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In this study, for the first time, we consider longitudinal motion of the walls during
peristalsis in a distensible tube and how this affects backward (or retrograde) flow,
i.e. peristaltic reflux. Building on the analytical model developed by Shapiro et al. (J. Fluid
Mech., vol. 37, no. 4, 1969, pp. 799–825) based on lubrication theory, we model peristalsis
as a two-dimensional infinite sinusoidal wavetrain. We develop an objective function with
high mechanical pumping efficiency and low reflux to find optimal peristalsis conditions.
We show that optimal wall longitudinal motion contributes substantially to limiting reflux
during peristalsis. The results suggest that the optimal form of wall longitudinal velocity
is a linear function of the wall transverse coordinate, moving forward with the wave when
the tube is distended and retracting when contracted. Our results are in general agreement
with clinical observations of ureteral peristalsis.
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1. Introduction

Peristalsis is a form of fluid transport caused by a propagation of progressive wave of
dilatation and contraction along the length of a distensible tube. While peristalsis is a
topic of interest in many areas with physiological (e.g. urinary tract, gastro-intestinal tract,
etc.) and non-physiological (e.g. roller pumps) applications, our main motivation here is
driven by the need to understand ureteral peristalsis and its effect on urinary reflux, which
might result in urine stasis leading to urinary tract infections (UTIs).
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Ureteral peristalsis is believed to be the main mechanism transporting urine from the
kidneys to the bladder (Weiss 1978). Although, ureteral peristalsis is not well understood
(Kiil 1973; Vahidi et al. 2011), the general consensus is that the ureteral lumen (the hollow
inner volume of the ureter) narrows due to contraction of circular muscles while at the
same time it shortens due to contraction of longitudinal muscles (Kiil 1973). Under normal
conditions, the bolus of urine formed between two consecutive constricted locations of a
wave is propelled towards the bladder, where it goes through the ureteral valve known
as the ureterovesical junction (UVJ) (Kalayeh et al. 2020). While peristaltic reflux, in
general, is harmless (Boyarsky & Labay 1981), it increases the probability of UTIs with
potential transmission of bacteria from the bladder to the kidneys, secondary to increased
urinary stasis. This is especially true when peristaltic reflux accompanies UVJ deficiency,
resulting in retrograde flow of the urine from the bladder to the ureters which is known as
vesicoureteral reflux (VUR) (Kalayeh et al. 2021). Under such conditions, peristaltic reflux
facilitates passage of bacteria in the bladder to the kidneys, resulting in UTIs. Jörgensen
& Stödkilde-Jörgensen (1985) and Jörgensen (1985, 1986) suggest that ureteral peristalsis
might be one of the VUR prevention mechanisms.

The pioneering work modelling peristalsis of Shapiro (1967) is the basis of many
models that followed. This study and its extensions (Shapiro, Jaffrin & Weinberg 1969;
Jaffrin & Shapiro 1971; Weinberg, Eckstein & Shapiro 1971) consider peristalsis as
a two-dimensional and/or axisymmetric infinite train of sinusoidal waves (therefore,
periodic boundary conditions) for negligible Reynolds numbers. These assumptions
enable use of lubrication theory (Som, Biswas & Chakraborty 2011). Alternatively, Fung
& Yih (1968) solve the problem of peristalsis based on a small peristaltic amplitude
assumption. This is not consistent with clinical observations (Woodburne & Lapides
1972), where it has been shown that during the constriction phase of peristalsis the ureter
is almost fully closed (i.e. large peristaltic amplitudes). Additionally, they analyse reflux
with an Eulerian description that, as shown by Shapiro & Jaffrin (1971), is not correct.
This will be further discussed below, when we analyse peristaltic reflux.

Lykoudis & Roos (1970) argue that pressure profiles obtained with sinusoidal
waveforms do not match those observed during ureteral peristalsis; hence, they solve
an inverse problem to find an appropriate waveform. However, they fail to provide their
waveform and inexplicably zero out negative pressures (their figure 2). Later, Manton
(1975) extends the analysis of Lykoudis & Roos (1970) to include effects of small Reynolds
numbers. They provide the waveform expression of Lykoudis & Roos (1970), but they do
not provide and compare corresponding pressure profiles.

Liron (1976) focuses on the mechanical efficiency of peristalsis while expanding in wave
and Reynolds numbers and considers two additional non-physiological waveforms: ‘plow
form’ and ‘nipple form’. Takabatake & Ayukawa (1982) solve the full Navier–Stokes
equations using finite differences and, hence, lift the simplifying assumptions on the
magnitudes of wave amplitude, wavelength and Reynolds number. These models are
extensions to the Shapiro et al. (1969) model without significantly improving that model
in terms of the general functionality of peristalsis as a physiological flow and its effect on
reflux.

Li & Brasseur (1993) generalize the classical lubrication-theory model of peristalsis
to arbitrary wave shape and wavenumber in tubes of finite length. Therefore, they solve
an unsteady problem. This is also of interest when considering the inter-‘ends’ (i.e. the
kidney and bladder) effects that require non-periodic boundary conditions. More recently
the problem of peristalsis has been solved numerically (Hosseini et al. 2018; Razavi
& Jouybar 2018; Mancha Sánchez et al. 2020; Keni et al. 2021), addressing different
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clinical scenarios. All of these numerical models generally confirm the applicability of
lubrication theory in analysing ureteral peristalsis.

Histological studies showing the presence of longitudinal and circumferential ureteral
smooth muscles (Mackinnon et al. 1970), animal studies on the ureter kinematics during
peristalsis with ‘quick freezing’ (Woodburne & Lapides 1972), videomicroscopy (Osman
et al. 2009) and surgical observations confirm that during peristalsis the ureter not only
moves transversely but also longitudinally. This requires that the inner wall of the ureter
moves in an orbital, cyclic fashion during peristalsis.

The work presented here, for the first time, considers longitudinal motion of the wall in
modelling peristalsis. We will show that longitudinal motion of the ureteral wall during
peristalsis is crucial for reflux suppression in the ureter.

2. Model development

We follow Shapiro et al. (1969) with a change in boundary conditions to include
longitudinal wall motion in the lubrication model for peristalsis. We also adopt
the regularly assumed two-dimensional planar flow to qualitatively model peristalsis.
However, axisymmetric modelling is also only qualitative as the constricted cross-section
is far from axisymmetric (Woodburne & Lapides 1972). Hence, we choose the simpler
alternative that allows comparison to previous modelling results.

In terms of nomenclature, we note the following. While Shapiro et al. (1969)
start their analysis with dimensional variables and then non-dimensionalize, we start
with non-dimensional variables, with the ˆ symbol indicating dimensional quantities.
Furthermore, for a peristaltic amplitude (φ in Shapiro et al. (1969) and b here) and reflux
fraction (R in Shapiro et al. (1969) and X here), we use different variable names. Finally,
capital letters signify variables in the laboratory (unsteady) frame of reference, while small
letters represent variables in the wave (steady) frame of reference (see Appendices A and
B for more details on the solution development and computation hardware).

2.1. Problem formulation
The model developed in Shapiro et al. (1969) is based on lubrication theory. More
specifically, the following assumptions have been made.

(i) Planar geometry: it is assumed that ureteral peristalsis is planar and can be
qualitatively modelled by two-dimensional geometry.

(ii) Long wavelength: it is assumed that the peristaltic wavelength is much larger than
the lumen height, a necessary condition for applicability of lubrication theory. This
is justified by the anatomy of the ureter in a typical adult person as noted in table 1.

(iii) Inertia-free flow: the Reynolds number is assumed to be sufficiently small.
(iv) Fluid properties: the fluid is assumed to be Newtonian with constant density and

viscosity.
(v) Infinite sinusoidal wavetrain: the flow is periodic and the peristaltic wave is assumed

to be an infinite progressive train of sinusoidal waves, moving longitudinally at a
constant velocity. The more realistic peristaltic waveform described by Lykoudis &
Roos (1970) is eschewed in favour of simplicity and comparison to the majority of
previous studies. Also, the periodic boundary condition assumed here is challenged
for a small number of waves as pointed out by Li & Brasseur (1993).
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Length L̂ ≈ 22 to 30 cm
Lumen height 2â ≈ 1 to 6 mm
Peristaltic wavelength λ̂ ≈ 6 to 10 cm
Peristaltic wave travelling velocity ĉ = 2 to 3 cm s−1

Table 1. Normal anatomical information of a typical ureter and peristalsis in an adult person (Zheng et al.
2021).

1

y

x

b

h = 1 – b cos kx, k = 2πâ/λ̂

kλ = 2π

Figure 1. A schematic of a peristalsis wave in the wave frame (moving left to right with the peristalsis
wave) with non-dimensional variables. The dashed lines represent peristalsis of zero amplitude (b = 0). The
dashed-dotted line is the symmetry plane.

Using standard non-dimensionalization, we set the wave velocity c, fluid viscosity μ and
lumen half-height a to unity (see Appendix C for more detail). In the laboratory frame the
problem is unsteady and the wall transverse coordinate H is given by

H = 1 − b cos(kX − ωt), (2.1)

where b is the peristaltic amplitude, X is the longitudinal coordinate in the laboratory
frame, t is time, k = 2π/λ is the wavenumber, ω = 2π/T is the angular frequency
and T is the waveperiod. The lubrication approximation is valid for small normalized
wavenumbers, k � 1. Attaching the frame of reference to the travelling wave and
assuming the pressure gradient between the ‘ends’ (i.e. the bladder and kidney) remains
constant (i.e. assuming periodic boundary conditions), the flow becomes steady, and the
wall transverse coordinate becomes

h = 1 − b cos kx. (2.2)

The transformation between the two frames is given by

x = X − t, y = Y,
u(x, y) = U(X − t, Y)− 1, v(x, y) = V(X − t, Y),

}
(2.3)

where (x, y) and (X, Y) are parameterizing longitudinal and transverse coordinates in the
wave and laboratory frames of reference, respectively. Similarly, (u, v) and (U,V) are
longitudinal and transverse velocity components in the wave and laboratory frames of
reference. A schematic of a peristalsis wave, as described above, in the steady frame of
reference with non-dimensional variables is shown in figure 1.
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With the lubrication assumptions, the Navier–Stokes equation in the longitudinal and
transverse directions becomes

∂p
∂x

= ∂2u
∂y2 ,

∂p
∂y

= 0. (2.4a,b)

To account for wall longitudinal motion, we set u( y = h) = −1 + β(x), where β(x) is a
2π-periodic function in space and time (in the Lagrangian sense). Note that β = 0 recovers
the Shapiro et al. (1969) solution. Therefore, the boundary conditions become

∂u
∂y

= 0 at y = 0 (symmetry condition),

u = −1 + β(x) at y = h (imposed wall velocity).

⎫⎬
⎭ (2.5)

While the correct form of β(x) should be determined based on clinical experiments,
these quantitative data are not yet available, and we defer investigating a more realistic
and clinical form of β(x) for future studies. Here, we examine general effects of wall
longitudinal motion on peristalsis, to do so we assume β is in the form of periodic Gaussian
as follows:

β = β0 +
∞∑

m=−∞
β1 exp

−(kx − mkλ− φ)2

2β2
2

. (2.6)

Here φ, β1 and β2 are parameters controlling phase, amplitude and width of β,
respectively. Parameter β0 is a constraint ensuring that the motion of the wall in the wave
frame remains 2π-periodic in time (in the Lagrangian sense). Parameter β0(b, β1, β2) must
be obtained such that the wall in the wave frame travels one wavelength in one waveperiod,
i.e. to satisfy ∫ ωT=2π

0
u(x, y = h) dt = −kλ = −2π. (2.7)

The summation in (2.6) is required to make β periodic. We find that for the range of β2
considered in this study, it is sufficient to truncate the summation from m = −5 to 5. The
form of β given in (2.6) is far from general but allows consideration of localized wall
motion near the lumen extremas with phase lags.

2.2. Flow kinematics
The problem given by (2.4a,b) can be rewritten in terms of a stream function ψ (satisfying
u = ∂ψ/∂y, v = −∂ψ/∂x) as

∂4ψ

∂y4 = 0. (2.8)

Boundary conditions given by (2.5) can also be expressed in terms of the stream function
as

∂2ψ

∂y2 = 0 at y = 0,

∂ψ

∂y
= −1 + β(x) at y = h.

⎫⎪⎪⎬
⎪⎪⎭

(2.9)

The two remaining conditions needed to solve (2.8) can be obtained by noting that in the
wave frame both planes y = 0 and y = h are streamlines and the volume flow rate q is
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constant at all cross-sections:

ψ = 0 at y = 0,
ψ = q at y = h.

}
(2.10)

Solving (2.8)–(2.10) gives u and v as

u = 3
2

h(1 − β)+ q
h

[
1 −

( y
h

)2
]

− (1 − β), (2.11)

v = hβ ′ − h′(1 − β)

2
y
h

[
3 −

( y
h

)2
]

− 3
2

h(1 − β)+ q
h

y
h

h′
( y

h
− 1

)2 − yβ ′, (2.12)

where the primes denote derivative with respect to x. An example of longitudinal velocity u
for β = 0 – Shapiro et al. (1969) case – is shown in Appendix D, figure 13. The parabolic,
Poiseuille type flow can be seen in the figure.

2.3. Pressure-flow characteristics
Considering that the peristaltic wave acts as a pump (i.e. working on the fluid to increase
its pressure), two quantities of practical interest are the time-mean volume flow rate at each
cross-section Q̄, which measures the net volume flow or mean discharge rate (per lumen
width), see Shapiro et al. (1969) for derivation, and the pressure rise per wavelength, Δpλ:

Q̄ = q + 1, (2.13)

Δpλ =
∫ kλ=2π

0

dp
dx

dx, (2.14)

where dp/dx = ∂p/∂x can be obtained from (2.4a,b) and (2.11) as

dp
dx

= −3
h3 [q + (1 − β)h]. (2.15)

For complete lumen closure (i.e. b = 1), Q̄ = 1 and the peristaltic wave acts as a
positive-displacement pump while, for no net flow, Q̄ = 0.

As is evident from (2.15) and consistent with Shapiro et al. (1969), due to the
low-Reynolds-number assumption employed in this study, Δpλ has a linear relationship
with Q̄; see figure 14(a) in Appendix D. Also, as noted by Shapiro et al. (1969), this linear
relationship can be characterized by horizontal and vertical intercepts of these curves with
the following physical significance.

(i) Vertical intercepts with Q̄ = 0 are at Δp0
λ and indicate a pressure rise per wavelength

for zero time-mean flow that is similar to when there is a blockage in the ureter or if
the pressure difference between the bladder and the kidney are such that the net flow
is zero.

(ii) Horizontal intercepts with Δpλ = 0 are at Q̄0 and indicate a time-mean flow for a
zero pressure rise per wavelength. At this flow rate the peristaltic wave is not doing
useful work and flow is not controlled by the peristalsis. Under such conditions,
depending on differential pressure between the kidneys and bladder, we might have
no flow, forward flow or backward flow. In these situations, all the work done by the
peristaltic wave will be converted to heat by viscous dissipation.
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The above intercepts mark the range where the peristalsis acts as a pump, defined as
the range of volume flow rates where mean flow is in the direction of the pressure rise
per wavelength – non-negative Q̄ and non-negative Δpλ in figure 14(a) in Appendix D
– i.e. 0 ≤ Q̄ ≤ Q̄0. Consistent with similar works in the literature (Shapiro et al. 1969;
Liron 1976), the peristalsis activity in this range is the focus here. For convenience, Q̄ is
normalized by its pumping range limit Q̄0 (see figure 14b in Appendix D):

Γ = Q̄
Q̄0
. (2.16)

2.4. Peristaltic reflux
Peristaltic reflux is a topic of controversy in the literature. The debate is whether to
use a Lagrangian description, advocated by Shapiro (1967), or an Eulerian description,
promoted by Fung & Yih (1968), who argue that the Eulerian description gives the
same result as the Lagrangian. Despite Shapiro & Jaffrin (1971) definitively showing the
difference between the two descriptions and concluding that the Lagrangian description
is the only correct one, the Eulerian description is still being commonly misused (Abd
Elnaby & Haroun 2008; Jiménez-Lozano, Sen & Dunn 2009; Vahidi et al. 2011; Gad 2014;
Hosseini et al. 2018). In such analysis, a time-mean velocity of less than zero is incorrectly
identified as the criteria for peristaltic reflux. Furthermore, they predict reflux to happen
in the centre of the lumen, which is not consistent with experimental results of Weinberg
et al. (1971), showing reflux occurs near the wall. As shown previously (Shapiro et al.
1969; Takabatake & Ayukawa 1982) and in this study, peristaltic reflux can happen even
when Q̄ > 0. Therefore, consistent with Shapiro et al. (1969), Shapiro & Jaffrin (1971),
Takabatake & Ayukawa (1982), we define peristaltic reflux as retrograde motion of fluid
particles, resulting in a net backward displacement of more than one wavelength over one
waveperiod. The quantity of interest becomes the trajectories of fluid particles over one
waveperiod, which can be obtained by solving an initial value problem given by

Dx
Dt

= u,
Dy
Dt

= v, (2.17a,b)

where D/Dt is the total derivative and u and v are given by (2.11) and (2.12), respectively.
The particle trajectories in the laboratory frame can be simply obtained by the coordinate
transformation given in (2.3), i.e. X = x + t, Y = y. Examples of these trajectories
showing refluxing and non-refluxing fluid particles, based on the above definition, are
shown in figures 2(a) and 2(b) in the wave and laboratory frames, respectively. Note
that the fluid particle starting closer to the wall refluxes while the fluid particle closer
to the lumen centre does not. The corresponding animation of particle trajectories of
figure 2(b) is shown in supplementary movie 1 available at https://doi.org/10.1017/jfm.
2023.363. As evident in figure 2, the wave and particle periods are not the same. In the
above figures, parameters b = 0.8 and q = −0.7 are chosen as an example case and are
based on clinical expertise and anatomical measurements (see § 4 for more detail) and,
unless stated otherwise, the same parameters are used for the remainder of the paper.

In light of the above discussion, a more rigorous criteria for peristaltic reflux can be
defined based on the mean velocity of the fluid particles over one waveperiod (ωT = 2π).
The mean velocity of fluid particles ū (or Ū in the laboratory frame) can be obtained from
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–0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
kX/2π

kx/2π

Y

y

0

1

2

–1.0 –0.8 –0.6 –0.4 –0.2 0
0

0.5

1.0

1.5

b = 0.8, Q̄ = 0.30, Q̄0 = 0.73, Γ = 0.41, β = 0(a)

(b)

Figure 2. Example peristaltic reflux illustration. (a) Fluid pathlines are shown starting at kx/2π = 0 over
one waveperiod (0 < ωt/2π < 1) in the wave frame. The refluxing pathlines are shown as red dashed lines.
The timeline originally vertically spanning the small gap at kx/2π = 0 is shown with a green dotted line
at ωt/2π = 1. (b) Two examples of pathlines in the laboratory frame starting at kX/2π = 0,Y = 0.15 (with
net negative displacement, i.e. refluxing) and kX/2π = 0,Y = 0.05 (with net positive displacement, i.e. not
refluxing). The associated particles in (b) are marked in (a) as well. The empty circles show initial locations
while the filled circles are showing locations at the end of one waveperiod. The results are shown for β = 0,
i.e. no wall longitudinal motion. The wall in (b), i.e. in the lab frame, translates and is shown at ωt/2π = 1.
The corresponding animation of (b) is shown in supplementary movie 1.

the horizontal motion of particles over one waveperiod Δxλ as

ū = Δxλ
2π

, Ū = ū + 1. (2.18a,b)

Mean velocities of ū < −1 in the wave frame (or Ū < 0 in the laboratory frame) indicate
fluid particles with a net backward motion of more than one wavelength over one
waveperiod, i.e. refluxing condition, this is shown in figure 3. Therefore, the range of
refluxing flow rates Γr can be defined as

Γr = {Γ ∈ (0, 1) | Ū(Γ ) < 0}. (2.19)

2.5. Reflux quantification
Consistent with Takabatake & Ayukawa (1982), since we use the waveperiod not the
particle period for calculating the mean velocity of figure 3, we can integrate Ū with
respect to Y in the refluxing range to calculate the time-mean backward (i.e. refluxing)
volume flow rate per unit width in the out-of-plane direction:

Q̄r =
∫

Ū<0
Ū dY. (2.20)

Similarly, the time-mean forward (non-refluxing) volume flow rate Q̄nr can be calculated
as

Q̄nr =
∫

Ū>0
Ū dY. (2.21)
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−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
Ū  = ū + 1

0

0.2

0.4

0.6

0.8

Y

b = 0.8, Q̄ = 0.30, Q̄0 = 0.73, Γ = 0.41, β = 0

Figure 3. Reflux criteria. Average longitudinal velocity of fluid particles at kX/2π = 0 over one
waveperiod (0 < ωt/2π < 1) in the laboratory frame. The dashed red line is showing refluxing fluid particles.
The forward and backward (reflux) time-mean volume flow rate can be calculated by integrating Ū with
respect to Y for Ū > 0 and Ū < 0, respectively. This figure is identical to the timeline of figure 2(a) at
ωt/2π = 1 (green dotted line), albeit at a different scale.

The flow rates Qr and Qnr are represented by the areas enclosed by the red dashed line
bounded by Ū = 0, and by the solid curve bounded by Y = 0 and Ū = 0, respectively. The
algebraic sum of the refluxing and non-refluxing flow rates gives the net time-mean flow
rate Q̄ = Q̄r + Q̄nr. Lastly, the reflux fraction X can be defined as the ratio of magnitudes
of the refluxing to net volume flow rates, i.e.

X = |Q̄r|
Q̄
. (2.22)

2.6. Efficiency
In the peristaltic wave pumping range (0 ≤ Γ ≤ 1), the mechanical efficiency E can be
obtained based on its common definition in pumping machinery as

E = Q̄Δpλ
W̄

, (2.23)

where Q̄Δpλ is the useful pumping power and W̄ is the mean rate of wall mechanical work,
both per wavelength and per unit width (Shapiro et al. 1969; Liron 1976). In the above
equation W̄ can be calculated by noting that it is the sum of the rate of useful pumping
power (Q̄Δpλ) and viscous dissipation D:

W̄ = Q̄Δpλ + D, (2.24)
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where D, based on the small slope approximation, is

D =
∫ 2π

0

∫ h

0

(
dp
dx

y
)2

dy dx. (2.25)

We note that efficiencies outside this pumping range (where W̄ changes sign) have some
anomalies that we do not yet understand. Peristaltic efficiency and reflux fraction in the
pumping range, calculated numerically with (2.23)–(2.25), and (2.20)–(2.22), are plotted
in figures 4(a) and 4(b), respectively for β = 0, i.e. the Shapiro et al. (1969) case. For
comparison purposes, the Shapiro et al. (1969) results – their (17) and (51) for efficiency
and reflux fraction, respectively – are overlaid on top of the results obtained here.

The spatial resolution for numerical integrations involved in (2.23) is Δx = Δy/h =
0.01. The ordinary differential equation (2.17a,b) for reflux quantification (2.20), on the
other hand, is solved with a relative tolerance of 10−5 and spatial resolution of Δy/h =
0.01. The average error for efficiency compared with the closed-form solution of Shapiro
et al. (1969), independent of the peristaltic amplitude b, is of the order of ∼10−6. The
closed-form solution of Shapiro et al. (1969) for the reflux fraction is an expansion for
small b (see their figure 13, where they compare the closed-form solution to the more
accurate numerical integration results). Therefore, for the reflux fraction, the numerical
error is estimated with the solution for finer temporal and spatial resolutions (relative
tolerance of 10−6 and Δy/h = 0.005). This numerical error is of the order of ∼10−5 for the
largest b considered (b = 0.8) and it decreases for smaller peristaltic amplitudes (∼10−8

for b = 0.3, 0.5).
In both figures the lines show Shapiro et al. (1969) results while the discrete points

indicate the results obtained here. In figure 4(a) (i.e. efficiency curves) the range of
refluxing Γ , obtained from (2.19), are marked with empty circles. Similarly, the range of
refluxing Γ predicted by Shapiro et al. (1969) – their (47) – are indicated with dotted lines
ending with a vertical bar. In figure 4(b) the additional horizontal dashed line, indicating
an example for a critical reflux fraction Xc, is also plotted. This is because, although not
well understood, small amounts of peristaltic reflux can be harmless, especially if they
are not accompanied by other abnormal conditions such as high bladder pressure, poor
contractility or a UTI (Boyarsky & Labay 1981). Therefore, the more important quantity
for clinical applications would be the reflux volume fraction. The critical reflux fraction,
beyond which the peristaltic reflux becomes harmful, depends on clinical scenarios and
varies on a case-by-case basis. In this study and as shown in figure 4(b), we choose the
critical reflux fraction of Xc = 0.02 as an example. The following important observations
can be made from figure 4.

(i) In the absence of ureteral wall longitudinal motion, peristaltic reflux is common for
flow rates within the pumping range.

(ii) Depending on the peristaltic amplitude, there is a minimum flow rate required
for preventing peristaltic reflux. This minimum required flow rate increases with
increasing peristaltic amplitude.

(iii) The reflux fraction increases with peristaltic amplitude.
(iv) As the net volume flow rate increases, the reflux fraction decreases and, depending

on the peristaltic amplitude, can go to zero.
(v) As the net volume flow rate decreases, the reflux fraction increases and at the limit

Γ → 0 it goes to infinity. This is because while the net flow goes to zero, the
backward flow remains finite.

964 A30-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

36
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.363


Longitudinal wall motion during peristalsis

0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

n
cy

, 
 E

β = 0

0 0.2

b = 0.5

b = 0.8

b = 0.8

b = 0.5

0.4 0.6 0.8 1.0

Normalized volume flow rate, Γ = Q̄/Q̄0

0

0.01

0.02

0.03

0.04

0.05

R
ef

lu
x
 f

ra
ct

io
n
, 
X

(b)

(a)

Figure 4. Peristaltic efficiency and reflux. (a) Pump efficiency and (b) reflux fraction plotted against
normalized volume flow rate for two different peristaltic amplitudes b = 0.5 and 0.8. The results are obtained
with β = 0 (without wall longitudinal motion). The lines show the results from the analytical model (Shapiro
et al. 1969) – their (17) and (51) – while the discrete points are obtained with our numerical model. The
refluxing conditions in (a) are shown with empty circles and dotted lines. The short vertical bar in (a) is the limit
of reflux as predicted by the Shapiro et al. (1969) model (the minimum needed normalized volume flow rate to
prevent reflux). The numerical and analytical solutions match for the case of β = 0 – the discrepancy in (b) is
due to the expansion solution approximation employed by Shapiro et al. (1969). For clarity, the discrete points
with zero reflux fractions are omitted in (b). In (b) the example critical reflux fraction Xc = 0.02, described in
the text, is shown with a dashed horizontal line as an example.

(vi) As the peristaltic amplitude increases (b → 1), the maximum peristalsis efficiency
increases but at the cost of an increase in the refluxing range and refluxing volume
fractions.
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Figure 5. Optimization procedure for finding optimal parameters β1 and β2 for a combination of
efficiency (Emax) and range of Γ where the peristaltic reflux fraction remains below its critical value (Xc =
0.02 as an example in this study). Contour lines of objective function Ω given by (3.1) are plotted for β1 and
β2 for peristaltic amplitudes of (a) b = 0.5 and (b) b = 0.8. Here β1 = 0 recovers the Shapiro et al. (1969)
case with Ω = −0.12 and 0.18 for b = 0.5 and 0.8, respectively. The optimum parameters for b = 0.5 and 0.8
are found to be β1 = 2.7, β2 = 2.3 and β1 = 5.6, β2 = 2.4, respectively. Small jaggedness seen in the figure
is due to numerical resolution of not only β1 and β2 but Γ (see figure 4). The resolution of Γ is of particular
importance since it controls the numerical values of Ω in (3.1).

3. Effect of wall longitudinal motion

As mentioned earlier, while the correct form of wall longitudinal motion needs to be
determined experimentally, in this study we assume it to be in the form of a periodic
Gaussian given by (2.6). This form of β, through three parameters β1, β2 and φ, provides
a general case for such a function. We first assume β is in-phase with the peristaltic wave,
i.e. φ = π, and parameters β1 and β2 are found using an optimization procedure based on
an objective function Ω defined as

Ω = Emax − wΓ |X=Xc, (3.1)

where w > 0 is the weight that we assume to be simply w = 1. The simple objective
function Ω defined above is one of many forms, and is based on the notion that the
peristaltic wave, while maintaining high efficiency, should result in zero or small reflux
fractions (X < Xc). In doing so, it treats both peristaltic maximum efficiency and its
reflux-prevention capability as equally important (since both quantities are normalized
to vary between 0 and 1). The objective function would vary (in terms of its constituents,
weights, linearity, etc.) for different clinical scenarios (e.g. high or low differential pressure
between the bladder and kidney, UVJ deficiency, etc.).

The objective functionΩ is evaluated on a grid of β1 and β2 (0 ≤ β1 ≤ 6, 0.5 ≤ β2 ≤ 3
with increments of 0.1 in each direction), and the corresponding contour lines are shown
in figures 5(a) and 5(b) for b = 0.5 and 0.8, respectively. For b = 0.5, parameters β1 =
2.7, β2 = 2.3 result in an optimum Ω = 0.16, while for b = 0.8, the optimum Ω = 0.44
is achieved at β1 = 5.6, β2 = 2.4. This suggests that the ureteral wall longitudinal motion
during peristalsis depends on the peristaltic amplitude, which is consistent with our own
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Figure 6. Effect of wall longitudinal motion on peristalsis performance. (a) Peristaltic efficiency and (b) reflux
fraction are plotted against Γ in the pumping range for the peristaltic amplitude of b = 0.8. The lines are
showing the results associated with β = 0, i.e. the Shapiro et al. (1969) case, while the points are obtained
with wall longitudinal motion, β1 = 5.6, β2 = 2.4 (optimum parameters obtained for the peristaltic amplitude
of b = 0.8, figure 5). As in figure 4, the refluxing conditions in (a) are shown with a dotted line and empty
circles. In (b) the discrete points with zero reflux fractions are omitted for clarity.

clinical observations. Additionally, the value of the objective function Ω increases with
peristaltic amplitude, which implies that nearly full closure during the contraction phase
of peristalsis is preferred; this is also consistent with our and other’s observations, see
Kiil (1973) for example. Lastly, although not shown here, varying the phase parameter φ
slightly about π shows that the wall longitudinal motion is optimal when β is in-phase
with h. Hence, the ureteral wall has maximum (positive) longitudinal velocity when the
ureter is distended and minimum (negative) value when contracted.
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Figure 7. Longitudinal velocity of the wall. Left axis: lateral position of the wall y (2.2), black solid line.
Right axis: longitudinal imposed velocity on the wall β (2.6), red dashed line.
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Figure 8. Wall longitudinal motion. Example trajectories of particles at kX/2π = 0, 0.25, 0.5, 0.75 and 1 on
the wall over one waveperiod (0 < ωt/2π < 1) (a) without longitudinal motion, i.e. β = 0, the Shapiro et al.
(1969) case, and (b) with longitudinal motion (β1 = 5.6, β2 = 2.4). The trajectories are shown in the laboratory
frame. The wave translates from left to right and is shown at ωt/2π = 1. The corresponding animations are
shown in supplementary movies 2 and 3.

For the remainder of this section and unless stated otherwise, parameters φ = π, β1 =
5.6 and β2 = 2.4, the optimal parameters for peristaltic amplitude b = 0.8, are used to
further illustrate the effect of wall longitudinal motion.

The effect of wall longitudinal motion on peristaltic performance is demonstrated
in figure 6. More specifically, the peristaltic pumping efficiency and reflux fraction
are plotted in figures 6(a) and 6(b), respectively. As shown in figure 6(a), while the
efficiency remains almost at the same level as the case with no longitudinal motion (β = 0;
lines), the refluxing range drops substantially from approximately Γ < 0.9 to Γ < 0.45.
Similarly, as shown in figure 6(b), the minimum required Γ for X < Xc = 0.02 drops
from approximately 0.5 to 0.15. Similar general effects have been observed for a peristaltic
amplitude of b = 0.5; see figure 15 in Appendix D. These modelling results confirm that
optimal longitudinal motion of the ureteral wall plays a substantial role in suppressing
reflux, which needs to be experimentally verified.

The imposed wall longitudinal velocity β given by (2.6) along with the wall transverse
coordinate h given by (2.2) are plotted in figure 7. As shown, function β obtained with the
optimum parameters β1 and β2 appears to be linearly dependent on h. This is confirmed
by calculating the Pearson correlation coefficient r ≈ 0.99, indicating a simpler form of
β = β0 + β1h is appropriate.
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Figure 9. Ureteral wall longitudinal motion prevents peristaltic reflux. Compare this figure with its counterpart
without wall longitudinal motion – β = 0, i.e. the Shapiro et al. (1969) case – in figure 2. The animation of (b)
is shown in supplementary movie 4.
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Figure 10. Ureteral wall longitudinal motion prevents peristaltic reflux. Compare this figure to its counterpart
without wall longitudinal motion with β = 0, i.e. the Shapiro et al. (1969) case, in figure 3.

The longitudinal motion of the wall during one peristaltic wave is shown in figure 8.
More specifically, the trajectories of particles on the wall during one waveperiod in
the laboratory frame are shown for the case of β = 0, i.e. the Shapiro et al. (1969)
case, and β /= 0 in figures 8(a) and 8(b), respectively, with corresponding animations in
supplementary movies 2 and 3. For the β = 0 case, the wall undergoes transverse motion
only, while for the case of β /= 0, the particles on the wall follow an ‘egg’-shape, cyclic
and closed-path motion.
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Figure 11. For peristalsis with wall longitudinal motion (β > 0) to act as a pump, larger peristaltic amplitudes
are needed – peristalsis is no longer acting as a pump for negative Q̄0s and Δp0

λs in (a) and (b), respectively.
Effect of β1 on (a) volumetric flow rate for zero pressure rise per wavelength (Q̄0), and (b) pressure rise per
wavelength for zero volume flow rate (Δp0

λ). The results are obtained with β2 = 2.0.
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Figure 12. As β2 increases, wall longitudinal motion becomes less effective, suggesting β might be a simple
linear function of h. Effect of β2 on (a) time-mean flow rate for zero pressure rise per wavelength (Q̄0), and
(b) pressure rise per wavelength for zero time-mean flow rate (Δp0

λ). The results are obtained with β1 = 0.5.

Pathlines and trajectories of the same fluid particles shown in figure 2 for the case of
β = 0 are replotted in figure 9 for the case with longitudinal motion. Pathlines (in the wave
frame) are shown in figure 9(a), whereas the trajectories (in the laboratory frame) of fluid
particles at kX/2π = 0, Y = 0.15 and kX/2π = 0, Y = 0.05 are plotted in figure 9(b). The
animation corresponding to trajectories of figure 9(b) is shown in supplementary movie 4.
By comparing these figures with their counterparts for the β = 0 case in figure 2, the effect
of wall longitudinal motion on reflux becomes clearer. As shown, wall longitudinal motion
causes a forward ‘push’ on fluid particles in the constricted area and close to the wall, and,
therefore, depending on its magnitude, can overcome the net backward motion of such
particles. This effect is also shown in figure 10, where the average longitudinal velocity Ū
of fluid particles at kX/2π = 0 over one waveperiod in the laboratory frame are plotted.
As shown in these figures, inclusion of longitudinal motion prevents peristaltic reflux for
the case of b = 0.8 and Q̄ = 0.3. The effect of wall longitudinal motion on longitudinal
velocity is shown in figure 16 in Appendix D.
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Lastly, the effect of parameter β1 on Q̄0 and Δp0
λ are shown in figures 11(a) and 11(b),

respectively. As shown in the figure, by introduction of longitudinal motion, peristalsis is
no longer acting as a pump for all amplitudes – negative Q̄0s and Δp0

λs in figures 11(a)
and 11(b), respectively. Additionally, as wall longitudinal motion increases, the minimum
amplitude for peristalsis to act as a pump increases as well. This has an important
implication, namely that the amplitude of wall longitudinal motion depends on peristaltic
amplitude; the larger the peristaltic wave, the bigger the wall longitudinal motion. This
important finding is consistent with our clinical observations. Similarly, a parametric study
on β2 and its effect on Q̄0 and Δp0

λ are shown in figures 12(a) and 12(b), respectively.
As shown, as β2 increases past its optimal value, wall longitudinal motion becomes less
effective. This is because as β2 increases, for β to remain periodic in space, β0 becomes
more negative; see (2.6) and (2.7). The increase in β2 beyond its optimal value results in a
net effect of flatter β with a mean value closer to zero. This further confirms that β can be
more simply a linear function of h. The effect of parameters β1 and β2 on wall longitudinal
velocity and motion is shown in Appendix D (figures 17–20).

4. Dimensional example

To signify the clinical importance of the findings of this study, we dimensionalize
quantities of interest for the example parameters used in the preceding sections (b =
0.8, Q̄ = 0.3). A simple comparison between a two-dimensional planar model developed
herein and more realistic axisymmetric geometry requires using a similar width and height
for the ureter cross-section. Therefore, we assume that the width = height = 2â = 3 mm.
Therefore, with

â = 1.5 mm, b̂ = 1.2 mm, ĉ = 2 cm s−1, μ̂ = 0.001 Pa s, (4.1)

the net volume flow rate becomes ˆ̄Q = 1.62 mL min−1, with 1.68 mL min−1 forward
flow and 0.06 mL min−1 backward flow (reflux fraction of X = 0.04). The pressure
rise per wavelength for a zero time-mean flow, and time-mean flow for a zero pressure

rise per wavelength become 	p̂0
λ = 2.13 cmH2O and ˆ̄Q0 = 3.93 mL min−1, respectively.

Assuming three peristaltic waves are present in the ureter, the pressure differential between
the bladder and kidneys (for zero time-mean flow) becomes 6.4 cmH2O.

When considering wall longitudinal motion for the optimal β1 = 5.6 and β2 = 2.4
for the b = 0.8 case, the minimum and maximum wall longitudinal velocity become
−1.54 cm s−1 and 0.88 cm s−1 during contraction and distension, respectively. Under this

condition the refluxing flow rate becomes ˆ̄Qr = 0 and the flow becomes unidirectional

toward the bladder with ˆ̄Qnr = ˆ̄Q = 1.62 mL min−1. This dimensional example is in
general agreement with a typical urinary tract physiology, as shown in Zheng et al. (2021).

5. Concluding remarks

This study, based on the classical lubrication model of peristalsis developed by Shapiro
et al. (1969), for the first time considers the effect of wall longitudinal motion during
peristalsis. We show that wall longitudinal motion is important for preventing or limiting
peristaltic reflux. In doing so, we consider wall longitudinal velocity to be a general
periodic Gaussian. We find a beneficial effect by choosing a specific form, however, further
experimental observations and validations are needed to find an appropriate clinical form
of such function. As an example, we show that for a normalized peristaltic amplitude
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of b = 0.8, the minimum required flow rate to prevent reflux decreases from Γ ≈ 0.9 to
Γ ≈ 0.45 when considering the wall longitudinal motion effect. Similarly, we show that
the minimum flow rate to keep the reflux fraction below 2 % decreases from Γ ≈ 0.5 to
Γ ≈ 0.15, again as an example for a peristaltic amplitude of b = 0.8. The results shown
here indicate that the longitudinal velocity of the wall can be a function of wall lumen
height. They also show wall longitudinal motion depends on peristaltic amplitude; higher
peristaltic amplitudes come with larger longitudinal velocities. These results are in general
agreement with clinical observations of ureteral peristalsis and highlight important gaps in
previous studies that need further exploration. They augment our clinical understanding of
normal and abnormal ureteral function, which is essential for understanding its disorders.

The two-dimensional model developed here will be used as a springboard to
formulate more sophisticated models of peristalsis. We will find more clinically relevant
non-sinusoidal peristalsis waveforms including those with wide and narrow boluses. Using
operative videos, we will also determine a more realistic form of ureteral wall longitudinal
motion based on particle tracking velocimetry of the ureter during peristalsis. While
the considered two-dimensional planar flow qualitatively describes ureteral peristalsis
clinical observations, it is not consistent with a circular cross-section of the ureter
in the unconstricted region (Woodburne & Lapides 1972), which calls for a more
appropriate axisymmetric model. Since during constriction the cross-section is no longer
axisymmetric, we will combine the lubrication model with appropriate finite element
simulations.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.363.
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Appendix A. Note on solution development

Simplicity of the model without wall longitudinal motion allows Shapiro et al. (1969)
to solve the problem analytically, but we have to solve the more general problem
numerically. To do so, Python programming language (Python software foundation,
Python language reference, version 3.9, available at http://www.python.org) and SciPy
(Virtanen et al. 2020), NumPy (Harris et al. 2020) and Pandas (The Pandas Development
Team 2022) open-source Python libraries for scientific and technical computing are
used. All plots are generated with the Matplotlib open-source Python library (Hunter
2007). Additionally, unless stated otherwise, ordinary differential equations are solved
with explicit Runge–Kutta method of order 5(4) (Dormand & Prince 1980) implemented
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in SciPy integrate.solve_ivp method. Nonlinear equations are solved with
Krylov method (Kelley 1995), implemented in SciPy optimize.root method.
Numerical integrations are performed with the Gaussian quadrature rule, implemented
in SciPy integrate.quadrature method.

Appendix B. Note on computation hardware

All the computations are run serially on The Great Lakes Slurm HPC cluster at the
University of Michigan, Ann Arbor, MI, USA with a 3.0 GHz Intel Xeon Gold 6154
processor. The run execution time for obtaining efficiency and reflux fraction for a typical
q, β1 and β2 (a typical discrete point in curves given in figure 6) is approximately 500 s.

Appendix C. Note on non-dimensionalization

As mentioned earlier, wave velocity ĉ, fluid viscosity μ̂ and lumen half-height â are
chosen as characteristic quantities and the problem is non-dimensionalized by setting these
quantities to unity, i.e.

L̂c = â, ĉc = ĉ, μ̂c = μ̂. (C1a–c)

Using the above quantities, the normalized variables become

c = 1, μ = 1, a = 1, b = b̂/â, h = ĥ/â, y = ŷ/â,

k = 2πâ/λ̂, ω = 2πâ/λ̂, kx = 2πx̂/λ̂, ωt = 2πt̂ĉ/λ̂,
p = p̂kâ/2πμ̂ĉ, q = q̂/âĉ.

⎫⎪⎬
⎪⎭ (C2)

Appendix D. Supplementary figures
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Figure 13. Parabolic velocity profile of Poiseuille type flow in the longitudinal direction in the peristaltic
wave without wall longitudinal motion (β = 0) as predicted by Shapiro et al. (1969). The longitudinal velocity
components u and U are plotted on two cross-sections in the (a) wave and (b) laboratory frames, respectively.
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Figure 14. Peristalsis pumping range. Pressure rise per wavelength Δpλ plotted against (a) normalized
time-mean flow rate, Q̄, and (b) Γ = Q̄/Q̄0 for β = 0, i.e. the Shapiro et al. (1969) case. In (a) the horizontal
and vertical intercepts are marked by discrete points and show the flow rate at zero pressure rise per
wavelength (Q̄0) and pressure rise per wavelength for zero flow rate (Δp0

λ), respectively. Peristalsis pumping
range is 0 ≤ Γ ≤ 1 where the mean flow is in the direction of the pressure rise.
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Figure 15. (a) Peristaltic pumping efficiency and (b) reflux fraction plotted against Γ for b = 0.5. The discrete
points show results obtained for β1 = 2.7, β2 = 2.3, optimum parameters for b = 0.5, see figure 5, as lines for
β = 0. As before, the refluxing condition in (a) is shown with a dotted line and empty circles. In (b) the discrete
points with zero reflux volume fractions are omitted for clarity.
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Figure 16. Parabolic velocity profile of Poiseuille type flow in the longitudinal direction in the peristaltic wave
with wall longitudinal motion – longitudinal velocity of the wall is given by β in (2.6). The longitudinal velocity
components u and U are plotted on two cross-sections in the (a) wave and (b) laboratory frames, respectively.
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Figure 17. Effect of parameter β1 on wall longitudinal velocity. Left axis: lateral position of the wall y, black
solid line. Right axis: longitudinal imposed velocity on the wall β, red dashed line. Results are shown for
(a) β1 = 0 – the Shapiro et al. (1969) case, (b) β1 = 2.0, (c) β1 = 4.0 and (d) β1 = 6.0. The results in (b)–(d)
are obtained for β2 = 2.0.
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Figure 18. Effect of parameter β2 on wall longitudinal velocity. Left axis: lateral position of the wall y, black
solid line. Right axis: longitudinal imposed velocity on the wall β, red dashed line. Results are shown for
(a) β = 0, (b) β2 = 1.0, (c) β2 = 2.0 and (d) β2 = 3.0. The results in (b)–(d) are obtained for β1 = 1.0.
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Figure 19. Effect of parameter β1 on wall longitudinal motion. Example trajectories of particles at kX/2π =
0, 0.25, 0.5, 0.75 and 1 on the wall over one waveperiod (ωT/2π = 1). Results are shown for (a) β = 0 – the
Shapiro et al. (1969) case, (b) β1 = 2.0, (c) β1 = 4.0 and (d) β1 = 6.0. The results in (b)–(d) are obtained for
β2 = 2.0.
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Figure 20. Effect of parameter β2 on wall longitudinal motion. Example trajectories of particles at kX/2π =
0, 0.25, 0.5, 0.75 and 1 on the wall over one waveperiod (ωT/2π = 1). Results are shown for (a) β = 0 – the
Shapiro et al. (1969) case, (b) β2 = 1.0, (c) β2 = 2.0 and (d) β2 = 3.0. The results in (b)–(d) are obtained for
β1 = 1.0.
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