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WEIGHTED POLYNOMIAL APPROXIMATION 
OF ENTIRE FUNCTIONS 

ON UNBOUNDED SUBSETS OF THE COMPLEX PLANE 

H. N. MHASKAR 

ABSTRACT. We study the asymptotic behavior of the «-widths of a class of entire 
functions in weighted approximation on subsets of the complex plane. 

1. Introduction. In [2], [3], a Bernstein-type characterization of entire functions of 
finite exponential type and order was given in terms of the degree of weighted polyno­
mial approximation of the functions on the whole real line. When the weight function 
is the Hermite weight, the theorems in [2] go beyond the classical Bernstein theorem in 
that the type of entire functions of order 1 is exactly given in terms of the degree of ap­
proximation. Subsequently, in [6], Micchelli and the author studied an «-width problem 
for weighted polynomial approximation of certain entire functions on Borel subsets of 
C. In the case of approximation on C, we obtained precise n-th root asymptotics for the 
«-widths. 

In this paper, we continue the investigations in [2], [3], [6]. We consider the weight 
functions exp(— \z\a) on an unbounded Borel subset £ of C which satisfies certain tech­
nical conditions to be described in Section 2. We give exact expressions for the type 
of entire functions of order less than a in terms of the degree of weighted polynomial 
approximation of such functions on Z. We also obtain precise asymptotic formulas for 
certain nonlinear «-widths. 

In Section 2, we develop the necessary notations and définitions as well as review 
some of the known theorems. The new theorems of this paper are discussed and proved 
in Section 3. 

I am grateful to Dr. C. A. Micchelli for his guidance and encouragement in the prepa­
ration of this paper. 

2. Notations and definitions. Throughout this paper, X will denote a fixed Borel 
subset of C having positive inner logarthmic capacity (cf. [12], p. 55). In addition, we 
assume that X satisfies the following cone condition: For every zGX, and r > 0, we have 
rz E X. We fix a > 0 and consider weight functions of the form w(z) := exp(—|z|a), 
zGE. For integer n > 0, the symbol Il„ will denote the class of all algebraic polynomials 
(with complex coefficients) of degree at most n. 
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Let X be any normed linear space defined for functions on X, || • \\x be its norm, and 
n > 0 be an integer. If wf G X, we define 

(2.1) en(w,X;f):=mf \\w(f - P)\\X-

If K C X, the weighted Kolmogorov n-width of K is defined by the formula 

(2.2) dn(w,X;K):= inf supinf \\w(f - g)\\x 

where Jn denotes the collection of all linear subspaces of X with dimension at most n. 
The (weighted) Bernstein n-width of K is defined by 

(2.3) bn(w,X\K):= sup sup{p : g G 7, ||wg||x < 1 =» p# G A}. 

A good source of information on these n-widths is [10]. In particular, we need (cf. [10], 
Proposition 1.6) 

(2.4) dn(w, X\ K) > bn(w, X\ K). 

Following [1], we define the (weighted continuous) nonlinear n-width of K by the 
formula 

(2.5) Dn(w,X,/Q:=infsup 
a,M f£k 

w(f-M(a(f)) 
\x 

where the infimum is taken over all functions M: Rn —+ X and continuous functions 
a: K —• R". Similarly to (2.4), we have ([1], Theorem 3.1) 

(2.6) Dn(w, X\K)> bn(w, X\ K), 

In this paper, we restrict our attention to the case when X is either the class of bounded 
continuous functions with the usual supremum norm or some LP space, 1 < p < oo. If 
[i is a positive Borel measure on X, 0 < p < oo and/: Z —> C is a Borel measurable 
function, we set 

(2.7) riU^:={jT l/W<W0 
i /p 

The space Z / z then consists of all Borel measurable functions/: Z —» C such that 
11/1U/i,s < °°> where, as usual, two functions are identified if they are equal /i-almost 
everywhere. When p — oo, instead of considering the usual L°° space, we shall consider 
the space CQÇL) of all continuous functions/: Z —» C which vanish at infinity. This space 
is normed by 

(2-8) ll/||z : - li/iU,M,z :== sup[/(z)|. 
z<EX 
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In general, if A Ç C and/: A —+ C, then we write 

ll/1U:=supl/Xz)|. 
zeA 

In the case when the underlying set Z is R, it is natural to consider the U spaces with 
respect to the Lebesgue measure. For arbitrary subsets of C, there is no such natural 
choice. In particular, when Z is a domain, then it is natural to consider the two dimen­
sional Lebesgue measure, while if Z is a curve, then it is more natural to consider the 
arclength measure. In [4], it was demonstrated that the following class of measures are 
suitable for certain potential theoretic applications to weighted approximation. We say 
that a positive Borel measure a supported on Z is natural if it satisfies each of the fol­
lowing conditions. 
(Ml) a is a regular measure in the sense that for any Borel set A Ç I . 

a(A) = M{a(0) :AÇOÇ Z, OZ-open} 

= sup{a(K) : K ÇA, K compact}. 

(M2) For any compact set ^ C I , o(K) < oo and the restriction of a to K has finite 
logarithmic energy. 

(M3) There exists an integer N > 0 such that 

(M4) For 6 > 0 and z G C, let 

X„(a,6,z) := min \p(z)\~2 f , ^ \P(t)\2da(t). 

where 
ls(z):={tel.:\t-z\<6}. 

Then, for every 8 > 0 and every compact set K Ç Z, 

(2.9) limsup||An(a,^,z)|iyn<L 
n—>oo 

In [4], various conditions were given which imply the condition (M4) above, but are 
easier to check. In particular, it was proved that the area measures on domains as well as 
arclength measures on C1+-curves are 'natural'. It was also proved that if the restriction 
of a to every compact subset of Z is 'completely regular' in the sense of [11], then a 
also satisfies the condition (M4). The significance of the définition will be clearer in 
Proposition 2.1(d) below. 

If E Ç C and r > 0, we write 

rE := {rz : z G E}. 

If <7 is a measure supported on Z, we say that a is homogeneous if there are constants 
L, C2 such that for any Borel subset £ C Z , 

(2.10) a({rz :z£E})< c2r
La(E), r > 0. 

In the sequel, a property is said to hold quasi-everywhere (q. e.) if the set where it 
does not hold has inner logarithmic capacity equal to zero. The following Proposition 2.1 
summarizes certain potential theoretic facts which will be needed later. 
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PROPOSITION 2.1. (a) There exists a unique Borel measure /i* := /x*(a, Z) wzï/z 
the following properties. The measure //* has finite logarithmic energy and a compact 
support S'. 77zere exwfs a constant F := F ax swc/? /̂lâtf 

(2.11) f/(z):=f/(/i*,z):= / l o g — ^ - rf/x*(0 < F- \z\a, z e 5, 

(2.12) U(z)>F-\z\a, q.e. o«Z. 

(b) Let 5* denote the set { z G X : U(Z) <F — \z\a). Ifn > 0 is an integer, P e Yln, 
and 

\wn(z)P(z)\ < l, ze5*, 

|P(z)| <exp(nF-nt / (z ) ) , z G C , 

am/, in particular, 

\wn(z)P(z)\ < 1, Z G I 

(cj Le£ J** denote the (compact) convex hull of the set 5*. There exists a sequence of 
polynomials Pn(z) — Yll=\(z — Zk,n) where Zk,n £ /**> k — l,...,n, n= 1,2,..., vwY/z r/z<? 
following properties 

(2.13) lim ||wn(z)P„(z)||^ - exp(-F), 

(2.14) lim |P„(z)|l/n = exp(-l/(z)), z e C \ Z, 

uniformly on compact subsets ofC \ Z. 
(JJ L^ a be a natural measure on Z. 77iere a/^f5 a sequence of positive numbers 

{Nn \— Nn(a, cr,Z)} SWC/J f/zar 

(2.15) l i m A ^ ^ l 

<2AZ J, /<9r 0 < p, r < oo, â ry integer n>0 and P E nn , 

(2.i6) l lw^i i^z^M 1 ^ 1 ^^^!!^ . 

Proposition 2.1 is developed in various papers. Parts (a) and (b) are proved in [5], [71, 
part (d) is proved in [4]. In part (c), we may choose Pn to be the extremal polynomials 
studied in [4], [5], [7], [8]. The fact that the zeros of Pn are in J** follows easily from the 
extremal properties of Pn. We observe that if cr is a homogeneous, natural measure, then 
(2.16) can be reformulated as 

(2.17) \\wP\\r,^<Nf^p-l^\\wP\\p^ 
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for a suitable choice of constants N'n which also satisfy 

l i m A ^ ^ l . 
n—->oo 

Finally, we introduce a class of entire functions. Iff: C —-> C is entire and r > 0, we 
set 

(2.18) M(r,/):=sup|/(z) | . 

We recall that the function/ is said to be of type r and order À if 

n i m r log M(r,/) 
(2.19) limsup ^ = r. 

r—>oo F 

Let 0 < r < o o , 0 < A < a, q > 1. We denote by Aq^\ the class of all entire functions 
/ : C -» C such that 

(2.20) |||/|||,,T,A := j/c[exp(-r|z|A) [/(z)|]^m2(z))lA? < 1 

where rri2 denotes the two dimensional Lebesgue measure. Similarly, A^^x denotes the 
class of all entire functions/: C —-> C for which 

(2.21) |||/|||oo.T,A := supexp(-rrA)M(r,/) < 1. 

3. Main theorems. Our first theorem generalizes Theorem 2 in [3]. 

THEOREM 3.1. Let a > 0, 1 < / ? < o o , 0 < A < a and a be a homogeneous, 
natural measure on X. Let X denote Lp

a 2 (respectively CQ(L) ifp = oo), wf £ X and 

(3.1) pif) := p(w,X;/) := limsup{/i1/A-1/aci/,,(w,JC;/)} < oo. 
n—>oo 

Thenf has an extension to the complex plane as an entire function of order X and finite 
type T given by 

(3.2) p(f) = (rA)1 /Aexp(l/A-f). 

Conversely, iff is the restriction to Z of an entire function of order A and finite type r, 
then wf G X, and the quantity p(f) defined in (3.1) satisfies (3.2). 

When Z = R, the quantity F is given by (cf. [9]) 

(3.3) F = F a = i 5 ^ £ + i o g 2 + i . 
a a 

where 

( 3*4 ) A « : =
2 « - 2 { r ( a / 2 ) } 2 ' 

In particular, when a = 2 and Z = R, F = log(2y^) and Theorem 2 in [2] can be 
seen to be a special case of Theorem 3.1. We caution the reader that the notation in [2] 
is different. 

Our next theorem examines the asymptotic behavior of the «-widths of the classes of 
entire functions defined near the end of Section 2. 
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THEOREM 3.2. Let a > 0, 1 < p, q < oo, 0 < T < oo, 0 < A < a and a be a 
homogeneous, natural measure on ~L. Let X denote Lp

a s (respectively CQ(L) if p = oo) 
and A := AqTy\. We have 
(3.5) 

lim nl'x-l/aDH(w,X;A)1/" = lim nl/x-[ladn(w,X;A)i/n 

= lim ni/x-l/abn(w,X;A)i!n = (TA)'/Aexp(| - F). 
n—KX) VA / 

The proof of the above theorems require a few lemmas. In the sequel, a,p, q, a, S 
will be fixed as in Theorems 3.1 and 3.2. We assume that p, q are finite; the other cases 
are only simpler. The letters c, c\,... will denote positive constants generally depending 
upon these and other parameters such as r and A, but independent of the integer n and the 
functions being approximated. Their values may be different at different occurrences, 
even within the same formula. We will also need the convention that Mn will denote 
positive numbers, not necessarily independent of the functions involved, but with the 
property that 

(3.6) \imMlJn=l. 

The value of this symbol may be different at different occurrences, even within the same 
formula. 

LEMMA 3.3. Let 0 < r < o o , 0 < A < a . Ifn > 1 is an integer, P £Yln and 

(3.7) | | w P | U x < l 

then 

nnlx-nlaexv(nF-n/\) 
(3-8) |||/>|IUA<M„ (TA)"/A 

PROOF. Using (2.17), (3.7) implies 

Hz)P(z)\ <M n , z G l , 

and hence 

(3.9) \wn(z)P(nl'az)\ <Mn, z G l 

In view of Proposition 2.1 (b), we get 

(3.10) \P(nx'az)\ <Mnexp(nF-nU(z)), z G C. 

Let, in this proof only, R := sup{|z| : z G 5*}, and 

(3.11) An := max(r + /?)nexp(-rnA/arA) =: (pn +/?)nexp(-mA/apA). 
r>0 
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Proposition 2.1(a) implies that the support of the measure //* is a subset of 5*. Therefore, 

t / ( z ) > l o g r r ! — , zGC, 
\z\+R 

and hence (3.10) implies that 

(3.12) \P(nl/az)\ < Mn(\z\+R)nexp(nn z G C. 

It follows that 

(3.13) 111*111 OO,T,A < Mn cxp(nF)An. 

Since the two dimensional Lebesgue measure W2 is a homogeneous, natural measure, we 
may apply (2.17) with A instead of a and m^ instead of a to deduce that 

(3.14) \\\P\\\q^x<Mnexp(nF)K. 

It is elementary calculus to check that 

pX
n-

l(pn+R) = nl~x^/rX. 

Hence, p„ —> oo as n —• oo and, in fact, 

limp„/n1/A-1 ' /a ' = (rA)IA 

It follows that 

An=Mnp
n
ncxp(-rnx/apx

n) 
(3. 15) nn/X-n/a 

= M n W^ e X P ( "" / A ) * 
The estimate (3.8) follows from (3.14) and (3.15). • 

LEMMA 3.4. Let f: C —> C be an entire function, {Ln G n„_i} be a sequence of 
polynomials, N be a positive integer and c, C, \x be positive constants such that 

(3.16) w(z)\f(z) - Ln(z)\ < c ( — ) , z G nxlaS\ n = N,N+l,.... 
C 

Kn^, 

Then, for every p', 1 < / / < oo, 

(3.17) | | w ( f - L n ) | | / 7 V , z < c ( ^ ) n , * = tf,tf+l,..., 

where C and \i are the same constants as in (3.16). 

PROOF. In view of (3.16), we have 

w(z)\Ln+l(z)-Ln(z)\ <Mn(^y, zenl'aS*, n>N. 
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Using a change of variables and Proposition 2.1(b), and taking into account that Ln+\ — 
L„ G n„, we get that 

In view of (2.17), we get 

w(z) \Ln+l(z) - Ln(z)\ < Mn(—) , z G l , n > N. 

(3. 18) \\w(Ln+l - Ln)\\P,aX < Mn(^)n> H^N' 

Using Lemma 3.3 with a value of À sufficiently close to a and q = oo, it is easy to con­
clude that the sequence {Ln} converges uniformly on compact subsets of C. We observe 
that (3.16) implies that the sequence Ln converges t o / uniformly on compact subsets of 
Z. Therefore, {Ln} converges t o / uniformly on compact subsets of C. Using (3.18), it is 
easy to verify that for n> N. 

(3.19) E l k ( ^ i - W l U x < M j - . \w(Lk+x -Lk)\\p,aX <Mn[ 
k=n 

Hence, (3.19) shows that 
oo 

f = Ln + Y;(Lk+l -Lk) 
k=n 

in the sense of weighted Lp
a L convergence. We now get (3.17) by applying (3.19) again. • 

Our next lemma estimates the rate of convergence of the Lagrange interpolation poly­
nomials at the points < n̂ := nxlazk,n, where zk,n

 a r e introduced in Proposition 2.1(c). If 
g: C —+ C, n > 1 is an integer, we denote by Ln(g, •) the unique polynomial in nn_i that 
satisfies 

(3.20) Ln(g^n) = g(^n), k=l,...,n. 

LEMMA 3.5. Let 0 < r < o o , 0 < A < a, q > 0, andf E Aq^\. Then for each 
p>0, 

(3.21) l imsup«1 /A-1 / a |vv(/-Ln( /> ,0) |1 /J i :<(TA)1 /Aexp(l/A-F)-

PROOF. For the purpose of this proof only, we let Qn(z) := Pn(z/na), rn : = 
(n/rA)1/A, R := max{|z| : z G J**}. Let e > 0 be arbitrarily fixed. Then, (2.13) im­
plies that 

(3.22) lim \\wQn\\^
n = exp(-F). 

n—>oo 

Therefore, for sufficiently large integer n, 

(3.23) Rnl'a/rn < e, nxla f* C {\z\ < rn/2} 
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and 

(3.24) \\wQnh < (1 +c)nexp(-/i/0. 

Moreover, for \z\ >R(l — e)~lnl/a, we have 

(3-25) ^^U^-R)-(i-e)iM-
Next, we recall the Hermite formula for interpolation ([13], p. 50), to observe that for 
any z G Z, \z\ < rn/2 and any r > rn{\ — l/n), 

(3.26) f(z) - Ln(f, z) = -r-r L 7777777 7. 

In view of (3.26) and (3.25), for z G X, \z\ < rn/2 and r > rn{\ - 1/w), 

(327) ^)_L^z)|-"^rii=Ho,(0llC-.| 
<cie,(z)ij^f"f^)M». 

We integrate both sides of (3.27) with respect to rdr from r — rn(\ — 1 jri) to r = r„ and 
get 

^[/(Z) - L„(f,z)| < c|flife)| ( ̂ ^ ^w^ I / n ] / w < [f(0| ̂ 2(0. 

Next, we use Holder's inequality and take into account the fact that/ G Aqjy\ and sim­
plify to get for z G S, |z| < r n /2 , 

(3.28) [ ^ ( z ) - ^ ^ , z ) | < c | a i ( z ) | ( ^ l £ > j ( | ) _ 1 / ?
e X p ( „ / A ) . 

In view of (3.24), (3.28) implies, forz G S, \z\ < rn/2, that 

„ W W - t „ M ^) - ' ' ' ( i± i )%^-„ F ) (^ ) - -

In view of (3.23) and the fact that (r^/n)xln —• 1 as n —-> oo, we get, for sufficiently large 
values of n and for z G rc1/0^*, 

(3.29) w(z)\f(z)-Ln(f,z)\ <c{-)n 

where /i := 1/A — 1/aand 

C:= ( | ^ ) 2 ( r A ) 1 / A e x p ( l / A - n 

The estimate (3.21) now follows using Lemma 3.4. 
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PROOF OF THEOREM 3.1. Let p(f) < r < oo and t be any number which satisfies 

(3.30) ( A ) 1 / A > r e x p ( F - l / A ) . 

Then there exists a sequence of polynomials Pn G Hn such that 

(3.31) f = P0 + jrpn 
n=\ 

in the sense of convergence in X and 

(3.32) \\wPn\\x < cen(w,X\f) < c [ ^ z ^ ) \ n>\. 

In view of Lemma 3.3 applied with t in place of r, we get 

(3.33) | | | P j | | o ^ < c ( r " ^ - y A ) ) " . » > 1 . 

In particular, (3.30) implies that the series Po + Y,Pn converges uniformly on compact 
subsets of C. In view of (3.31), the function/ may be modified cr-almost everywhere so 
that this sum is an extension to C of the function so modified. Thus, we may denote this 
extension by/. The extended function / is then an entire function and (3.33) implies that 

M(R,f) < cexp(-tf?A), R > 0. 

Since t was an arbitrary number which satisfies (3.30), it follows that/ is of order A 
and type r given by (3.2). The converse statement is an immediate consequence of 
Lemma 3.5. • 

PROOF OF THEOREM 3.2. Lemma 3.3 shows that 

(3.34) liminfrc1^-1/^^,;^)1/" > (r\)xlx exp(l/A - F). 
n—>oo 

Lemma 3.5 gives that 

(3.35) l imsup^(w,^;A)1 /n < (rA)1/Aexp(l/A - F) 

and 

(3.36) limsupDn(w,X;A)1 /n<(rA)1 /Aexp(l/A-F) 

The theorem follows from (3.34), (3.35), (3.36), (2.4) and (2.6). • 
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