PENTAVALENT SYMMETRIC GRAPHS OF ORDER 30p

BO LING, CI XUAN WU and BEN GONG LOU ${ }^{\boxtimes}$
(Received 17 April 2014; accepted 23 June 2014; first published online 27 August 2014)

Abstract

A complete classification is given of pentavalent symmetric graphs of order $30 p$, where $p \geq 5$ is a prime. It is proved that such a graph Γ exists if and only if $p=13$ and, up to isomorphism, there is only one such graph. Furthermore, Γ is isomorphic to C_{390}, a coset graph of $\operatorname{PSL}(2,25)$ with $\operatorname{Aut} \Gamma=\operatorname{PSL}(2,25)$, and Γ is 2-regular. The classification involves a new 2-regular pentavalent graph construction with square-free order.

2010 Mathematics subject classification: primary 05C30; secondary 05C25.
Keywords and phrases: arc-transitive graph, pentavalent symmetric graph, automorphism group.

1. Introduction

In this paper, all graphs are assumed to be finite, simple unless stated otherwise, connected and undirected.

Let Γ be a graph. We denote by $V \Gamma, E \Gamma$ and Aut Γ its vertex set, edge set and automorphism group, respectively. An arc in Γ is an ordered pair of adjacent vertices. Let $A \Gamma$ denote the arc set of Γ. Let s be a positive integer. An s-arc in a graph Γ is an $(s+1)$-tuple $\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ of $s+1$ vertices such that $\left(v_{i-1}, v_{i}\right) \in A \Gamma$ for $1 \leq i \leq s$ and $v_{i-1} \neq v_{i+1}$ for $1 \leq i \leq s-1$. Let X be a subgroup of Aut Γ. The graph Γ is said to be (X, s)-arc-transitive or (X, s)-regular if X is transitive or regular on the s-arcs of Γ; and Γ is called (X, s)-transitive if it is (X, s)-arc-transitive but not $(X, s+1)$ -arc-transitive. In the case where $X=\operatorname{Aut} \Gamma$, an (X, s)-arc-transitive, (X, s)-regular or (X, s)-transitive graph is said to be an s-arc-transitive, s-regular or s-transitive graph. In particular, a 0 -arc-transitive graph is called a vertex transitive graph, and a 1 -arctransitive graph is called an arc-transitive graph or symmetric graph.

Characterising symmetric graphs with small valency is a current topic in the literature. Cubic and tetravalent graphs have been studied extensively, and it is natural to consider pentavalent graphs [1, 8-12, 15, 17, 18, 21]. In particular, [7] classified the symmetric graphs of order 30. In this paper, we classify pentavalent symmetric graphs

[^0]Table 1. Pentavalent symmetric graphs of order $30 p(p \geq 5)$.

Γ	p	Aut Γ	$(\text { Aut } \Gamma)_{v}$	Transitivity	Remark
C_{390}	13	PSL $(2,25)$	F_{20}	2-transitive	Lemma 3.4

of order $30 p$, with p a prime. Since the cases $p=2$ and $p=3$ have been treated in the classifications of arc-transitive pentavalent graphs of order $12 p$ and $18 p$ in [10], we consider the case where $p \geq 5$. The main result of this paper is the following theorem, which slightly improves the result in [7].

Theorem 1.1. Let Γ be a pentavalent symmetric graph of order $30 p$, where $p \geq 5$ is a prime. Then $p=13$ and, up to isomorphism, there exists only one graph Γ with $\Gamma \cong C_{390}$ as in Construction 3.3. Furthermore, $\operatorname{Aut}(\Gamma)$ and $\operatorname{Aut}(\Gamma)_{v}$ are described in Table 1, where $v \in V \Gamma$.

2. Preliminary results

In this section, we give some necessary preliminary results.
For a graph Γ and $X \leq$ Aut Γ, let N be an intransitive normal subgroup of X on the vertices of Γ. Denote by V_{N} the set of N-orbits in V. The normal quotient graph Γ_{N} is defined as the graph with vertex set V_{N}, and two N-orbits $B, C \in V_{N}$ are adjacent in Γ_{N} if some vertex of B is adjacent in Γ to some vertex of C. By [19, Theorem 4.1] and [14, Lemma 2.5], we have the following proposition.

Proposition 2.1. Let Γ be a connected regular graph of prime valency $p>2$ and let X be a group of automorphisms of Γ which is arc-transitive on Γ. If a normal subgroup N of X has more than two orbits on $V \Gamma$, then Γ_{N} is a connected X / N-arc transitive graph of valency p and N is the kernel of the action of X on V_{N}. Furthermore, N is semiregular on $V \Gamma$.

Denote by F_{20} the Frobenius group of order 20. The next lemma is about the structure of the vertex-stabilisers of pentavalent symmetric graphs. It is due to [8, 21].

Lemma 2.2. Let Γ be a pentavalent (X, s)-transitive graph for some $X \leq$ Aut Γ and $s \geq 1$. Let $v \in V \Gamma$. If X_{v} is soluble, then $\left|X_{v}\right| \mid 80$ and $s \leq 3$. If X_{v} is insoluble, then $\left|X_{\nu}\right| \mid 2^{9} \cdot 3^{2} \cdot 5$ and $2 \leq s \leq 5$. Furthermore, one of the following holds:

$$
\begin{align*}
& s=1, X_{v} \cong \mathbb{Z}_{5}, \mathrm{D}_{10} \text { or } \mathrm{D}_{20} ; \tag{1}\\
& s=2, X_{v} \cong \mathrm{~F}_{20}, \mathrm{~F}_{20} \times \mathbb{Z}_{2}, \mathrm{~A}_{5} \text { or } \mathrm{S}_{5} ; \\
& s=3, X_{v} \cong \mathrm{~F}_{20} \times \mathbb{Z}_{4}, \mathrm{~A}_{4} \times \mathrm{A}_{5},\left(\mathrm{~A}_{4} \times \mathrm{A}_{5}\right): \mathbb{Z}_{2} \text { or } \mathrm{S}_{4} \times \mathrm{S}_{5} ; \\
& s=4, X_{v} \cong \operatorname{ASL}(2,4), \operatorname{AGL}(2,4), \operatorname{ALL}(2,4) \text { or } \operatorname{A\Gamma L}(2,4) \\
& s=5, X_{v} \cong \mathbb{Z}_{2}^{6}: \Gamma \mathrm{L}(2,4)
\end{align*}
$$

From [6, pages 12-14], one may obtain the following proposition by checking the nonabelian simple groups with three prime factors.
Proposition 2.3. Let G be a nonabelian simple group and $|G|=2^{k} \cdot 3^{l} \cdot 5$. Then $G=\mathrm{A}_{5}$, A_{6} or $\operatorname{PSU}(4,2)$.

By checking the orders of nonabelian simple groups, see [6, pages 134-136], we have the following proposition.

Proposition 2.4. Let $p>5$ be a prime and let G be $a\{2,3,5, p\}$-nonabelian simple group such that $|G|$ divides $2^{10} \cdot 3^{3} \cdot 5^{2} \cdot p$ and $3 \cdot 5^{2} \cdot p$ divides $|G|$. Then $G=$ $\operatorname{PSL}(2,25), \operatorname{PSU}(3,4), \mathrm{J}_{2}$ or $\operatorname{PSp}(4,4)$.

From [12], we give some information about pentavalent symmetric graphs of order $10 p$ or $6 p$ in the following lemma. The graph C_{n}, following the notation in [12], denotes the corresponding graph of order n, which is a coset graph, and $\mathcal{C D} \mathcal{D}_{10 p}^{l}$ is defined as a Cayley graph of order $10 p$.

Lemma 2.5. Let Γ be a pentavalent symmetric graph. Let $p>5$ be a prime. Then one of the following holds.
(1) If $|V \Gamma|=10 p$, then either $\Gamma \cong \mathcal{C}_{170}$ with $p=17$ and $\operatorname{Aut} \Gamma \cong \operatorname{Aut}(\operatorname{PSp}(4,4))$ or $\Gamma \cong C \mathcal{D}_{10 p}^{l}$ with Aut $\Gamma \cong \mathrm{D}_{10 p}: \mathbb{Z}_{5}$.
(2) If $|V \Gamma|=6 p$, then $\Gamma \cong C_{42}$ and $\operatorname{Aut} \Gamma \cong \operatorname{Aut}(\operatorname{PSL}(3,4)), \Gamma \cong C_{66}$ and $\operatorname{Aut} \Gamma \cong$ $\operatorname{Aut}(\operatorname{PGL}(2,11))$ or $\Gamma \cong C_{114}$ and $\operatorname{Aut} \Gamma \cong \operatorname{Aut}(\operatorname{PGL}(2,19))$.

In the following, we give some information about pentavalent symmetric graphs of order 50. First we need the definition of bi-coset graph. Let G be a finite group. Given two subgroups L, R of G such that $L \cap R$ is core-free in G, define the bi-coset graph $\operatorname{Cos}(G, L, R)$ of G with respect to L and R as the graph with vertex set $[G: R] \cup[G: L]$ such that $L x, R y$ are adjacent if and only if $y x^{-1} \in R L$. By [5, Lemma 3.7], a bi-coset graph Γ has the following properties.

Lemma 2.6. Let $\Gamma=\operatorname{Cos}(G, L, R)$ be a bi-coset graph. Then:
(1) Γ is G-edge transitive and G-vertex intransitive;
(2) $|\Gamma(v)|=|L: L \cap R|$ and $|\Gamma(w)|=|R: L \cap R|$, where $v \in[G: L]$ and $w \in[G: R]$.

Conversely, if Γ is a G-edge-transitive but not G-vertex-transitive graph, then Γ is isomorphic to a bi-coset graph $\operatorname{Cos}\left(G, G_{v}, G_{w}\right)$, where v and w are two adjacent vertices.

By [18], we have the following lemma.
Lemma 2.7. Let Γ be a connected pentavalent symmetric graph of order 50. Then $\Gamma \cong C_{50}$, where $C_{50}=\operatorname{Cos}(G, L, R)$ and

$$
G=\left\langle a, b, c \mid a^{5}=b^{5}=c^{5}=[a, c]=[b, c]=1,[a, b]=c\right\rangle
$$

is an extra-special group of order $5^{3}, L=\langle a\rangle$ and $R=\langle b\rangle$.
Remarks 2.8. By Magma [2], Aut $C_{50} \cong G:\left(\mathbb{Z}_{4}^{2}: \mathbb{Z}_{2}\right)$, which is arc-transitive on C_{50}, but C_{50} is not G-vertex-transitive. Furthermore, Aut C_{50} is soluble.

Let G be an extension of N by H, that is, $G / N \cong H$. Recall that an extension is called a central extension if N is the centre of G. A group G is said to be perfect if $G=G^{\prime}$, the commutator subgroup of G. For a given group H, if N is the largest abelian group such that $G:=N . H$ is perfect and the extension is a central extension, then N is called the Schur multiplier of H, written $\operatorname{Mult}(H)$. Since GL($2, p)$ contains no nonabelian simple groups (see [4, Lemma 2.7], for example), it is easily shown that the extension $G=N . T$, where $N=\mathbb{Z}_{p}^{2}$ and T is a nonabelian simple group, is a central extension. By [13], the following lemma is known.

Lemma 2.9. Assume that $G=$ N.T, where N is cyclic or $|N|$ is prime square, and T is a nonabelian simple group. Then $G=N . T$ is a central extension. Furthermore, $G=N G^{\prime}$ and $G^{\prime}=M . T$, where $M \leq N$ is a subgroup of $\operatorname{Mult}(T)$.

3. An example of pentavalent symmetric graph of order $30 p$

In the following, we construct a pentavalent symmetric graph of order 390. To do this, we first introduce the definition of coset graph. Let G be a finite group and let H be a core-free subgroup of G. Define the coset $\operatorname{graph} \operatorname{Cos}(G, H, H g H)$ of G with respect to H as the graph with vertex set $[G: H]$ such that $H x, H y$ are adjacent if and only if $y x^{-1} \in H g H$. The following propositions about coset graphs are well known; see [16, 20].

Lemma 3.1. Using notation as above, let val Γ be the valency of Γ. Then the coset graph $\Gamma=\operatorname{Cos}(G, H, H g H)$ is a G-arc transitive graph and
(1) $\operatorname{val} \Gamma=\left|H: H \cap H^{g}\right|$;
(2) Γ is undirected if and only if there exists a 2-element $g \in G \backslash H$ such that $g^{2} \in H$;
(3) Γ is connected if and only if $\langle H, g\rangle=G$.

Conversely, each G-symmetric graph Σ is isomorphic to the coset graph $\operatorname{Cos}\left(G, G_{v}, G_{v} g G_{v}\right)$, where $g \in \mathrm{~N}_{G}\left(G_{v w}\right)$ is a 2-element such that $g^{2} \in G_{v}$, and $v \in V \Sigma$, $w \in \Sigma(v)$.

Remarks 3.2. For every $\alpha \in \operatorname{Aut}(G), \operatorname{Cos}(G, H, H g H) \cong \operatorname{Cos}\left(G, H^{\alpha}, H^{\alpha} g^{\alpha} H^{\alpha}\right)$.
Construction 3.3. Let $T \leq \mathrm{S}_{26}$ such that $T \cong \operatorname{PSL}(2,25)$. We may choose the following elements in S_{26} :

$$
\begin{aligned}
& a=(120212411)(3196910)(41814257)(516122623)(815221317) \text {, } \\
& b=(131523)(4182514)(5211017)(681220)(9221611)(132624 \text { 19) , } \\
& \tau=(27)(323)(411)(512)(610)(821)(914)(1319)(1618)(1720)(2225)(2426) .
\end{aligned}
$$

Then $T=\langle a, b, \tau\rangle . \quad$ Let $H=\langle a, b\rangle \cong \mathbb{Z}_{5}: \mathbb{Z}_{4}$. Define the coset graph $C_{390}=$ $\operatorname{Cos}(T, H, H \tau H)$.
Lemma 3.4. The graph C_{390} is pentavalent symmetric of order 390. Moreover, Aut $C_{390} \cong \mathrm{PSL}(2,25)$, which acts 2-arc-regularly on Γ.

Conversely, each pentavalent symmetric graph of order 390 admitting PSL(2, 25) as an arc-transitive automorphism group is isomorphic to C_{390}.

Proof. By Magma [2], C_{390} is a connected pentavalent symmetric graph of order 390 and $\operatorname{Aut}\left(C_{390}\right) \cong \operatorname{PSL}(2,25)$. Further, the number of 2 - arcs of Γ is $390 \cdot 5 \cdot 4=$ $|\operatorname{PSL}(2,25)|$, which implies that Γ is 2 -arc regular.

Conversely, let $T=\langle a, b, \tau\rangle \cong \operatorname{PSL}(2,25)$ and let Γ be a pentavalent symmetric graph of order 390 admitting T as an arc-transitive automorphism group. By Lemma 3.1, Γ is a coset graph of T with respect to a subgroup $H \leq T$ of order 20. Moreover, T has two conjugacy classes of subgroups of H with $H \cong \mathbb{Z}_{5}: \mathbb{Z}_{4}$, which are fused in Aut $T=\mathrm{P} \Gamma \mathrm{L}(2,25)$. By Remark 3.2, we may assume $H=\langle a, b\rangle \cong \mathbb{Z}_{5}: \mathbb{Z}_{4}$. Let $P=\langle b\rangle \cong \mathbb{Z}_{4}$. Then Γ is isomorphic to a graph of $\operatorname{Cos}(T, H, H g H)$ such that g is a 2-element in $T \backslash H, g^{2} \in H$ and $g \in \mathrm{~N}_{T}(P) \cong \mathrm{D}_{24}$. Moreover, g satisfies $\left|H: H \cap H^{g}\right|=$ 5 and $\langle H, g\rangle=T$. By Magma [2], there are eight choices for g and each such g is an involution. Let S be the set of all such involutions. Note that some of the elements in S are conjugate in $\mathrm{N}_{\text {Aut } T}(H)$. By Magma [2], we have two choices g which are not conjugate in $\mathrm{N}_{\mathrm{Aut} T}(H)$. Furthermore, their representatives are τ and τ^{\prime}, where

$$
\tau^{\prime}=(114)(27)(325)(423)(524)(612)(911)(1013)(1518)(1622)(1719)(2126)
$$

Again by Magma [2], $\operatorname{Cos}(T, H, H \tau H) \cong \operatorname{Cos}\left(T, H, H \tau^{\prime} H\right)$, as required.

4. The proof of Theorem 1.1

In this section, we will prove Theorem 1.1. The next simple lemma is helpful to our argument.

Lemma 4.1. Let Γ be an X-arc-transitive pentavalent graph of order 30 p, where p is a prime and $X \leq$ Aut Γ. Then for each insoluble normal subgroup $N \unlhd X$, the following hold:
(1) N has at most two orbits on $V \Gamma$;
(2) For each $v \in V \Gamma, 5| | N_{v}^{\Gamma(v)} \mid$.

Proof. (1) Suppose that N has at least three orbits on $V \Gamma$. Then, by Proposition 2.1, N is semiregular on $V \Gamma$. Hence $|N| \mid 30 p$. Since a group of order $30 p$ is soluble, it follows that N is soluble, a contradiction.
(2) For each $v \in V \Gamma$, since $N_{v} \neq 1$ and X is transitive on $V \Gamma$, we have $\left|N_{v}^{\Gamma(v)}\right| \neq 1$. It follows that $5\left|\left|N_{v}^{\Gamma(v)}\right|\right.$ since $N_{v}^{\Gamma(v)} \unlhd X_{v}^{\Gamma(v)}$ and $X_{v}^{\Gamma(v)}$ acts primitively on $\Gamma(v)$, as required.

Proof of Theorem 1.1. For the remainder of this paper, we let Γ be a symmetric pentavalent graph of order $30 p$, where p is a prime. Let $A=$ Aut Γ. We first consider the case $p=5$, beginning with the following lemma.

Lemma 4.2. There exists no pentavalent symmetric graph of order 150.
Proof. Let N be a minimal normal subgroup of A. Assume first that N is soluble. Then N is isomorphic to \mathbb{Z}_{r}^{d} for some prime r and integer $d \geq 1$. Since N is half transitive on $V \Gamma$ and $|V \Gamma|=150, N$ has at least three orbits on $V \Gamma$. Thus, by Proposition $2.1, N$ is
semiregular. It follows that $N \cong \mathbb{Z}_{2}, \mathbb{Z}_{3}, \mathbb{Z}_{5}$ or \mathbb{Z}_{5}^{2}. If $N \cong \mathbb{Z}_{2}$, then by Proposition 2.1, Γ_{N} is a pentavalent symmetric graph of odd order, a contradiction. If $N \cong \mathbb{Z}_{5}$, then Γ_{N} is a pentavalent symmetric graph of order $2 \cdot 3 \cdot 5$, but by [12], there exist no graphs of this order.

Assume that $N \cong \mathbb{Z}_{5}^{2}$. In this case, $\Gamma_{N} \cong \mathrm{~K}_{6}$ and $A / N \leq \mathrm{S}_{6}$. By Proposition 2.1, Γ_{N} is A / N-arc-transitive and so $5 \cdot 6\left||A / N|\right.$. By the structure of subgroups of $\mathrm{S}_{6}, A / N$ is isomorphic to $\mathrm{A}_{5}, \mathrm{~S}_{5}, \mathrm{~A}_{6}$ or S_{6}. For the case $A / N \cong \mathrm{~A}_{5}$ or A_{6}, by Lemma 2.9, $A=N . T$ is a central extension of N by T, where $T=\mathrm{A}_{5}$ or A_{6}; furthermore, $A^{\prime}=T$ since $\operatorname{Mult}(T)=\mathbb{Z}_{2}$ or \mathbb{Z}_{6}, which is normal in A. If A^{\prime} has at least three orbits on $V \Gamma$, then A^{\prime} is semiregular. It follows that $\left|A^{\prime}\right|\left||V \Gamma|=150\right.$, which is impossible. Thus A^{\prime} has at most two orbits on $V \Gamma$, and so $3 \cdot 5^{2}| | T \mid$, which is also impossible. For the case $A / N \cong \mathrm{~S}_{5}$ or $\mathrm{S}_{6}, A / N$ has a normal subgroup $M / N \cong \mathrm{~A}_{5}$ or A_{6}. Similarly, M is a central extension of N by T, where $T=\mathrm{A}_{5}$ or A_{6}, and $M^{\prime}=T$ which is normal in A. By the above discussion, a contradiction occurs.

We next assume that $N \cong \mathbb{Z}_{3}$, then Γ_{N} is a pentavalent symmetric graph with order $2 \cdot 5^{2}$. By Lemma 2.7, Γ_{N} is isomorphic to C_{50}. Then A is soluble because $A / N \lesssim$ Aut C_{50}. Let F be the Fitting subgroup of A, the subgroup generated by all the normal nilpotent subgroups of A. Since A is soluble, we have $F \neq 1$ and $C_{A}(F) \leq F$.

By the above discussion, A has no nontrivial normal 2-subgroups and 5-subgroups, and so $F=O_{3}(A)$, the maximal normal 3 -subgroup of A. By Proposition 2.1, F is semiregular. Then $|F|=3$ and so F is abelian and $C_{A}(F)=F$. It follows that $A / F=A / C_{A}(F) \lesssim \operatorname{Aut}(F) \cong \mathbb{Z}_{2}$, which is impossible.

We now suppose that A has no soluble minimal normal subgroups. Then $N=T^{d}$, where T is a nonabelian simple group. By Lemma 2.2, for a vertex $v \in V \Gamma$, we have $\left|N_{v}\right| \mid 2^{9} \cdot 3^{2} \cdot 5$ and so $|N|=|T|^{d}$ divides $2^{10} \cdot 3^{3} \cdot 5^{3}$. Then T is a $\{2,3,5\}$ nonabelian simple group. By Proposition 2.3, T is isomorphic to one of the groups $\mathrm{A}_{5}, \mathrm{~A}_{6}$ or $\operatorname{PSU}(4,2)$. Assume that $d \geq 2$. Then the only possible case is $T=\mathrm{A}_{5}$ and $d=2$ or 3 . We first suppose that $d=2$. Then N is an insoluble normal subgroup of A, and by Lemma 4.1, N has at most two orbits on $V \Gamma$ and $5\left|\left|N_{v}\right|\right.$. However, $\left|N_{v}\right|=|N| / 150=24$ or $\left|N_{v}\right|=|N| / 75=48$, giving a contradiction. Now suppose that $d=3$. Then $N=T_{1} \times T_{2} \times T_{3}$ with $T_{i} \cong \mathrm{~A}_{5}$ and $i=1,2,3$. By Lemma 4.1, N has at most two orbits on $V \Gamma$ and $5 \| N_{v}^{\Gamma(v)} \mid$. Suppose that N is transitive on $V \Gamma$. Then N is arc-transitive on Γ. By Lemma 4.1, for every i and each $v \in V \Gamma, 5| |\left(T_{i}\right)_{v} \mid$, and so $5^{3}| | N_{v} \mid$, in contradiction to $\left|N_{v}\right| \mid 2^{9} \cdot 3^{2} \cdot 5$. Now suppose that N has exactly two orbits on $V \Gamma$. Then $\left|N_{v}\right|=|N| / 75=2880$. By Lemma 2.2, we have $A_{v} \cong \mathrm{~A} \Gamma \mathrm{~L}(2,4)$ or $\mathbb{Z}_{2}^{6}: \Gamma \mathrm{L}(2,4)$ since $N_{v} \triangleleft A_{v}$. For the former case, $N_{v} \cong \operatorname{AGL}(2,4)$. For the later case, by Magma [2], $N_{v} \cong\left(\mathrm{~A}_{6}: \mathbb{Z}_{4}\right): \mathbb{Z}_{2}$. This is impossible since $N \cong \mathrm{~A}_{5}^{3}$ has no subgroups isomorphic to $\operatorname{AGL}(2,4)$ or $\left(\mathrm{A}_{6}: \mathbb{Z}_{4}\right): \mathbb{Z}_{2}$. Hence $d=1$ and $N=T \unlhd A$ is isomorphic to $\mathrm{A}_{5}, \mathrm{~A}_{6}$ or $\operatorname{PSU}(4,2)$. By Lemma 4.1, N has at most two orbits on $V \Gamma$. It follows that $3 \cdot 5^{2}| | N \mid$, which is also impossible.

We now consider the case where $p>5$. First we suppose that A contains a soluble minimal normal subgroup N. We have the following lemma.

Lemma 4.3. If A has a soluble minimal normal subgroup N, then no graphs appear.
Proof. By assumption, $N \cong \mathbb{Z}_{q}^{d}$ with q a prime and d a positive integer. It is easy to prove that N has at least three orbits on $V \Gamma$. By Proposition 2.1, N is semiregular on $V \Gamma$, and hence $|N| \mid 30 p$. Thus $N \cong \mathbb{Z}_{2}, \mathbb{Z}_{3}, \mathbb{Z}_{5}$ or \mathbb{Z}_{p}. Let us consider these one by one.

If $N \cong \mathbb{Z}_{2}$, then Γ_{N} is a pentavalent symmetric graph of odd order, which is impossible.

If $N \cong \mathbb{Z}_{p}$, then Γ_{N} is a pentavalent symmetric graph of order $2 \cdot 3 \cdot 5$, which is also impossible by [12].

Now suppose that $N \cong \mathbb{Z}_{3}$. Then Γ_{N} is a pentavalent symmetric graph of order $2 \cdot 5 \cdot p$. By Lemma 2.5, we have $\Gamma_{N} \cong C_{170}$ or $C \mathcal{D}_{10 p}^{l}$.

Suppose that $\Gamma_{N} \cong C_{170}$. Then $A / N \leq \operatorname{Aut} \Gamma_{N} \cong \operatorname{Aut}(\operatorname{PSp}(4,4))$. Since A / N is arctransitive on Γ_{N}, we have $5 \cdot 170\left||A / N|\right.$. By [3], $A / N \cong \operatorname{PSp}(4,4) . O$, where $O \leq \mathbb{Z}_{4}$. Then A / N contains a normal subgroup M / N isomorphic to $\operatorname{PSp}(4,4)$. By Lemma 2.9, $M=N . T \cong \mathbb{Z}_{3} . \operatorname{PSp}(4,4)$ is a central extension of N by T, and $M^{\prime} \cong \operatorname{PSp}(4,4)$ since $\operatorname{Mult}(T)=1$, which is a normal subgroup of A. By Lemma 4.1, M^{\prime} has at most two orbits on $V \Gamma$. If M^{\prime} is transitive, then $M^{\prime} N / N \cong \operatorname{PSp}(4,4)$ is transitive on $V \Gamma_{N}$. Let $\delta \in V \Gamma_{N}$; we have $\left|\left(M^{\prime} N / N\right)_{\delta}\right|=|\mathrm{PSp}(4,4)| / 170=5760$, which is impossible as $\operatorname{PSp}(4,4)$ has no subgroups of order 5760 . Hence, M^{\prime} has exactly two orbits on $V \Gamma$ and $\left|M_{v}^{\prime}\right|=3840$. By Lemma 4.1, $5\left|\left|M_{v}^{\prime \Gamma(v)}\right|\right.$ and $M_{v}^{\prime \Gamma(v)}$ is primitive on $\Gamma(v)$. Hence M^{\prime} is edge-transitive on Γ. By Lemma 2.6, $\Gamma \cong \operatorname{Cos}\left(M^{\prime}, L, R\right)$, where $L=M_{v}^{\prime}, R=M_{w}^{\prime}$ and v and w are adjacent vertices. The valency of Γ equals $|L: L \cap R|$. But by Magma [2], all possible cases of $|L \cap R|$ are equal to $16,256,60$ or 64 , a contradiction since Γ is pentavalent.

If $\Gamma_{N} \cong C \mathcal{D}_{10 p}^{l}$, then $A / N \leq \operatorname{Aut} \Gamma_{N} \cong \mathrm{D}_{10 p}: \mathbb{Z}_{5}$. Since A / N is arc-transitive on Γ_{N}, we have $A / N \cong \mathrm{D}_{10 p}: \mathbb{Z}_{5}$, and it follows that $A=N: H \cong \mathbb{Z}_{3}:\left(\mathrm{D}_{10 p}: \mathbb{Z}_{5}\right)$. Since H has a normal subgroup K which is isomorphic to \mathbb{Z}_{p} and centralises $N=\mathbb{Z}_{3}$, we see that K is a normal subgroup of A. This implies that the corresponding normal quotient graph Γ_{K} is a pentavalent symmetric graph of order 30. However, by [12], there exists no pentavalent symmetric graph of order 30, a contradiction.

Finally, we assume that $N \cong \mathbb{Z}_{5}$. By Lemma $2.5, \Gamma_{N}$ is isomorphic to C_{42}, C_{66} or C_{114}. If $\Gamma_{N} \cong C_{42}$, then $A / N \leq \operatorname{Aut} \Gamma_{N} \cong \operatorname{Aut}(\operatorname{PSL}(3,4))$ and $p=7$. Note that A / N acts arc-transitively on Γ_{N} and so $5 \cdot 42||A / N|$. By checking the maximal subgroups of $\operatorname{PSL}(3,4)$, we have $A / N \cong \operatorname{PSL}(3,4) . O$, where $O \leq \mathrm{D}_{12}$. Then A / N contains a normal subgroup $M / N \cong \operatorname{PSL}(3,4)$. By Atlas [3], $\operatorname{Mult}(\operatorname{PSL}(3,4)) \cong \mathbb{Z}_{4}^{2} \times \mathbb{Z}_{3}$. Then, by Lemma 2.9, we have that $M=N M^{\prime}=N \times M^{\prime} \cong \mathbb{Z}_{5} \times \operatorname{PSL}(3,4)$ is a normal subgroup of A. Since $M^{\prime} \cong \operatorname{PSL}(3,4)$ is a characteristic subgroup of M, we have $M^{\prime} \unlhd A$. By Lemma 4.1, M^{\prime} has at most two orbits on $V \Gamma$ and, for every vertex $v \in V \Gamma, 5| | M_{v}^{\prime} \mid$. However, $\left|M_{v}^{\prime}\right|=\left|M^{\prime}\right| / 210=96$ or $\left|M_{v}^{\prime}\right|=\left|M^{\prime}\right| / 105=192$, a contradiction.

Now suppose that $\Gamma_{N} \cong C_{66}$. Then $A / N \leq \operatorname{Aut} \Gamma_{N} \cong \operatorname{PGL}(2,11)$ and $p=11$. In this case, $5 \cdot 66||A / N|$, and by checking the maximal subgroups of $\operatorname{PGL}(2,11)$, we have $A / N \cong \operatorname{PSL}(2,11) . O$, where $O \leq \mathbb{Z}_{2}$. So A / N contains a normal subgroup M / N isomorphic to $\operatorname{PSL}(2,11)$. Then by Lemma $2.9, M=N \times M^{\prime} \cong \mathbb{Z}_{5} \times \operatorname{PSL}(2,11)$ since
$\operatorname{Mult}(\operatorname{PSL}(2,11))=\mathbb{Z}_{2}$. Note that $M^{\prime} \cong \operatorname{PSL}(2,11)$ is a normal subgroup of A and so, by Lemma 4.1, M^{\prime} has at most two orbits on $V \Gamma$ and, for every vertex $v \in V \Gamma, 5| | M_{v}^{\prime} \mid$. But, $\left|M_{v}^{\prime}\right|=\left|M^{\prime}\right| / 330=2$ or $\left|M_{v}^{\prime}\right|=\left|M^{\prime}\right| / 165=4$, a contradiction.

Finally, suppose that $\Gamma_{N} \cong C_{114}$. By Lemma $2.5, A / N \leq \operatorname{Aut} \Gamma_{N} \cong \operatorname{PGL}(2,19)$ and $p=19$. Since A / N is arc-transitive on Γ_{N}, we have $5 \cdot 114||A / N|$. By checking the maximal subgroups of $\operatorname{PGL}(2,19)$, we see that A / N contains a normal subgroup $M / N \cong \operatorname{PSL}(2,19)$. Then by Lemma $2.9, M=N M^{\prime}=N \times M^{\prime}=\mathbb{Z}_{5} \times \operatorname{PSL}(2,19)$ because $\operatorname{Mult}(\operatorname{PSL}(2,19))=\mathbb{Z}_{2}$. Hence $M^{\prime}=\operatorname{PSL}(2,19) \unlhd A$. By Lemma 4.1, M^{\prime} has at most two orbits on $V \Gamma$ and, for every $v \in V \Gamma, 5| | M_{v}^{\prime} \mid$. This is impossible since $\left|M_{v}^{\prime}\right|=\left|M^{\prime}\right| / 570=6$ or $\left|M_{v}^{\prime}\right|=\left|M^{\prime}\right| / 285=12$.

We now turn to the case where A has no soluble minimal normal subgroups. The next lemma completes the proof of Theorem 1.1.

Lemma 4.4. If A has no soluble minimal normal subgroups, then $\Gamma \cong C_{390}$ as in Construction 3.3, and, up to isomorphism, there exists only this one graph.

Proof. Let N be a insoluble minimal normal subgroup of A. Then $N=T^{d}$ with T a nonabelian simple group. By Lemma $4.1, N$ has at most two orbits on $V \Gamma$. Thus $15 p$ divides $\left|N: N_{v}\right|$, and so $p\left||T|\right.$. Suppose that $d \geq 2$. Then $\left.p^{d}\right||N|$. However, by Lemma 2.2, $\left|A_{\nu}\right| \mid 2^{9} \cdot 3^{2} \cdot 5$, and so $|N|||A|| 2^{10} \cdot 3^{3} \cdot 5^{2} \cdot p$, a contradiction. Hence $d=1$ and $N=T \unlhd A$. Let $C:=\mathrm{C}_{A}(T)$. Then $C \triangleleft A$ and $C T=C \times T$. If $C \neq 1$, then C is insoluble because A has no soluble minimal normal subgroups. By Lemma 4.1, we have $5\left|\left|C_{v}\right|\right.$. On the other hand, 5$|\left|T_{\nu}\right|$, thus $5^{2}| | A_{v} \mid$, but by Lemma 2.2 this is impossible. Hence $C=1$ and A is an almost simple group.

Note that T has at most two orbits on $V \Gamma$, hence $\left|T_{\nu}\right|=|T| / 30 p$ or $\left|T_{\nu}\right|=$ $|T| / 15 p$. Furthermore, $5\left|\left|T_{\nu}\right|\right.$. Now $| T\left|||A|| 2^{10} \cdot 3^{3} \cdot 5^{2} \cdot p\right.$ and $\left.3 \cdot 5^{2} \cdot p\right||T|$. By Proposition 2.4, T is isomorphic to $\operatorname{PSL}(2,25), \operatorname{PSU}(3,4), \mathrm{J}_{2}$ or $\operatorname{PSp}(4,4)$.

Suppose that $T \cong \operatorname{PSU}(3,4)$. Then $p=13$ and $T \leq A \leq \operatorname{Aut} T=T . \mathbb{Z}_{4}$, and so $\left|A_{v}\right|$ divides \mid Aut $T \mid / 30 \cdot 13=640$. However, $\left|T_{v}\right|=160$ or 320 . Since $T_{v} \leq A_{v}$, by Lemma 2.2, $3\left|\left|A_{v}\right|\right.$, a contradiction.

Suppose that $T \cong \mathrm{~J}_{2}$. Then $p=7$ and $\left|T_{\nu}\right|=2880$ or 5760 . But by Atlas [3], J_{2} has no subgroups of order 2880 or 5760.

Suppose that $T \cong \operatorname{PSp}(4,4)$. Then $p=17$ and $\left|T_{\nu}\right|=1920$ or 3840 . For the former case, T is transitive on $V \Gamma$ and, by Lemma 4.1, $5\left|\left|T_{\nu}\right|\right.$. It follows that T is arc-transitive on Γ. On the one hand, by Atlas, the subgroup of T with order 1920 is soluble. On the other hand by Lemma 2.2, we have $\left|T_{v}\right| \mid 80$, a contradiction. For the latter case, by Lemma 2.2, we have $A_{v} \cong 2^{6}: \Gamma L(2,4)$, and so $|A|=30 \cdot 17 \cdot\left|A_{\nu}\right|=2^{10} \cdot 3^{3} \cdot 5 \cdot 17$, which is impossible since $A \leq \operatorname{Aut} T$ and \mid Aut $T \mid=2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 17$.

Suppose that $T \cong \operatorname{PSL}(2,25)$. Then $p=13$. If T has two orbits on $V \Gamma$, then $\left|T_{v}\right|=|T| / 15 \cdot 13=40$. By Atlas [3], T has no subgroups of order 40. Hence T is transitive on $V \Gamma$. Further Γ is a pentavalent T-arc-transitive graph of order 390. So the graph is $\Gamma=C_{390}$ as in Construction 3.3. By Lemma 3.4, the proof is complete.

References

[1] M. Alaeiyan, A. A. Talebi and K. Paryab, 'Arc-transitive Cayley graphs of valency five on abelian groups', SEAMS Bull. Math. 32 (2008), 1029-1035.
[2] W. Bosma, C. Cannon and C. Playoust, 'The MAGMA algebra system I: The user language', J. Symbolic Comput. 24 (1997), 235-265.
[3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups (Clarendon Press, Oxford, 1985).
[4] S. F. Du, D. Marušič and A. O. Waller, 'On 2-arc-transitive covers of complete graphs', J. Combin. Theory Ser. B 74 (1998), 276-290.
[5] M. Giudici, C. H. Li and C. E. Praeger, 'Analysing finite locally s-arc transitive graphs', Trans. Amer. Math. Soc. 356 (2004), 291-317.
[6] D. Gorenstein, Finite Simple Groups (Plenum Press, New York, 1982).
[7] D. C. Guo, 'A classification of symmetric graphs of order 30', Australas. J. Combin. 15 (1997), 277-294.
[8] S. T. Guo and Y. Q. Feng, 'A note on pentavalent s-transitive graphs', Discrete Math. 312 (2012), 2214-2216.
[9] S. T. Guo, Y. Q. Feng and C. H. Li, 'The finite edge-primitive pentavalent graphs', J. Algebraic Combin. 38 (2013), 491-497.
[10] S. T. Guo, J. X. Zhou and Y. Q. Feng, 'Pentavalent symmetric graphs of order $12 p$ ', Electron. J. Combin. 18 (2011), 233.
[11] X. H. Hua and Y. Q. Feng, 'Pentavalent symmetric graphs of order 8p', J. Beijing Jiaotong Univ. 35 (2011), 132-135; 141.
[12] X. H. Hua and Y. Q. Feng, 'Pentavalent symmetric graphs of order 2pq', Discrete Math. 311 (2011), 2259-2267.
[13] G. Karpilovsky, The Schur Multiplier, London Mathematical Society Monographs, New Series, 2 (Clarendon Press, Oxford, 1987).
[14] C. H. Li and J. M. Pan, 'Finite 2-arc-transitive abelian Cayley graphs', European J. Combin. 29 (2008), 148-158.
[15] Y. T. Li and Y. Q. Feng, 'Pentavalent one-regular graphs of square-free order', Algebra. Colloq. 17 (2010), 515-524
[16] P. Lorimer, 'Vertex-transitive graphs: Symmetric graphs of prime valency', J. Graph Theory $\mathbf{8}$ (1984), 55-68.
[17] J. M. Pan, B. G. Lou and C. F. Liu, 'Arc-transitive pentavalent graphs of order 4pq', Electron. J. Combin. 20(1) (2013), 36.
[18] J. M. Pan, X. Yu and X. F. Yu, 'Pentavalent symmetric graphs of order twice a prime square', Algebra. Colloq., to appear.
[19] C. E. Praeger, 'An O'Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc-transitive graphs', J. London. Math. Soc. 47 (1992), 227-239.
[20] G. O. Sabidussi, 'Vertex-transitive graphs', Monatsh. Math. 68 (1984), 426-438.
[21] J. X. Zhou and Y. Q. Feng, 'On symmetric graphs of valency five', Discrete Math. 310 (2010), 1725-1732.

BO LING, School of Mathematics and Statistics, Yunnan University, Kunmin 650031, PR China e-mail: bolinggxu@163.com

CI XUAN WU, School of Mathematics and Statistics, Yunnan University, Kunmin 650031, PR China e-mail: wucixuan@gmail.com

BEN GONG LOU, School of Mathematics and Statistics, Yunnan University, Kunmin 650031, PR China e-mail: bengong188@163.com

[^0]: This work was partially supported by the NNSF of China (11301468, 11231008), and the NSF of Yunnan Province (2013FB001, 2013J072).
 (C) 2014 Australian Mathematical Publishing Association Inc. 0004-9727/2014 \$16.00

