SOME SUFFICIENT CONDITIONS FOR GRAPHS TO HAVE (g, f)-FACTORS

Sizhong Zhou

Suppose that G is a graph with vertex set $V(G)$ and edge set $E(G)$, and let g and f be two non-negative integer-valued functions defined on $V(G)$ such that $g(x) \leqslant f(x)$ for each $x \in V(G)$. A (g, f)-factor of G is a spanning subgraph F of G such that $g(x) \leqslant d_{F}(x) \leqslant f(x)$ for each $x \in V(F)$. In this paper, some sufficient conditions for a graph to have a (g, f)-factor are given.

1. Introduction

The graphs considered in this paper will be finite undirected simple graphs. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For $x \in V(G)$, the degree of x in G is denoted by $d_{G}(x)$. Suppose g and f are two non-negative integer-valued functions defined on $V(G)$ such that $g(x) \leqslant f(x)$ for each $x \in V(G)$. Then a (g, f)-factor of graph G is defined as a spanning subgraph F of G such that $g(x) \leqslant d_{F}(x) \leqslant f(x)$ for each $x \in V(F)$. And if $g(x)=a$ and $f(x)=b$ for each $x \in V(F)$, then a (g, f)-factor is called an $[a, b]$-factor. In particular, G is called a (g, f)-graph if G itself is a (g, f)-factor. A graph G is called a (g, f, n)-critical graph if after deleting any n vertices of G the remaining graph of G has a (g, f)-factor. If G is a (g, f, n)-critical graph, then we also say that G is (g, f, n)-critical. If $g(x)=a$ and $f(x)=b$, then a (g, f, n)-critical graph is simply called an (a, b, n)-critical graph. If $g(x)=f(x)$ (respectively, $g(x)=f(x)=k$) for each $x \in V(G)$, then a (g, f, n)-critical graph is simply called an (f, n)-critical graph (a (k, n)-critical graph). If $k=1$, then a (k, n)-critical graph is simply called an n-critical graph. A matching in a graph G is a set of edges of G with the property that no two edges are adjacent. A k-matching is a matching of size k. A matching M is said to be maximum if G has no a matching K with $|K|>|M|$.

A fractional (g, f)-factor is a function h that assigns to each edge of a graph G a number in $[0,1]$, so that for each vertex x we have $g(x) \leqslant d_{G}^{h}(x) \leqslant f(x)$, where $d_{G}^{h}(x)=\sum_{e \ni x} h(e)$ (the sum is taken over all edges incident to x) is a fractional degree of x in G. And if $g(x)=a$ and $f(x)=b$ for each $x \in V(G)$, then a fractional (g, f)-factor is

[^0]called a fractional $[a, b]$-factor. The other terminologies and notations not given in this paper can be found in $[1,7]$.

Many authors have investigated $[a, b]$-factors $[2,3,8],(g, f)$-factors $[4,9,10]$, factorisations [11]. There is a sufficient condition for a graph G to have a (g, f)-factor which was given by Guizhen Liu.

Theorem 1. ([4]) Let G be a graph, and let g and f are two non-negative integervalued functions defined on $V(G)$ such that $g(x)<f(x)$ for each $x \in V(G)$. If $g(x)$ $\leqslant d_{G}(x)$ and $(f(x)-1) d_{G}(y) \geqslant\left(d_{G}(x)-1\right) g(y)$ for each $x, y \in V(G)$, then G has a (g, f)-factor containing any edge e of G.

In [5], Liu and Zhang gave a sufficient condition for the existence of a fractional (g, f)-factor in a graph G.

Theorem 2. ([5]) Let G be a graph, and let g and f be two non-negative integervalued functions defined on $V(G)$ such that $g(x) \leqslant f(x)$ for each $x \in V(G)$. If $g(x)$ $\leqslant d_{G}(x)$ and $f(x) d_{G}(y) \geqslant d_{G}(x) g(y)$ for each $x, y \in V(G)$, then G has a fractional (g, f)-factor.

In [6], Guizhen Liu and Lanju Zhang made the following theorem.
Theorem 3. ([6]) Let G be a graph, and let g and f be two non-negative integervalued functions defined on $V(G)$ such that $g(x)<f(x)$ for each $x \in V(G)$, then G has a fractional (g, f)-factor if and only if G has a (g, f)-factor.

According to Theorems 2 and 3 , we easily obtain the following result.
TheOrem 4. Let G be a graph, and let g and f be two non-negative integervalued functions defined on $V(G)$ such that $g(x)<f(x)$ for each $x \in V(G)$. If $g(x)$ $\leqslant d_{G}(x)$ and $f(x) d_{G}(y) \geqslant d_{G}(x) g(y)$ for each $x, y \in V(G)$, then G has a (g, f)-factor.

2. The Proof of Main Theorems

In this paper, we generalise Theorems 1 and 4 and obtain the following theorems.
Theorem 5. Let G be a graph, and let g and f be two non-negative integervalued functions defined on $V(G)$ such that $g(x)<f(x)$ for each $x \in V(G)$, and M is an $(r k-r+1)$-matching of G. If $g(x) \leqslant d_{G}(x)$ and $(f(x)-k) d_{G}(y) \geqslant\left(d_{G}(x)-k\right) g(y)$ for each $x, y \in V(G)$, then G has a (g, f)-factor containing M, where r and k are two positive integers.

Proof: If $g(x) \leqslant d_{G}(x) \leqslant f(x)$ for each $x \in V(G)$, then G is a ($\left.g, f\right)$-graph. By the definition of a (g, f)-graph, the theorem holds. In the following we assume that $g(x)<f(x) \leqslant d_{G}(x)$ for each $x \in V(G)$. We apply induction on k.

If $k=1$, then we have

$$
(f(x)-1) d_{G}(y) \geqslant\left(d_{G}(x)-1\right) g(y)
$$

for each $x, y \in V(G)$. According to Theorem $1, G$ has a (g, f)-factor containing M.
Suppose that the statement holds for $k=n$, that is, if

$$
(f(x)-n) d_{G}(y) \geqslant\left(d_{G}(x)-n\right) g(y)
$$

for each $x, y \in V(G)$, then G has a (g, f)-factor containing M. Let us proceed to the induction step.

If $k=n+1$, then $(f(x)-(n+1)) d_{G}(y) \geqslant\left(d_{G}(x)-(n+1)\right) g(y)$ for each $x, y \in V(G)$. In the following we prove that G has a (g, f)-factor containing M.

Let $H \subseteq M$ and $|H|=r$, and let $M^{\prime}=M-H, G^{\prime}=G-H$. We define $g^{\prime}(x)$ and $f^{\prime}(x)$ on $V(G)$ as follows,

$$
\begin{aligned}
g^{\prime}(x) & = \begin{cases}g(x)-1, & x \in V(H) \\
g(x), & x \notin V(H)\end{cases} \\
f^{\prime}(x) & = \begin{cases}f(x)-1, & x \in V(H) \\
f(x), & x \notin V(H)\end{cases}
\end{aligned}
$$

Clearly, G has a (g, f)-factor containing M if and only if G^{\prime} has a $\left(g^{\prime}, f^{\prime}\right)$-factor containing M^{\prime}. In view of the induction hypothesis, we only need to prove

$$
\left(f^{\prime}(x)-n\right) d_{G^{\prime}}(y) \geqslant\left(d_{G^{\prime}}(x)-n\right) g^{\prime}(y)
$$

for each $x, y \in V\left(G^{\prime}\right)$. Now we consider four cases.
Case 1. If $x \in V(H), y \in V(H)$, then

$$
d_{G^{\prime}}(x)=d_{G}(x)-1, f^{\prime}(x)=f(x)-1, d_{G^{\prime}}(y)=d_{G}(y)-1, g^{\prime}(y)=g(y)-1 .
$$

Thus, we have

$$
\begin{aligned}
\left(f^{\prime}(x)-n\right) d_{G^{\prime}}(y) & =[f(x)-(n+1)]\left(d_{G}(y)-1\right) \\
& =[f(x)-(n+1)] d_{G}(y)-f(x)+(n+1) \\
& \geqslant\left[d_{G}(x)-(n+1)\right] g(y)-f(x)+(n+1) \\
& =\left[d_{G}(x)-(n+1)\right]\left(g^{\prime}(y)+1\right)-f(x)+(n+1) \\
& =\left[d_{G}(x)-(n+1)\right] g^{\prime}(y)+d_{G}(x)-(n+1)-f(x)+(n+1) \\
& =\left(d_{G^{\prime}}(x)-n\right) g^{\prime}(y)+d_{G}(x)-f(x) \\
& \geqslant\left(d_{G^{\prime}}(x)-n\right) g^{\prime}(y)
\end{aligned}
$$

Case 2. If $x \in V(H), y \notin V(H)$, then

$$
d_{G^{\prime}}(x)=d_{G}(x)-1, f^{\prime}(x)=f(x)-1, d_{G^{\prime}}(y)=d_{G}(y), g^{\prime}(y)=g(y) .
$$

In this case, we get that

$$
\begin{aligned}
\left(f^{\prime}(x)-n\right) d_{G^{\prime}}(y) & =(f(x)-(n+1)) d_{G}(y) \\
& \geqslant\left[d_{G}(x)-(n+1)\right] g(y) \\
& =\left(d_{G^{\prime}}(x)-n\right) g^{\prime}(y)
\end{aligned}
$$

Case 3. If $x \notin V(H), y \in V(H)$, then

$$
d_{G^{\prime}}(x)=d_{G}(x), f^{\prime}(x)=f(x), d_{G^{\prime}}(y)=d_{G}(y)-1, g^{\prime}(y)=g(y)-1
$$

Thus, we have

$$
\begin{aligned}
\left(f^{\prime}(x)-n\right) d_{G^{\prime}}(y) & =(f(x)-n)\left(d_{G}(y)-1\right) \\
& =[f(x)-(n+1)]\left(d_{G}(y)-1\right)+d_{G}(y)-1 \\
& =[f(x)-(n+1)] d_{G}(y)+d_{G}(y)-1-f(x)+(n+1) \\
& \geqslant\left[d_{G}(x)-(n+1)\right] g(y)+d_{G}(y)-f(x)+n \\
& =\left(d_{G}(x)-n\right) g(y)-g(y)+d_{G}(y)-f(x)+n \\
& \geqslant\left(d_{G}(x)-n\right)\left(g^{\prime}(y)+1\right)-f(x)+n \\
& =\left(d_{G}(x)-n\right) g^{\prime}(y)+d_{G}(x)-n-f(x)+n \\
& =\left(d_{G^{\prime}}(x)-n\right) g^{\prime}(y)+d_{G}(x)-f(x) \\
& \geqslant\left(d_{G^{\prime}}(x)-n\right) g^{\prime}(y)
\end{aligned}
$$

Case 4. If $x \notin V(H), y \notin V(H)$, then

$$
d_{G}(x)=d_{G^{\prime}}(x), f(x)=f^{\prime}(x), d_{G}(y)=d_{G^{\prime}}(y), g(y)=g^{\prime}(y)
$$

In this case, we have

$$
\begin{aligned}
\left(f^{\prime}(x)-n\right) d_{G^{\prime}}(y) & =(f(x)-n) d_{G}(y) \\
& =[f(x)-(n+1)] d_{G}(y)+d_{G}(y) \\
& \geqslant\left[d_{G}(x)-(n+1)\right] g(y)+d_{G}(y) \\
& =\left(d_{G}(x)-n\right) g(y)+d_{G}(y)-g(y) \\
& \geqslant\left(d_{G}(x)-n\right) g(y) \\
& =\left(d_{G^{\prime}}(x)-n\right) g^{\prime}(y)
\end{aligned}
$$

Thus, the induction hypothesis guarantees the existence of a (g^{\prime}, f^{\prime})-factor containing M^{\prime} in G^{\prime}. Hence, G has a (g, f)-factor containing M.

This completes the proof.
In view of the proof of Theorem 5, we justify similarly the following Theorem 6.

Theorem 6. Let G be a graph, and let g and f be two non-negative integervalued functions defined on $V(G)$ such that $g(x)<f(x)$ for each $x \in V(G)$. If $g(x)$ $\leqslant d_{G}(x)$ and $(f(x)-k) d_{G}(y) \geqslant\left(d_{G}(x)-k\right) g(y)$ for each $x, y \in V(G)$, then G has a (g, f)-factor containing any k edges of G, where k is one non-negative integer.

In Theorems 5 and 6 , if $k=1$, then we obtain Theorem 1. Furthermore, we have the following results.

Theorem 7. Let G be a graph, and let g and f be two non-negative integervalued functions defined on $V(G)$ such that $g(x)<f(x)$ for each $x \in V(G)$. If $g(x)$ $\leqslant d_{G}(x)$ and $f(x)\left(d_{G}(y)-n\right) \geqslant d_{G}(x) g(y)$ for each $x, y \in V(G)$, then G is (g, f, n) critical. Here n is a non-negative integer.

Proof: Let $U \subseteq V(G)$, and $|U|=n$, and let $G^{\prime}=G-U$. By assumption, we have

$$
d_{G}(x) \geqslant d_{G^{\prime}}(x) \geqslant d_{G}(x)-n
$$

for each $x \in V\left(G^{\prime}\right)$. Thus, we get

$$
f(x) d_{G^{\prime}}(y) \geqslant f(x)\left(d_{G}(y)-n\right) \geqslant d_{G}(x) g(y) \geqslant d_{G^{\prime}}(x) g(y)
$$

for each $x, y \in V\left(G^{\prime}\right)$.
By Theorem 4, G^{\prime} has a (g, f)-factor. From the definition of a (g, f, n)-critical graph, G is (g, f, n)-critical.

The proof is complete.
Theorem 8. Let G be a graph, and let g and f be two non-negative integervalued functions defined on $V(G)$ such that $g(x)<f(x)$ for each $x \in V(G)$, and M is a maximum matching of G. If $g(x) \leqslant d_{G}(x)$ and $f(x)\left(d_{G}(y)-1\right) \geqslant d_{G}(x) g(y)$ for each $x, y \in V(G)$, then G has a (g, f)-factor excluding M.

Proof: Let $G^{\prime}=G-M$. In this case, we have

$$
d_{G}(x) \geqslant d_{G^{\prime}}(x) \geqslant d_{G}(x)-1
$$

for each $x \in V\left(G^{\prime}\right)$. Thus, we get

$$
f(x) d_{G^{\prime}}(y) \geqslant f(x)\left(d_{G}(y)-1\right) \geqslant d_{G}(x) g(y) \geqslant d_{G^{\prime}}(x) g(y)
$$

for each $x, y \in V\left(G^{\prime}\right)$.
In view of Theorem 4, G^{\prime} has a (g, f)-factor. That is to say, G has a (g, f)-factor excluding M.

This completes the proof.

References

[1] J.A. Bondy and U.S.R. Murty, Graph theory with applications (The Macmillan Press, London, 1976).
[2] M. Kouider and M. Mahéo, 'Two edge connected [2,k]-factors in graphs', J. Combin. Math. Combin. Comput. 35 (2000), 89-95.
[3] M. Kouider and M. Mahéo, 'Connected [a, b]-factors in graphs', Combinatorica 22 (2002), 71-82.
[4] G. Liu, '($g<f$)-factors of graphs', Acta Math. Sci. (China) 14 (1994), 285-290.
[5] G. Liu and L. Zhang, 'Maximum fractional ($0, f$)-factors of graphs', Math. Appl. (Wuhan) 13 (2000), 31-35.
[6] G. Liu and L. Zhang, 'Fractional (g, f)-factors of graphs', Acta Math. Sci. Ser. B. Engl. Ed. 21 (2001), 541-545.
[7] L. Lovász, 'Subgraphs with prescribed valencies', J. Combinational Theory 8 (1970), 391-416.
[8] H. Matsuda, 'Fan-type results for the existence of [a,b]-factors', Discrete Math. 306 (2006), 688-693.
[9] S. Zhou and X. Xue, ' (g, f)-factors of graphs with prescribed properties', J. Systems Sci. Math. Sci. (to appear).
[10] S. Zhou and X. Xue, 'Complete-factors and (g, f)-covered graphs', Australas. J. Combin. 37 (2007), 265-269.
[11] S. Zhou, 'Randomly r-orthogonal ($0, f$)-factorizations of bipartite $(0, m f-(m-1) r$) -graphs', Ars Combin. (to appear).

School of Mathematics and Physics
Jiangsu University of Science and Technology Zhenjiang, Jiangsu 212003
People's Republic of China
e-mail: zsz_cumt@163.com

[^0]: Received 7th November, 2006
 Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/07 \$A2.00+0.00.

