, where we recall that

〈Γ 〉 :=
{ ∑

λ∈Γ

σλλ : σ ∈ {−1, 0, 1}Γ

}
.

Proof of Proposition 6.1. Let ε be a parameter to be chosen later. Apply Chang’s
theorem (Proposition 6.2) to the set A with parameter

√
ε/3 to obtain a set of characters

Γ with |Γ | � 6ε−1 log α−1 and Λ := {γ : |1̂A(γ)| �
√

ε/3α} ⊂ 〈Γ 〉.
Write B′ for the Bourgain system induced by B(Γ, ε/26(1 + |Γ |)) and apply Proposi-

tion 3.5 to pick η ∈ [ 12 , 1) so that B := ηB′ is regular. It follows that B has dimension at
most 2|Γ | and density at least

(
1
4

)2|Γ |
×

(
ε

26(1 + |Γ |)

)|Γ |
�

(
ε2

212(1 + log α−1)

)|Γ |
.
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If λ ∈ Λ, then λ =
∑

γ∈Γ σγγ so

|1 − λ(h)| �
∑
γ∈Γ

|1 − γ(h)|

=
∑
γ∈Γ

√
2(1 − cos(4π‖γ(h)‖))

�
∑
γ∈Γ

4π‖γ(h)‖

� 4π|Γ | sup
γ∈Γ

‖γ(h)‖.

So if λ ∈ Λ, then
|1 − β̂(λ)| � sup

h∈B
|1 − λ(h)| � 1

3ε.

Hence, |〈1A ∗ 1A, 1A ∗ 1A〉 − 〈1A ∗ 1A, 1A ∗ 1A ∗ β〉| is at most∣∣∣∣ ∑
γ∈Ĝ

|1̂A(γ)|4(1 − β̂(γ))
∣∣∣∣ � sup

γ∈Λ
|1 − β̂(γ)|

∑
γ∈Ĝ

|1̂A(γ)|4 + 2 sup
γ �∈Λ

|1̂A(γ)|2
∑
γ∈Ĝ

|1̂A(γ)|2

� 1
3εα2

∑
γ∈Ĝ

|1̂A(γ)|2 + 2( 1
3ε)α2

∑
γ∈Ĝ

|1̂A(γ)|2

� εα3.

Moreover,

〈1A ∗ 1A, 1A ∗ 1A〉 � µG(supp 1A ∗ 1A)−1
( ∫

1A ∗ 1A dµG

)2

� α3

K

by the Cauchy–Schwarz inequality and the fact that |A + A| � K|A|. It follows from the
triangle inequality that if we take ε = 1/2K, then

α3

2K
� |〈1A ∗ 1A, 1A ∗ 1A ∗ βΓ,δ〉|

= |〈1A ∗ 1A ∗ 1−A, 1A ∗ βΓ,δ〉|
� ‖1A ∗ βΓ,δ‖L∞(µG)α

3.

Dividing by α3, the result is proved. �

7. The main arguments

In this section we prove the following theorem, which is the real heart of the paper.

Theorem 7.1. Suppose that G is an abelian group and that A ⊂ G is finite with
|A + A| � K|A|. If A − A contains no elements of order 2, then A contains at least
exp(−CK3 log3(1+K))|A|2 three-term arithmetic progressions for some absolute positive
constant C.
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Recall that if G and G′ are two abelian groups with subsets A and A′, respectively,
then φ : A → A′ is a Frĕıman homomorphism if

a1 + a2 = a3 + a4 =⇒ φ(a1) + φ(a2) = φ(a3) + φ(a4).

If φ has an inverse which is also a homomorphism, then we say that φ is a Frĕıman
isomorphism. For us the key property of Frĕıman isomorphisms is that if A and A′ are
Frĕıman isomorphic, then the three-term arithmetic progressions in A and A′ are in
one-to-one correspondence. It follows that each set has the same number of these.

To leverage the work of § 5 we need A to be a large proportion of G. This cannot be
guaranteed, but the following proposition will allow us to move A to a setting where this
is true.

Proposition 7.2 (Green and Ruzsa [9, Proposition 1.2]). Suppose that G is an
abelian group and A ⊂ G is finite with |A + A| � K|A|. Then there is an abelian group
G′ with |G′| � (20K)10K2 |A| such that A is Frĕıman isomorphic to a subset of G′.

Proof of Theorem 7.1. We apply Proposition 7.2 to obtain a subset A′ of a group
G′ with density at least (20K)−10K2

such that A′ Frĕıman isomorphic to A. Since A′

is Frĕıman isomorphic we have |A| = |A′|, |A′ + A′| � K|A′| and A′ − A′ contains no
elements of order 2. We apply Proposition 6.1 to get a regular Bourgain system B with

dim B � 29K3 log(1 + K) and µG′(B) � (2K)−213K3 log(1+K)

such that ‖1A′ ∗β‖L∞(µG′ ) � 1/2K. We now apply Theorem 5.1 to obtain the result. �

The proof of Theorem 1.4 is now rather straightforward.

Proof of Theorem 1.4. Write K := |A + A|/|A| and suppose that a, a′ ∈ A have
a − a′ of order 2. Then a + a = 2a′ is a non-trivial three-term progression in A which
contradicts the hypothesis. It follows that we may apply Theorem 7.1 to conclude that
A contains at least exp(−CK3 log3(1 + K))|A|2 progressions; however, we know this to
be at most |A|, whence

exp(CK3 log3(1 + K)) � |A|.

The result follows on rearranging. �

Proving Theorem 1.5 simply requires us to apply Theorem 1.4 in more or less the same
manner as Schoen applies Theorem 1.2.

Proof of Theorem 1.5. Write

S := {a ∈ A ∩ B :� ∃a′ ∈ A, b′ ∈ B with a′ �= b′ such that a′ + b′ = 2a},

and note that crucially we have

(A + B) \ (A +̂ B) = 2S, (7.1)
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and, moreover, that S contains no three-term progressions (a, b, c) with a + b = 2c and
a �= b.

Let S′ be a subset of S such that for all s ∈ 2S there is exactly one s′ ∈ S′ such that
2s′ = s. It is easy to see that |S′| = |2S|.

We claim that S′ contains no non-trivial three-term progressions. Suppose that a, b, c ∈
S′ have a+b = 2c. Since S′ ⊂ S we conclude that a = b, but in this case we have 2a = 2c,
which, by choice of S′, implies that a = c. The claim follows.

Consequently, we may apply Theorem 1.4 to conclude that

|S′ + S′| � |S′|
(

log |S′|
(log log |S′|)3

)1/3

.

Recalling that n = |A + B|, we can rearrange this expression to give

|S′| � |S′ + S′|
(

(log log |S′ + S′|)3
log |S′ + S′|

)1/3

� |A + B|
(

(log log n)3

log n

)1/3

,

since the middle expression is an increasing function of |S′ + S′| and S′ + S′ ⊂ A + B.
The result follows from (7.1) and the fact that |S′| = |2S|. �

8. Concluding remarks

The extension of Theorem 1.2 to the groups Zr and Z/NZ (with the same bound) is
implicit in [2,20,24]. Moreover, since there are particularly good versions of the mod-
elling proposition (Proposition 7.2) for these groups, it seems very likely that our Propo-
sition 6.1 could be used in conjunction with a more traditional �∞-density increment
argument [2] to prove the following.

Theorem 8.1. Suppose that G is Zr or Z/NZ and that A ⊂ G is finite with |A+A| �
K|A|. Then A contains at least exp(−CK2+o(1))|A|2 three-term arithmetic progressions
for some absolute C > 0.

Indeed, it appears that with the methods of [22] one could replace K2+o(1) by
K2 log(1 + K), thereby directly generalizing Bourgain’s version of Roth’s theorem
from [2].

We have not considered how the ideas in [3] might come into play to give an even
stronger result; the following is a natural question.

Problem 8.2. Find a direct generalization of the result of [3] to sets with small sumset.
That is, show that if A ⊂ Z/NZ is finite with |A + A| � K|A|, then A contains at least
exp(−CK3/2 log3(1 + K))|A|2 three-term arithmetic progressions for some absolute C >

0.

Among other things Theorem 1.4 immediately improves a result of Stanchescu [24],
who, answering a further question of Frĕıman [6], used Theorem 1.2 to bound from below
the size of |A+A|/|A| when A ⊂ Z2 is finite and contains no three collinear points. This
is an intriguing question because one appears to have so much extra information to play
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with: not only does A not contain any three-term progressions but it also avoids any
triples (a, b, c) with λa + µb = (λ + µ)c for any positive integers λ and µ.

Problem 8.3. Find a constant an absolute constant c > 2
3 such that if A ⊂ Z2 is

finite and contains no three collinear points, then |A + A| � |A| logc |A|.

Moves to generalize additive problems to arbitrary abelian groups have also spawned
the observation (see, for example, [8, 12]) that some arguments can be modelled very
cleanly (and often more effectively) in certain well-behaved abelian groups. It would be
surprising if one could not prove the following theorem using the methods outlined above.

Theorem 8.4. Suppose that G is a vector space over F3 and A ⊂ G is finite with |A+
A| � K|A|. Then A contains at least exp(−CK)|A|2 three-term arithmetic progressions
for some absolute constant C > 0.

In a different direction it may be that the following problem captures the essence of
Roth’s theorem in a natural general setting.

Problem 8.5. Suppose that A ⊂ Z has at least δ|A|3 additive quadruples. Find
a good absolute constant c > 0 such that we can conclude that A contains at least
exp(−Cδ−c)|A|2 three-term arithmetic progressions.

It is immediate from the quantitative Balog–Szemerédi–Gowers theorem (see [7]) that
there is some c > 0; the problem is to find a good value.
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1. N. Bogolioùboff, Sur quelques propriétés arithmétiques des presque-périodes, Annales
Chaire Phys. Math. Kiev 4 (1939), 185–205.

2. J. Bourgain, On triples in arithmetic progression, Geom. Funct. Analysis 9 (1999),
968–984.

3. J. Bourgain, Roth’s theorem on progressions revisited, J. Analysis Math. 101 (2007),
325–357.

4. M.-C. Chang, A polynomial bound in Frĕıman’s theorem, Duke Math. J. 113 (2002),
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