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Abstract

A complete classification is given of pentavalent symmetric graphs of order 30p, where p ≥ 5 is a prime.
It is proved that such a graph Γ exists if and only if p = 13 and, up to isomorphism, there is only one such
graph. Furthermore, Γ is isomorphic to C390, a coset graph of PSL(2, 25) with Aut Γ = PSL(2, 25), and Γ

is 2-regular. The classification involves a new 2-regular pentavalent graph construction with square-free
order.
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1. Introduction

In this paper, all graphs are assumed to be finite, simple unless stated otherwise,
connected and undirected.

Let Γ be a graph. We denote by V Γ, E Γ and Aut Γ its vertex set, edge set and
automorphism group, respectively. An arc in Γ is an ordered pair of adjacent vertices.
Let A Γ denote the arc set of Γ. Let s be a positive integer. An s-arc in a graph Γ is
an (s + 1)-tuple (v0, v1, . . . , vs) of s + 1 vertices such that (vi−1, vi) ∈ A Γ for 1 ≤ i ≤ s
and vi−1 , vi+1 for 1 ≤ i ≤ s − 1. Let X be a subgroup of Aut Γ. The graph Γ is
said to be (X, s)-arc-transitive or (X, s)-regular if X is transitive or regular on the
s-arcs of Γ; and Γ is called (X, s)-transitive if it is (X, s)-arc-transitive but not (X, s + 1)-
arc-transitive. In the case where X = Aut Γ, an (X, s)-arc-transitive, (X, s)-regular or
(X, s)-transitive graph is said to be an s-arc-transitive, s-regular or s-transitive graph.
In particular, a 0-arc-transitive graph is called a vertex transitive graph, and a 1-arc-
transitive graph is called an arc-transitive graph or symmetric graph.

Characterising symmetric graphs with small valency is a current topic in the
literature. Cubic and tetravalent graphs have been studied extensively, and it is natural
to consider pentavalent graphs [1, 8–12, 15, 17, 18, 21]. In particular, [7] classified the
symmetric graphs of order 30. In this paper, we classify pentavalent symmetric graphs
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Table 1. Pentavalent symmetric graphs of order 30p (p ≥ 5).
Γ p Aut Γ (Aut Γ)v Transitivity Remark
C390 13 PSL (2, 25) F20 2-transitive Lemma 3.4

of order 30p, with p a prime. Since the cases p = 2 and p = 3 have been treated in the
classifications of arc-transitive pentavalent graphs of order 12p and 18p in [10], we
consider the case where p ≥ 5. The main result of this paper is the following theorem,
which slightly improves the result in [7].

Theorem 1.1. Let Γ be a pentavalent symmetric graph of order 30p, where p ≥ 5 is
a prime. Then p = 13 and, up to isomorphism, there exists only one graph Γ with
Γ � C390 as in Construction 3.3. Furthermore, Aut(Γ) and Aut(Γ)v are described in
Table 1, where v ∈ V Γ.

2. Preliminary results

In this section, we give some necessary preliminary results.
For a graph Γ and X ≤ Aut Γ, let N be an intransitive normal subgroup of X on the

vertices of Γ. Denote by VN the set of N-orbits in V . The normal quotient graph ΓN

is defined as the graph with vertex set VN , and two N-orbits B,C ∈ VN are adjacent in
ΓN if some vertex of B is adjacent in Γ to some vertex of C. By [19, Theorem 4.1] and
[14, Lemma 2.5], we have the following proposition.

Proposition 2.1. Let Γ be a connected regular graph of prime valency p > 2 and let X
be a group of automorphisms of Γ which is arc-transitive on Γ. If a normal subgroup
N of X has more than two orbits on V Γ, then ΓN is a connected X/N-arc transitive
graph of valency p and N is the kernel of the action of X on VN . Furthermore, N is
semiregular on V Γ.

Denote by F20 the Frobenius group of order 20. The next lemma is about the
structure of the vertex-stabilisers of pentavalent symmetric graphs. It is due to [8, 21].

Lemma 2.2. Let Γ be a pentavalent (X, s)-transitive graph for some X ≤ Aut Γ and
s ≥ 1. Let v ∈ V Γ. If Xv is soluble, then |Xv| | 80 and s ≤ 3. If Xv is insoluble, then
|Xv| | 29 · 32 · 5 and 2 ≤ s ≤ 5. Furthermore, one of the following holds:

(1) s = 1, Xv � Z5, D10 or D20;
(2) s = 2, Xv � F20, F20 × Z2, A5 or S5;
(3) s = 3, Xv � F20 × Z4, A4 × A5, (A4 × A5) : Z2 or S4 × S5;
(4) s = 4, Xv � ASL(2, 4), AGL(2, 4), AΣL(2, 4) or AΓL(2, 4);
(5) s = 5, Xv � Z

6
2 : ΓL(2, 4).

From [6, pages 12–14], one may obtain the following proposition by checking the
nonabelian simple groups with three prime factors.

Proposition 2.3. Let G be a nonabelian simple group and |G| = 2k · 3l · 5. Then G = A5,
A6 or PSU(4, 2).
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By checking the orders of nonabelian simple groups, see [6, pages 134–136], we
have the following proposition.

Proposition 2.4. Let p > 5 be a prime and let G be a {2, 3, 5, p}-nonabelian simple
group such that |G| divides 210 · 33 · 52 · p and 3 · 52 · p divides |G|. Then G =

PSL(2, 25), PSU(3, 4), J2 or PSp(4, 4).

From [12], we give some information about pentavalent symmetric graphs of order
10p or 6p in the following lemma. The graph Cn, following the notation in [12],
denotes the corresponding graph of order n, which is a coset graph, and CDl

10p is
defined as a Cayley graph of order 10p.

Lemma 2.5. Let Γ be a pentavalent symmetric graph. Let p > 5 be a prime. Then one
of the following holds.

(1) If |V Γ| = 10p, then either Γ � C170 with p = 17 and Aut Γ � Aut(PSp(4, 4)) or
Γ � CDl

10p with Aut Γ � D10p : Z5.
(2) If |V Γ| = 6p, then Γ � C42 and Aut Γ � Aut(PSL(3, 4)), Γ � C66 and Aut Γ �

Aut(PGL(2, 11)) or Γ � C114 and Aut Γ � Aut(PGL(2, 19)).

In the following, we give some information about pentavalent symmetric graphs of
order 50. First we need the definition of bi-coset graph. Let G be a finite group. Given
two subgroups L, R of G such that L ∩ R is core-free in G, define the bi-coset graph
Cos(G, L,R) of G with respect to L and R as the graph with vertex set [G : R] ∪ [G : L]
such that Lx, Ry are adjacent if and only if yx−1 ∈ RL. By [5, Lemma 3.7], a bi-coset
graph Γ has the following properties.

Lemma 2.6. Let Γ = Cos(G, L,R) be a bi-coset graph. Then:

(1) Γ is G-edge transitive and G-vertex intransitive;
(2) |Γ(v)| = |L : L ∩ R| and |Γ(w)| = |R : L ∩ R|, where v ∈ [G : L] and w ∈ [G : R].

Conversely, if Γ is a G-edge-transitive but not G-vertex-transitive graph, then Γ is
isomorphic to a bi-coset graph Cos(G,Gv,Gw), where v and w are two adjacent
vertices.

By [18], we have the following lemma.

Lemma 2.7. Let Γ be a connected pentavalent symmetric graph of order 50. Then
Γ � C50, where C50 = Cos(G, L,R) and

G = 〈a, b, c | a5 = b5 = c5 = [a, c] = [b, c] = 1, [a, b] = c〉

is an extra-special group of order 53, L = 〈a〉 and R = 〈b〉.

Remarks 2.8. By Magma [2], AutC50 � G : (Z2
4 : Z2), which is arc-transitive on C50,

but C50 is not G-vertex-transitive. Furthermore, AutC50 is soluble.
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Let G be an extension of N by H, that is, G/N � H. Recall that an extension is
called a central extension if N is the centre of G. A group G is said to be perfect
if G = G′, the commutator subgroup of G. For a given group H, if N is the largest
abelian group such that G := N.H is perfect and the extension is a central extension,
then N is called the Schur multiplier of H, written Mult(H). Since GL(2, p) contains
no nonabelian simple groups (see [4, Lemma 2.7], for example), it is easily shown that
the extension G = N.T , where N = Z2

p and T is a nonabelian simple group, is a central
extension. By [13], the following lemma is known.

Lemma 2.9. Assume that G = N.T, where N is cyclic or |N| is prime square, and T is a
nonabelian simple group. Then G = N.T is a central extension. Furthermore, G = NG′

and G′ = M.T, where M ≤ N is a subgroup of Mult(T ).

3. An example of pentavalent symmetric graph of order 30p

In the following, we construct a pentavalent symmetric graph of order 390. To do
this, we first introduce the definition of coset graph. Let G be a finite group and let
H be a core-free subgroup of G. Define the coset graph Cos(G,H,HgH) of G with
respect to H as the graph with vertex set [G : H] such that Hx, Hy are adjacent if and
only if yx−1 ∈ HgH. The following propositions about coset graphs are well known;
see [16, 20].

Lemma 3.1. Using notation as above, let val Γ be the valency of Γ. Then the coset
graph Γ = Cos(G,H,HgH) is a G-arc transitive graph and

(1) val Γ = |H : H ∩ Hg|;
(2) Γ is undirected if and only if there exists a 2-element g ∈G \ H such that g2 ∈ H;
(3) Γ is connected if and only if 〈H, g〉 = G.

Conversely, each G-symmetric graph Σ is isomorphic to the coset graph
Cos(G,Gv,GvgGv), where g ∈ NG(Gvw) is a 2-element such that g2 ∈ Gv, and v ∈ V Σ,
w ∈ Σ(v).

Remarks 3.2. For every α ∈ Aut(G), Cos(G,H,HgH) � Cos(G,Hα,HαgαHα).

Construction 3.3. Let T ≤ S26 such that T � PSL(2,25). We may choose the following
elements in S26:

a = (1 20 21 24 11)(3 19 6 9 10)(4 18 14 25 7)(5 16 12 26 23)(8 15 22 13 17),
b = (1 3 15 23)(4 18 25 14)(5 21 10 17)(6 8 12 20)(9 22 16 11)(13 26 24 19),
τ = (2 7)(3 23)(4 11)(5 12)(6 10)(8 21)(9 14)(13 19)(16 18)(17 20)(22 25)(24 26).

Then T = 〈a, b, τ〉. Let H = 〈a, b〉 � Z5 : Z4. Define the coset graph C390 =

Cos(T,H,HτH).

Lemma 3.4. The graph C390 is pentavalent symmetric of order 390. Moreover,
AutC390 � PSL(2, 25), which acts 2-arc-regularly on Γ.

Conversely, each pentavalent symmetric graph of order 390 admitting PSL(2, 25)
as an arc-transitive automorphism group is isomorphic to C390.
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Proof. By Magma [2], C390 is a connected pentavalent symmetric graph of order
390 and Aut(C390) � PSL(2, 25). Further, the number of 2-arcs of Γ is 390 · 5 · 4 =

|PSL(2, 25)|, which implies that Γ is 2-arc regular.
Conversely, let T = 〈a,b, τ〉 � PSL(2,25) and let Γ be a pentavalent symmetric graph

of order 390 admitting T as an arc-transitive automorphism group. By Lemma 3.1,
Γ is a coset graph of T with respect to a subgroup H ≤ T of order 20. Moreover,
T has two conjugacy classes of subgroups of H with H � Z5 : Z4, which are fused
in Aut T = PΓL(2, 25). By Remark 3.2, we may assume H = 〈a, b〉 � Z5 : Z4. Let
P = 〈b〉 � Z4. Then Γ is isomorphic to a graph of Cos(T,H,HgH) such that g is a
2-element in T \ H, g2 ∈ H and g ∈ NT (P) � D24. Moreover, g satisfies |H : H ∩ Hg| =

5 and 〈H, g〉 = T . By Magma [2], there are eight choices for g and each such g is an
involution. Let S be the set of all such involutions. Note that some of the elements
in S are conjugate in NAut T (H). By Magma [2], we have two choices g which are not
conjugate in NAut T (H). Furthermore, their representatives are τ and τ′, where

τ′ = (1 14)(2 7)(3 25)(4 23)(5 24)(6 12)(9 11)(10 13)(15 18)(16 22)(17 19)(21 26).

Again by Magma [2], Cos(T,H,HτH) � Cos(T,H,Hτ′H), as required. �

4. The proof of Theorem 1.1

In this section, we will prove Theorem 1.1. The next simple lemma is helpful to our
argument.

Lemma 4.1. Let Γ be an X-arc-transitive pentavalent graph of order 30p, where p is a
prime and X ≤ Aut Γ. Then for each insoluble normal subgroup N E X, the following
hold:

(1) N has at most two orbits on V Γ;
(2) For each v ∈ V Γ, 5 | |NΓ(v)

v |.

Proof. (1) Suppose that N has at least three orbits on V Γ. Then, by Proposition 2.1,
N is semiregular on V Γ. Hence |N| | 30p. Since a group of order 30p is soluble, it
follows that N is soluble, a contradiction.

(2) For each v ∈ V Γ, since Nv , 1 and X is transitive on V Γ, we have |NΓ(v)
v | , 1.

It follows that 5 | |NΓ(v)
v | since NΓ(v)

v E XΓ(v)
v and XΓ(v)

v acts primitively on Γ(v), as
required. �

Proof of Theorem 1.1. For the remainder of this paper, we let Γ be a symmetric
pentavalent graph of order 30p, where p is a prime. Let A = Aut Γ. We first consider
the case p = 5, beginning with the following lemma.

Lemma 4.2. There exists no pentavalent symmetric graph of order 150.

Proof. Let N be a minimal normal subgroup of A. Assume first that N is soluble. Then
N is isomorphic to Zd

r for some prime r and integer d ≥ 1. Since N is half transitive on
V Γ and |V Γ| = 150, N has at least three orbits on V Γ. Thus, by Proposition 2.1, N is
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semiregular. It follows that N � Z2,Z3,Z5 or Z2
5. If N � Z2, then by Proposition 2.1,

ΓN is a pentavalent symmetric graph of odd order, a contradiction. If N � Z5, then ΓN

is a pentavalent symmetric graph of order 2 · 3 · 5, but by [12], there exist no graphs of
this order.

Assume that N � Z2
5. In this case, ΓN � K6 and A/N ≤ S6. By Proposition 2.1, ΓN

is A/N-arc-transitive and so 5 · 6 | |A/N|. By the structure of subgroups of S6, A/N
is isomorphic to A5, S5, A6 or S6. For the case A/N � A5 or A6, by Lemma 2.9,
A = N.T is a central extension of N by T , where T = A5 or A6; furthermore, A′ = T
since Mult(T ) = Z2 or Z6, which is normal in A. If A′ has at least three orbits on V Γ,
then A′ is semiregular. It follows that |A′| | |V Γ| = 150, which is impossible. Thus A′

has at most two orbits on V Γ, and so 3 · 52 | |T |, which is also impossible. For the
case A/N � S5 or S6, A/N has a normal subgroup M/N � A5 or A6. Similarly, M is a
central extension of N by T , where T = A5 or A6, and M′ = T which is normal in A.
By the above discussion, a contradiction occurs.

We next assume that N � Z3, then ΓN is a pentavalent symmetric graph with
order 2 · 52. By Lemma 2.7, ΓN is isomorphic to C50. Then A is soluble because
A/N . AutC50. Let F be the Fitting subgroup of A, the subgroup generated by all the
normal nilpotent subgroups of A. Since A is soluble, we have F , 1 and CA(F) ≤ F.

By the above discussion, A has no nontrivial normal 2-subgroups and 5-subgroups,
and so F = O3(A), the maximal normal 3-subgroup of A. By Proposition 2.1, F
is semiregular. Then |F| = 3 and so F is abelian and CA(F) = F. It follows that
A/F = A/CA(F) . Aut(F) � Z2, which is impossible.

We now suppose that A has no soluble minimal normal subgroups. Then N = T d,
where T is a nonabelian simple group. By Lemma 2.2, for a vertex v ∈ V Γ, we
have |Nv| | 29 · 32 · 5 and so |N| = |T |d divides 210 · 33 · 53. Then T is a {2, 3, 5}-
nonabelian simple group. By Proposition 2.3, T is isomorphic to one of the groups
A5, A6 or PSU(4, 2). Assume that d ≥ 2. Then the only possible case is T = A5 and
d = 2 or 3. We first suppose that d = 2. Then N is an insoluble normal subgroup
of A, and by Lemma 4.1, N has at most two orbits on V Γ and 5 | |Nv|. However,
|Nv| = |N|/150 = 24 or |Nv| = |N|/75 = 48, giving a contradiction. Now suppose that
d = 3. Then N = T1 × T2 × T3 with Ti � A5 and i = 1, 2, 3. By Lemma 4.1, N has
at most two orbits on V Γ and 5 | |NΓ(v)

v |. Suppose that N is transitive on V Γ. Then
N is arc-transitive on Γ. By Lemma 4.1, for every i and each v ∈ V Γ, 5 | |(Ti)v|, and
so 53 | |Nv|, in contradiction to |Nv| | 29 · 32 · 5. Now suppose that N has exactly two
orbits on V Γ. Then |Nv| = |N|/75 = 2880. By Lemma 2.2, we have Av � AΓL(2, 4) or
Z6

2 : ΓL(2, 4) since Nv C Av. For the former case, Nv � AGL(2, 4). For the later case,
by Magma [2], Nv � (A6 : Z4) : Z2. This is impossible since N � A3

5 has no subgroups
isomorphic to AGL(2, 4) or (A6 : Z4) : Z2. Hence d = 1 and N = T E A is isomorphic
to A5, A6 or PSU(4, 2). By Lemma 4.1, N has at most two orbits on V Γ. It follows
that 3 · 52 | |N|, which is also impossible. �

We now consider the case where p > 5. First we suppose that A contains a soluble
minimal normal subgroup N. We have the following lemma.
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Lemma 4.3. If A has a soluble minimal normal subgroup N, then no graphs appear.

Proof. By assumption, N � Zd
q with q a prime and d a positive integer. It is easy to

prove that N has at least three orbits on V Γ. By Proposition 2.1, N is semiregular on
V Γ, and hence |N| | 30p. Thus N � Z2, Z3, Z5 or Zp. Let us consider these one by one.

If N � Z2, then ΓN is a pentavalent symmetric graph of odd order, which is
impossible.

If N � Zp, then ΓN is a pentavalent symmetric graph of order 2 · 3 · 5, which is also
impossible by [12].

Now suppose that N � Z3. Then ΓN is a pentavalent symmetric graph of order
2 · 5 · p. By Lemma 2.5, we have ΓN � C170 or CDl

10p.
Suppose that ΓN � C170. Then A/N ≤ Aut ΓN � Aut(PSp(4, 4)). Since A/N is arc-

transitive on ΓN , we have 5 · 170 | |A/N|. By [3], A/N � PSp(4, 4).O, where O ≤ Z4.
Then A/N contains a normal subgroup M/N isomorphic to PSp(4, 4). By Lemma 2.9,
M = N.T � Z3.PSp(4, 4) is a central extension of N by T , and M′ � PSp(4, 4) since
Mult(T ) = 1, which is a normal subgroup of A. By Lemma 4.1, M′ has at most two
orbits on V Γ. If M′ is transitive, then M′N/N � PSp(4, 4) is transitive on V ΓN .
Let δ ∈ V ΓN ; we have |(M′N/N)δ| = |PSp(4, 4)|/170 = 5760, which is impossible as
PSp(4, 4) has no subgroups of order 5760. Hence, M′ has exactly two orbits on V Γ

and |M′v| = 3840. By Lemma 4.1, 5 | |M′Γ(v)
v | and M′Γ(v)

v is primitive on Γ(v). Hence M′

is edge-transitive on Γ. By Lemma 2.6, Γ � Cos(M′, L,R), where L = M′v, R = M′w and
v and w are adjacent vertices. The valency of Γ equals |L : L ∩ R|. But by Magma [2],
all possible cases of |L ∩ R| are equal to 16, 256, 60 or 64, a contradiction since Γ is
pentavalent.

If ΓN � CD
l
10p, then A/N ≤ Aut ΓN � D10p : Z5. Since A/N is arc-transitive on ΓN ,

we have A/N � D10p : Z5, and it follows that A = N : H � Z3 : (D10p : Z5). Since H
has a normal subgroup K which is isomorphic to Zp and centralises N = Z3, we see
that K is a normal subgroup of A. This implies that the corresponding normal quotient
graph ΓK is a pentavalent symmetric graph of order 30. However, by [12], there exists
no pentavalent symmetric graph of order 30, a contradiction.

Finally, we assume that N � Z5. By Lemma 2.5, ΓN is isomorphic to C42, C66 or
C114. If ΓN � C42, then A/N ≤ Aut ΓN � Aut(PSL(3, 4)) and p = 7. Note that A/N
acts arc-transitively on ΓN and so 5 · 42 | |A/N|. By checking the maximal subgroups
of PSL(3, 4), we have A/N � PSL(3, 4).O, where O ≤ D12. Then A/N contains a
normal subgroup M/N � PSL(3, 4). By Atlas [3], Mult(PSL(3, 4)) � Z2

4 × Z3. Then, by
Lemma 2.9, we have that M = NM′ = N × M′ � Z5 × PSL(3, 4) is a normal subgroup
of A. Since M′ � PSL(3, 4) is a characteristic subgroup of M, we have M′ E A. By
Lemma 4.1, M′ has at most two orbits on V Γ and, for every vertex v ∈ V Γ, 5 | |M′v|.
However, |M′v| = |M

′|/210 = 96 or |M′v| = |M
′|/105 = 192, a contradiction.

Now suppose that ΓN � C66. Then A/N ≤ Aut ΓN � PGL(2, 11) and p = 11. In
this case, 5 · 66 | |A/N|, and by checking the maximal subgroups of PGL(2, 11), we
have A/N � PSL(2, 11).O, where O ≤ Z2. So A/N contains a normal subgroup M/N
isomorphic to PSL(2, 11). Then by Lemma 2.9, M = N × M′ � Z5 × PSL(2, 11) since
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Mult(PSL(2, 11)) = Z2. Note that M′ � PSL(2, 11) is a normal subgroup of A and so,
by Lemma 4.1, M′ has at most two orbits on V Γ and, for every vertex v ∈ V Γ, 5 | |M′v|.
But, |M′v| = |M

′|/330 = 2 or |M′v| = |M
′|/165 = 4, a contradiction.

Finally, suppose that ΓN � C114. By Lemma 2.5, A/N ≤ Aut ΓN � PGL(2, 19) and
p = 19. Since A/N is arc-transitive on ΓN , we have 5 · 114 | |A/N|. By checking
the maximal subgroups of PGL(2, 19), we see that A/N contains a normal subgroup
M/N � PSL(2, 19). Then by Lemma 2.9, M = NM′ = N × M′ = Z5 × PSL(2, 19)
because Mult(PSL(2, 19)) = Z2. Hence M′ = PSL(2, 19) E A. By Lemma 4.1, M′ has
at most two orbits on V Γ and, for every v ∈ V Γ, 5 | |M′v|. This is impossible since
|M′v| = |M

′|/570 = 6 or |M′v| = |M
′|/285 = 12. �

We now turn to the case where A has no soluble minimal normal subgroups. The
next lemma completes the proof of Theorem 1.1.

Lemma 4.4. If A has no soluble minimal normal subgroups, then Γ � C390 as in
Construction 3.3, and, up to isomorphism, there exists only this one graph.

Proof. Let N be a insoluble minimal normal subgroup of A. Then N = T d with T a
nonabelian simple group. By Lemma 4.1, N has at most two orbits on V Γ. Thus
15p divides |N : Nv|, and so p | |T |. Suppose that d ≥ 2. Then pd | |N|. However, by
Lemma 2.2, |Av| | 29 · 32 · 5, and so |N| | |A| | 210 · 33 · 52 · p, a contradiction. Hence
d = 1 and N = T E A. Let C := CA(T ). Then C C A and CT = C × T . If C , 1, then
C is insoluble because A has no soluble minimal normal subgroups. By Lemma 4.1,
we have 5 | |Cv|. On the other hand, 5 | |Tv|, thus 52 | |Av|, but by Lemma 2.2 this is
impossible. Hence C = 1 and A is an almost simple group.

Note that T has at most two orbits on V Γ, hence |Tv| = |T |/30p or |Tv| =

|T |/15p. Furthermore, 5 | |Tv|. Now |T | | |A| | 210 · 33 · 52 · p and 3 · 52 · p | |T |. By
Proposition 2.4, T is isomorphic to PSL(2, 25), PSU(3, 4), J2 or PSp(4, 4).

Suppose that T � PSU(3, 4). Then p = 13 and T ≤ A ≤ Aut T = T.Z4, and so
|Av| divides |Aut T |/30 · 13 = 640. However, |Tv| = 160 or 320. Since Tv ≤ Av, by
Lemma 2.2, 3 | |Av|, a contradiction.

Suppose that T � J2. Then p = 7 and |Tv| = 2880 or 5760. But by Atlas [3], J2 has
no subgroups of order 2880 or 5760.

Suppose that T � PSp(4, 4). Then p = 17 and |Tv| = 1920 or 3840. For the former
case, T is transitive on V Γ and, by Lemma 4.1, 5 | |Tv|. It follows that T is arc-transitive
on Γ. On the one hand, by Atlas, the subgroup of T with order 1920 is soluble. On
the other hand by Lemma 2.2, we have |Tv| | 80, a contradiction. For the latter case,
by Lemma 2.2, we have Av � 26 : ΓL(2, 4), and so |A| = 30 · 17 · |Av| = 210 · 33 · 5 · 17,
which is impossible since A ≤ Aut T and |Aut T | = 28 · 32 · 52 · 17.

Suppose that T � PSL(2, 25). Then p = 13. If T has two orbits on V Γ, then
|Tv| = |T |/15 · 13 = 40. By Atlas [3], T has no subgroups of order 40. Hence T is
transitive on V Γ. Further Γ is a pentavalent T -arc-transitive graph of order 390. So the
graph is Γ = C390 as in Construction 3.3. By Lemma 3.4, the proof is complete. �
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