Simplifying Surveillance Sampling: Can Environmental Surveillance Replace Perianal Screening?

Kyle Gontjes, University of Michigan; Kristen Gibson, University of Michigan; Bonnie Lansing, University of Michigan; Marco Cassone, University of Michigan; Lona Mody, University of Michigan, VA Ann Arbor Healthcare System

Background: Although active surveillance for multidrug-resistant organism (MDRO) colonization permits timely intervention, obtaining cultures can be time-consuming, costly, and uncomfortable for patients. We evaluated clinical differences between patients with and without attainable perianal cultures, and we sought to determine whether environmental surveillance could replace perianal screening. Methods: We collected active surveillance cultures from patient hands, nares, groin, and perianal area upon enrollment, at day 14, and monthly thereafter in 6 Michigan nursing homes. Methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and resistant gram-negative bacilli (RGNB) were identified using standard methods. Patient characteristics were collected by trained research professionals. This substudy focused on visits during which all body sites were sampled. To determine the contribution of perianal screening to MDRO detection, site of colonization was categorized into 2 groups: perianal and non-perianal. We evaluated the utility of multisite surveillance (eg, type 1 and type 2 error) using nonperianal sites and environment surveillance. To evaluate
characteristics associated with the acquisition of perianal cultures (eg, selection bias), we compared clinical characteristics, overall patient colonization, and room environment contamination of patients in whom all body sites were sampled during a study visit (533 patients; 1,026 visits) to patients with all body sites except the perianal culture sampled during a study visit (108 patients; 168 visits).

Results: Of 651 patients, 533 met the inclusion criteria; average age was 74.5 years, 42.6% were male, and 60.8% were white. Of 1,026 eligible visits, 620 visits detected MDRO colonized patients; 155 MRSA, 363 VRE, and 386 RGNB (Table 1). If perianal cultures were not collected, nonperianal surveillance misses 7.7%, 41.3%, and 45.1% of MRSA, VRE, and RGNB colonized visits, respectively. The addition of environmental surveillance to non-perianal screening detected 95.5%, 82.9%, and 67.9% of MRSA, VRE, and RGNB colonized visits, respectively. The specificity of environmental screening was 85.3%, 72.7%, and 73.4% for MRSA, VRE, and RGNB, respectively. Patients without attainable perianal cultures had significantly more comorbidities, worse functional status, shorter length of stay, and higher baseline presence of wounds than patients with attainable perianal cultures; introducing potential selection bias to surveillance efforts (Table 2). No significant differences in overall patient colonization and room contamination were noted between patients with and without attainable perianal cultures. **Conclusion:** Perianal screening is important for the detection of VRE and RGNB colonization. Infection prevention must be cognizant of the tradeoff between reducing type 2 error and the selection bias that occurs with required attainment of perianal cultures; environmental surveillance improves MDRO detection while introducing type 1 error.

Funding: None

Disclosures: None

Doi: 10.1017/ice.2020.488

Presentation Type: Late Breaker Oral

Case of Candida auris Identified From the External Ear Canal of a Healthy Minnesota Outpatient With Travel to South Korea

Brittany Pattee, Minnesota Department of Health; Laura Tourdot, Minnesota Department of Health; Amanda Beaudoin, Minnesota Department of Health; Jennifer Dale, Minnesota Department of Health; Jill Fischer, Minnesota Department of Health Public Health; Paula Snipes; Leslie Lovett, Minnesota Department of Health; Jacy Walters, Minnesota Department of Health; Jonathan Alpern, Minnesota Department of Health; Keely Ellyson, Minnesota Department of Health; Ruth Lynfield

Background: Candida auris is a globally emerging, multidrug-resistant fungal pathogen that causes healthcare-associated outbreaks and can be misidentified in clinical laboratories. Most US C. auris cases occur in hospitalized or long-term care patients with underlying medical conditions. Also, 4 global phylogenetic C. auris clades largely cluster geographically. Receiving health care abroad is a risk factor for US C. auris cases. In December 2019, the Minnesota Department of Health (MDH) confirmed Minnesota’s first C. auris case, isolated from the external ear canal of a healthy young adult outpatient with right-sided otitis externa. We describe the investigation and response for this uncommon US presentation of C. auris.

Methods: The MDH initiated mandatory reporting and submission of confirmed or possible C. auris isolates in August 2019. The MDH Public Health Laboratory (MDH-PHL) confirmed C. auris by MALDI-TOF (Bruker) from an isolate submitted by a hospital laboratory as C. duobushaemulonii to rule out C. auris. The MDH-PHL performed broth microdilution antifungal susceptibility testing (AFST). The CDC Mycotics Diseases Branch laboratory performed whole-genome sequencing (WGS). The MDH epidemiologists obtained a patient history through interviews with healthcare staff and the patient, and they collected environmental samples from otoscopes. The MDH-PHL tested environmental samples by C. auris RT-PCR and culture. The MDH-PHL performed environmental surveillance for patients evaluated with otoscopes who later returned with otic inflammation. Swabs from the patient’s axilla, groin, and external ear canals were tested for C. auris by PCR at the MDH-PHL.

Results: The patient reported recurrent right ear infections in 2016 during a 16-month visit to South Korea, with treatment in multiple ENT clinics. December 2019 otitis resolved after treatment with oral amoxicillin/clavulanate and otic ciprofloxacin/dexamethasone. AFST showed resistance to fluconazole and susceptibility to 8