Fifth Meeting, Friday, 12th March 1897.
C. G. Knott, Esq., D.Sc., F.R.S.E., in the Chair.

On a Proof of the Fundamental Combination Theorem,

By J. B. Clark, M.A.

The following proof of the fundamental Combination Theorem does not appear in any of the current text-books on Algebra. It has the twofold advantage of being exceedingly simple and of being quite independent of the fundamental Permutation Theorem.

Let the n different things be represented by n letters

$$
a, \quad b, \quad c, \quad d, \quad . \quad . \quad . \quad .
$$

We can form a 1 -combination in n ways.
We can form a 2-combination by taking any one of the n l-combinations and along with it any one of the remaining ($n-1$) letters : this gives $n(n-1)$ combinations, but each combination is formed twice, e.g., $a b$ arises when b is taken with a, and also when a is taken with b.

Hence

$$
{ }_{n} \mathrm{C}_{2}=n \cdot \frac{n-1}{2} .
$$

We can form a 8 -combination by taking any one of the $\frac{n(n-1)}{2}$ 2-combinations, and along with it any one of the remaining $(n-2)$ letters: this gives $n \cdot \frac{n-1}{2} \cdot(n-2)$ combinations, but each combination is counted thrice, e.g., abc arises from bc with a, from $c a$ with b, and from $a b$ with c.

Hence

$$
{ }_{n} \mathrm{C}_{3}=n \cdot \frac{n-1}{2} \cdot \frac{n-2}{3} .
$$

In general we can form an r-combination in

$$
n \cdot \frac{n-1}{2} \cdot \frac{n-2}{3} \cdot \cdots \frac{n-\overline{r-2}}{r-1} \cdot n-\overline{r-1}
$$

ways, and since each combination is counted r times, we have

$$
{ }_{n} \mathrm{C}_{r}=\frac{n(n-1)(n-2) \ldots(n-r+1)}{r!}
$$

