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On Constructing Ergodic Hyperfinite
Equivalence Relations of Non-Product Type

Radu-Bogdan Munteanu

Abstract. Product type equivalence relations are hyperfinite measured equivalence relations, which,

up to orbit equivalence, are generated by product type odometer actions. We give a concrete example

of a hyperfinite equivalence relation of non-product type, which is the tail equivalence on a Bratteli

diagram. In order to show that the equivalence relation constructed is not of product type we will use

a criterion called property A. This property, introduced by Krieger for non-singular transformations,

is defined directly for hyperfinite equivalence relations in this paper.

1 Introduction

The theory of countable measured equivalence relations is closely related to the the-

ory of von Neumann algebras. One can associate a von Neumann algebra with any

countable measured equivalence relation(see [6]), and there is a one to one corre-

spondence between ergodic hyperfinite measured equivalence relations (up to orbit

equivalence) and approximately finite dimensional factors (up to isomorphism). The

countable measured equivalence relations that, up to orbit equivalence, are generated

by product type odometer actions are called of product type. They correspond to a

special class of approximately finite dimensional factors, the ITPFI factors. An im-

portant result of Krieger [12] says that the orbit-equivalence classes of ergodic hyper-

finite equivalence relations of type III are completely characterized by the conjugacy

class of the associated flow. Among all hyperfinite equivalence relations, the product

type equivalence relations correspond to the approximately transitive flows [2].

In order to show that there exist nonsingular transformations that are not orbit

equivalent to any product type odometer, Krieger [11] introduced the so-called prop-

erty A. He showed that any product type odometer of type III has this property and

that property A is an invariant for orbit equivalence. He also constructed a nonsingu-

lar ergodic automorphism of type III, which does not have property A and therefore

it is not orbit equivalent to any product type odometer. Trying to give a more explicit

example of an automorphism of non-product type, Dooley and Hamachi [3] con-

structed a Markov odometer that does not satisfy Krieger’s property A. More or less,

for both examples, it is quite difficult to describe the transformations and the effect

they have on the space (by this we mean the equivalence relations they produce). In

[15], it was shown that property A is not a sufficient condition for a non-singular

transformation to be of product type.

Given that a countable measured equivalence relation is hyperfinite if and only if

it coincides up to a null set with an equivalence relation generated by a nonsingular
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automorphism (see [5,10]), property A can be defined directly for hyperfinite equiv-

alence relations (Definition 2.2). In this setting, Krieger’s result says that any ergodic

equivalence relation of product type and of type III satisfies property A.

The purpose of this paper is to give an example of a hyperfinite measured equiv-

alence relation that can de described explicitly and does not satisfy property A, and

thus is not of product type.

Recently, by using matrix random walks, Giordano and Handelman [7] gave an

example of an equivalence relation whose associated flow is not AT, and thus is not of

product type. It would be interesting if one could prove that the equivalence relation

constructed here is not of product type by using the techniques developed in [7].

The paper is organized as follows. In Section 2, we define property A for hy-

perfinite measured equivalence relations. In Section 3, we construct a hyperfinite

measured equivalence relation R that is the tail equivalence relation on a Bratteli di-

agram. In Section 4, we show that R is ergodic and of type III, and in Section 5, we

prove that R does not have property A, and therefore it is not of product type.

2 Definitions and Notations

Let (X,B, µ) be a Lebesgue space, and let R be an equivalence relation on X. We

say that R is a countable measured equivalence relation if the equivalence classes R(x),

x ∈ X are countable, R is a measurable subset of X ×X, and the saturation of any set

of measure zero has measure zero. R is called ergodic if any invariant set of positive

measure has full measure. A countable measured equivalence relation R is hyperfi-

nite if there exists an increasing sequence (Rn)n>1 of equivalence relations with finite

orbits such that R(x) = ∪n>1Rn(x) for µ-a.e. x ∈ X. The measured equivalence rela-

tion R is said to be of type III if there is no σ-finite R-invariant measure ν equivalent

to µ. For (x, y) ∈ R, let πl(x, y) = x be the left projection, and let πr(x, y) = y be

the right projection of R. The measures νl and νr on R, defined by

νl(C) =

∫

X

|π−1
l (x) ∩C|dµ(x) and νr(C) =

∫

X

|π−1
r (x) ∩C|dµ(x)

are called the left counting measure and the right counting measure of µ. Recall that

νl ∼ νr and that δµ(x, y) = dνl

dνr
(x, y) is the Radon-Nikodym cocycle of µ with respect

to R. A partial Borel isomorphism on X will be a Borel isomorphism φ defined on

some A ∈ B with range some B ∈ B. For a partial Borel isomorphism φ : A → B,

the set Graph(φ) = {(x, φ(x)), x ∈ A} is called the graph of φ. If φ is a partial iso-

morphism with Graph(φ) ⊆ R, then dµ◦φ
dµ

(x) = δµ(φ(x), x) for µ-a.e x ∈ Dom(φ).

The full group [R] of R is the group of all nonsingular automorphisms V of (X,B, µ)

with (x,V x) ∈ R for µ-a.e. x ∈ X. For further details, see [5].

Two countable measured equivalence relations R and R
′ on (X,B, µ) and on

(X ′,B ′, µ ′), respectively, are called orbit equivalent if there exists an isomorphism

of measured spaces, S : (X,B, µ) → (X ′,B ′, µ ′), such that

S(R(x)) = R
′(Sx) for µ-a.e. x ∈ X.

We recall that Krieger’s defined property A for a nonsingular automorphism as fol-

lows.

https://doi.org/10.4153/CMB-2011-132-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-132-4


138 R.-B. Munteanu

Definition 2.1 [11] A nonsingular automorphism T on (X,B, µ) is said to satisfy

property A if there exist constants η, δ > 0 and a σ-finite measure ν ∼ µ such that

every set A of positive measure contains a measurable subset B of positive measure

with

lim sup
s→∞

ν(Kν,T(B, s, δ)) > η · ν(B),

where

Kν,T(B, s, δ) = {x ∈ B : ∃φ ∈ [T], such that φ(x) ∈ B and

log
dν ◦ φ

dν
(x) ∈ (es−δ, es+δ) ∪ (−es+δ,−es−δ)},

and [T] is the full group of T.

Let R be an ergodic hyperfinite measured equivalence relation R on (X,B, µ). If

ν is a measure on X, equivalent to µ, we denote by δν the Radon–Nikodym cocycle

of ν. For x ∈ A, we define

Λν,A,R(x) = {log δν(y, x) : (x, y) ∈ R and y ∈ A}

=

{
log

dν ◦ φ

dν
(x) : φ ∈ [R]

}
.

For a σ-finite measure ν ∼ µ, A ∈ B of positive measure and s, δ > 0, we set

Kν,R(A, s, δ) = {x ∈ A : (es−δ, es+δ) ∩ Λν,A,R(x) 6= ∅}

∪ {x ∈ A : (−es+δ,−es−δ) ∩ Λν,A,R(x) 6= ∅}

= {x ∈ A : ∃y ∈ A with (x, y) ∈ R and | log δν(y, x)| ∈ (es−δ, es+δ)}.

Definition 2.2 Let (X,B, µ) and R be a hyperfinite ergodic countable equivalence

relation. Then R has property A if there exists a measure ν ∼ µ and η, δ > 0 such that

every measurable set A of positive measure contains a measurable set B of positive

measure such that

lim sup
s→∞

Kν,R(B, s, δ) > η · ν(B).

Given that R is hyperfinite, there exists a nonsingular automorphism T on

(X,B, µ) such that, up to a set of measure zero, R is equal to the equivalence re-

lation RT = {(Tnx, x), x ∈ X, n ∈ Z} generated by T, that is, R(x) = {Tnx, n ∈ Z},

for µ-a.e. x ∈ X (see [5, 10]). It follows that [R] = [T] and then, as can immedi-

ately be observed, R has property A if and only if T has property A in the sense of

Krieger. Hence, it follows from [11] that property A is an invariant for orbit equiva-

lence of hyperfinite equivalence relations and [11, Lemma 2.2] can be reformulated

as follows.
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Proposition 2.3 Assume that R has property A. Then there exist η, δ > 0 such that

for all λ ∼ µ and all ǫ > 0, every measurable set A of positive measure contains a

measurable set B of positive measure with

lim sup
s→∞

Kλ,R(B, s, δ + ǫ) > e−ǫη · λ(B)

Consider (kn)n>1 a sequence of positive integers with kn > 2. Let

X =
∏

n>1

{0, 1, . . . kn − 1}

endowed with the product topology, the corresponding Borel structure, and a non-

atomic product measure µ =
⊗

n>1 µn, where µn are probability measures on

{0, 1, . . . kn − 1} such that the mass of every point is positive. We define T on X

by setting T(1, 1, 1, . . . ) = (0, 0, 0, . . . ), and if x 6= (1, 1, 1, . . . ),

(Tx)n =





0 if n < N(x),

xn + 1 if n = N(x),

xn if n > N(x),

where N(x) = min{n > 1 : xn < kn − 1}. The product type odometer on (X, µ) is

called T. Notice that T is a non-singular and ergodic transformation with respect to

µ.

The tail equivalence relation T is defined for x = (xn)n>1 and y = (yn)n>1 by xTy

if and only if there exists n > 1 such that xi = yi for all i > n.

Clearly, the tail equivalence relation T is orbit equivalent with the equivalence

relation induced by the Z-action of the product odometer on X.

Definition 2.4 An equivalence relation is said of product type if it is orbit equivalent

to an equivalence relation induced by the Z-action of a product type odometer.

Now, Krieger’s result from [12] can be reformulated in the following way.

Theorem 2.5 Any equivalence relation of product type and of type III satisfies prop-

erty A.

3 Construction of an Equivalence Relation

In this section we construct a hyperfinite equivalence equivalence relation R on a

Lebesgue space (X,B, µ).

Definition 3.1 A Bratteli diagram D = (V, E) is a graph with a set of vertices V and

a set of edges E, with the following properties:

(i) V is the disjoint union of finite subsets Vn, n > 0;

(ii) E is the disjoint union of finite subsets En, n > 1, with each edge e ∈ En con-

necting a vertex s(e) ∈ Vn−1 with a vertex r(e) ∈ Vn;
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(iii) For every vertex v ∈ V , there exists e ∈ E with s(e) = v;

(iv) For every vertex v ∈ V , except for v ∈ V0, there exists e ∈ E with r(e) = v.

For simplicity, we assume that V0 consists of a single vertex v0. A path in D is defined

as a sequence (ek) of edges with s(e1) ∈ V0 and s(ek) = r(ek−1) for k > 2. We denote

by X the space of paths of infinite length. To each path of length n, f = ( f1, f2, . . . fn),

we associate the set

[ f1, f2, . . . fn] = {e ∈ X, ek = fk, 1 6 k 6 n},

which is called cylinder of length n. On X we consider the σ-algebra B generated by

all cylinder sets. The tail equivalence relation on X, denoted by R, is defined by

eR f if and only if for some n, ek = fk for all k > n.

Notice that R is the union of an increasing sequence of equivalence relations Rn,

where, for n > 1, Rn is the equivalence relation on X given by eRn f if and only if

ek = fk for all k > n.

We recall (see for example [4]) that a Markov measure (or AF measure) µp on Ω

is a measure determined by a system of transition probabilities p (i.e., maps p : E →
[0, 1] with p(e) > 0 and

∑
{e∈E,s(e)=v} p(e) = 1 for every v ∈ V ) given by

µp

(
[ f1, f2, . . . fn]

)
=

n∏
k=1

p( fk),

for each cylinder [ f1, f2, . . . fn].

We construct a Bratteli diagram D = (V, E) as follows. Let us start by considering

(rn)n>1, the sequence of positive integers given by rn = 2n!, for n > 1. The set of

vertices is V = ∪n>0Vn, where Vn = {(n, 0), (n, 1), . . . , (n, n)}, n > 0. Let ψ : N
∗ →

V \ {(n, 0); n > 0} be the bijection given by ψ(m) = (n, k), where n > 1 and

1 6 k 6 n satisfy 0 + 1 + 2 + · · · + n − 1 + k = m. and For example, ψ(1) = (1, 1),

ψ(2) = (2, 1), ψ(3) = (2, 2), ψ(4) = (3, 1), ψ(5) = (3, 2), and so on.

Define

λn,k = rψ−1(n,k) for n > 1 and 1 6 k 6 n.

The set of edges of the Bratteli diagram is E = ∪n>1En, where

En =
{

(n, k, k + 1, j); 1 6 j 6 λn,k+1, 0 6 k 6 n−1}∪{(n, k, k, 0); 0 6 k 6 n−1
}
.

The edge (n, k, k, 0) goes from the vertex (n − 1, k) to the vertex (n, k), and for 1 6

j 6 λn,k+1, the edge (n, k, k+1, j) goes from the vertex (n−1, k) to the vertex (n, k+1).

Then the space X of infinite paths consists of all

x =
(

(1, k0, k1, i1), (2, k1, k2, i2), . . . , (n, kn−1,kn, in) . . .
)
,

where 0 6 kn 6 n, and either kn = kn+1 and in = 0, or kn + 1 = kn+1 and 1 6

in 6 λn,kn+1
. Notice that k0 = 0, for any x ∈ X. When necessary, a path x ∈ X is
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(0,0)

(1,0)

(2,0) (2,1)

(1,1)

(2,2)

(3,0) (3,1) (3,2) (3,3)

r1 = λ1,1 edges

r2 = λ2,1 edges

r3 = λ2,2 edges

r4 = λ3,1 edges r5 = λ3,2 edges r6 = λ3,3

edges

Figure 3.1

denoted by x = (x1, x2, . . . , xn, . . . ), where xn ∈ En and r(xn) = s(xn+1). For a path

x = (x1, x2, . . . , xn, . . . ) ∈ X, we denote the cylinder set [x1, x2, . . . , xn] with En
x .

This Bratteli diagram is described by a sequence (An)n>1 of transition matrices.

For n > 1, An = {a
i, j
n , 0 6 i 6 n − 1, 0 6 j 6 n}, where a

i, j
n is the number of edges

going from the vertex (n − 1, i) to the vertex (n, j). Hence, ak,k
n = 1, ak,k+1

n = λn,k+1,

for k = 1, . . . , n − 1, and otherwise a
i, j
n = 0. The first three levels of this Bratteli

diagram are shown in Figure 3.1.

We consider on E a system p of transition probabilities, defined as follows. Let

p1 : E1 → [0, 1], where

p1

(
(1, 0, 0, 0)

)
=

1

2
, p1

(
(1, 0, 1, j)

)
=

1

2 · a01
1

, for 1 ≤ j ≤ a01
1 .

For n ≥ 2, we define pn : En → [0, 1] by setting

pn((n, k, k, 0)) =
1

2
, pn

(
(n, k, k + 1, j)

)
=

1

2 · a
k,k+1
n

for 0 ≤ k ≤ n − 1, 1 ≤ j ≤ ak,k+1
n .

Let µ be the Markov measure on X, which, for any cylinder

C = [(1, 0, k1, i1), (2, k1, k2, i2), . . . , (n, kn−1, kn, in)],

is given by

µ(C) = p1(1, 0, k1, i1) · p2(2, k1, k2, i2) · · · pn(n, kn−1, kn, in)

=
1

2n

1

a0k1

1 ak1k2

2 · · · a
kn−1kn
n

·
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Note that R is a hyperfinite measured equivalence relation. For the rest of this paper,

the Radon–Nikodym cocycle of µ with respect to R will simply be denoted by δ. Let

(x, y) ∈ R. As x and y are tail equivalent, we can write

x =
(

(1, 0, k1, i1), (2, k1, k2, i2), . . . , (n, kn−1, kn, in), (n + 1, kn, kn+1, in+1), . . .
)

y =
(

(1, 0, j1, l1), (2, j1, j2, l2), . . . , (n, jn−1, kn, ln), (n + 1, kn, kn+1, in+1), . . .
)
.

It follows that

δ(y, x) =
a0k1

1

a
0 j1

1

ak1k2

2

a
j1 j2

2

· · ·
a

kn−1kn
n

a
jn−1kn
n

·

4 The Equivalence Relation R is Ergodic and of Type III

In this section we show that R is ergodic with respect to the measure µ and that R is

of type III.

Let X̃ =
∏∞

n=1{0, 1}. On X̃ we consider the product measure µ̃ =
⊗

n>1 µ̃n given

by µ̃n(0) = µ̃n(1) = 1
2
, for n > 1. We define a map π : X → X̃ by setting

π
(

(1, k0, k1, i1), (2, k1, k2, i2), (n, k2, k, i3) . . .
)
= (k1, k2 − k1, k3 − k2, . . . ).

Note that the measure µ̃ is the pushforward of the measure µ by the map π. We

denote by Fn,k the set of all paths in X that cross the vertex (n, k).

Lemma 4.1 limm→∞ µ(Fψ(m)) = 0.

Proof Let m > 1 and (n, k) = ψ(m). Let An,k = {ỹ ∈ X̃,
∑n

i=1 ỹi = k}. We have

µ̃(An,k) =
1

2n

(
n

k

)
.

A path x ∈ X crosses the vertex (n, k) if and only if
∑n

i=1 π(x)i = k or, equivalently,

if and only if x ∈ π−1(An,k). Then

µ(Fψ(m)) = µ(Fn,k) = µ ◦ π−1(An,k) = µ̃(An,k) =
1

2n

(
n

k

)
.

Let

an = max
{ 1

2n

(
n

k

)
; 1 6 k 6 n

}
.

It easily can be checked that lim
n→∞

an = 0. From the definition of the function ψ, it

results that lim
m→∞

Fψ(m) = 0.

Lemma 4.2 If A ⊆ X with µ(A) > 0, then

lim
n→∞

µ(A ∩ En
x )

µ(En
x )

= 1 for µ-a.e. x ∈ A.
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Proof Let Bn be the σ-algebra generated by the set of cylinders of length n. Then B,

the σ-algebra generated by all cylinders of X, is the σ-algebra generated by all Bn, n >

1. Denoting with E(χA|Bn) the conditional expectation of χA with respect to the σ-

algebra Bn, the martingale convergence theorem (see for example [1, Theorem 35.6])

implies that E(χA|Bn) → E(χA|B) = χA almost everywhere, as n → ∞. Hence,

lim
n→∞

µ(A ∩ En
x )

µ(En
x )

= lim
n→∞

E(χA|Bn)(x) = 1 for µ− a.e. x ∈ A.

Proposition 4.3 The equivalence relation R is ergodic with respect to µ.

Proof Note that two paths x = (x1, x2, . . . , xn, . . . ) and y = (y1, y2, . . . , yn, . . . )

intersect if there exists n > 1 such that r(xn) = r(yn). This is equivalent to saying that∑n
i=1 x̃i =

∑n
i=1 ỹi , where x̃ = π(x) and ỹ = π(y). The space (

∏
n>1{0, 1},⊗µ̃n)

can be identified with ([0, 1], λ), where λ is the Lebesgue measure (see [14]). Then,

[13, Lemma 17.2] implies that for µ̃ × µ̃-a.e. (x̃, ỹ) ∈ X̃ × X̃, there exist infinitely

many n > 1 such that
∑n

i=1 x̃i =
∑n

i=1 ỹi . As µ̃ = µ ◦ π−1, it follows that for

µ× µ-a.e. (x, y) ∈ X × X, x and y intersect infinitely often.

Let A be an R−invariant set with 0 < µ(A) < 1. From Lemma 4.2, we have

µ(A ∩ En
x )

µ(En
x )

→ 1,
µ(Ac ∩ En

y)

µ(En
y)

→ 1 for µ× µ-a.e (x, y) ∈ A × Ac.

Since for µ × µ-a.e. (x, y) ∈ X × X, x and y intersect infinitely often, we can find

x = (x1, x2, . . . , xn, . . . ) ∈ A, y = (y1, y1, . . . , yn, . . . ) ∈ Ac and m > 1 such that

µ(A ∩ En
x )

µ(En
x )

>
1

2
,

µ(Ac ∩ En
y)

µ(En
y)

>
1

2
,

and r(xm) = r(ym). There exists a partial isomorphism φ with Graph(φ) ⊆ R and

affecting only the first m coordinates such that φEn
x = En

y . Thus,

µ(A ∩ En
y) =

∫

A∩En
y

dµ =

∫

A∩En
x

dµ ◦ φ

dµ
(x)dµ(x) =

µ(En
y)

µ(En
x )
µ(A ∩ En

x ) >
1

2
µ(En

y).

Therefore,

1 =
µ(A ∩ En

y)

µ(En
y)

+
µ(Ac ∩ En

y)

µ(En
y)

>
1

2
+

1

2
= 1.

This is a contradiction. Hence µ(A) = 1 or µ(A) = 0, and so R is ergodic.

In order to show that R is of type III we use a criterion from [8] that says that

a countable measured equivalence relation R on (X, µ) is of type III if and only if

sup{log δ(y, x); (x, y) ∈ R} = ∞ and inf{log δ(y, x); (x, y) ∈ R} = −∞, for µ-a.e.

x ∈ X.

Proposition 4.4 The equivalence relation R is of type III.
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Proof It can immediately be seen that the set

A = {x̃ ∈ X̃; x̃n = 0 and x̃n = 1 for infinitely many n}

is conull in X̃. Thus, F = π−1(A) is conull in X.

Consider α > 0 arbitrary, and take x ∈ F,

x = (x1, x2, . . . , xn, . . . ) =
(

(1, 0, k1, i1), (2, k1, k2, i2), . . . , (n, kn−1, kn, in), . . .
)
.

Let m = min{n > 2;π(x)n = 0} = min{n > 2, kn = kn−1}. Choose p > m large

enough such that π(x)p = 1 and log rN−1 > α, where N = ψ−1(p, kp). Note that

kp = kp−1 + 1. We can find y ∈ X,

y =
(

(y1, y2, . . . , yn, . . . ) = (1, 0, j1, l1), (2, j1, j2, l2), . . . , (n, jn−1, jn, ln), . . .
)

such that (x, y) ∈ R and





yn = xn if n < m or n > p,

π(y)n = π(x)n if m < n < p,

π(y)m = 1, π(y)p = 0.

Thus, j p = j p−1 = kp, jm = jm−1 + 1 = km−1 + 1, and

δ(y, x) =
a

km−1km
m

a
km−1 jm
m

akmkm+1

m+1

a
jm jm+1

m+1

· · ·
a

kp−1kp

p

a
j p−1kp

p

.

Since in the above product each a
i j
n is either 1 or certain rk, it follows that a

kp−1kp

p =

λp,kp
= rN and a

j p−1kp

p = 1. Hence, δ(y, x) =

N∏
i=1

r
βi

i , where βi ∈ {0, 1,−1} for

m 6 i < N, and βN = 1. Consequently,

log δ(y, x) > log rN −

N−1∑

i=1

log ri > (N − 1)! log 2 = log rN−1 > α.

This implies that sup{log δ(y, x); (x, y) ∈ R} = ∞, and similarly it can be shown

that inf{log δ(y, x); (x, y) ∈ R} = −∞. Therefore R is of type III.

5 The Equivalence Relation R is not of Product Type

In this section we prove the main result of this paper by showing that R does not

satisfy property A.

Let (Ln)n>1 be the sequence of positive reals given by

Ln =
log rn + log rn+1

2
, n > 1,
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and let us denote with In the intervals In = [Ln−1, Ln) , n > 2.

It is straightforward to check that

log r1 + log r2 + · · · + log rn < Ln, for n > 1(5.1)

and

log rn − (log r1 + log r2 + · · · + log rn−1) > Ln−1, for n > 5.(5.2)

Lemma 5.1 Let m > 5. If (x, y) ∈ R and | log δ(y, x)| ∈ Im, then x ∈ Fψ(m).

Proof Consider x = (x1, x2, . . . ) and y = (y1, y2, . . . ) such that (x, y) ∈ R and

Lm−1 6 | log δ(y, x)| < Lm, where m > 5 and Let s = max{i : xi 6= yi} and

p = max{i : s(xi) 6= s(yi), r(xi) = r(yi)}. Clearly, p 6 s. Notice that p > 2, as

otherwise log δ(y, x) = 0. Thus, beginning with the vertex r(xp) = r(yp), x and y

cross the same vertices of the Bratteli diagram. We write

x = (1, 0, k1, i1), (2, k1, k2, i2), . . . , (p, kp−1, kp, i p), (p + 1, kp, kp+1, i p+1), . . .

. . . , (s, ks−1, ks, is), (s + 1, ks, ks+1, is+1), . . . ,

y = ((1, 0, j1, l1), (2, j1, j2, l2), . . . , (p, j p−1, kp, lp), (p + 1, kp, kp+1, lp+1), . . .

. . . , (s, ks−1, ks, ls), (s + 1, ks, ks+1, is+1), . . ..

Hence,

δ(y, x) =
a0k1

1

a
0 j1

1

ak1k2

2

a
j1 j2

2

· · ·
a

kp−1kp

p

a
j p−1kp

p

·

Notice that either a
j p−1kp

p = λp,kp
and a

kp−1kp

p = 1 or a
j p−1kp

p = 1 and a
kp−1kp

p = λp,kp
.

As each a
i j
m in the above product is either 1 or certain rn, we have

δ(y, x) =
ψ−1(p,kp)∏

i=1

r
βi

i ,

where βi ∈ {0, 1,−1} for 1 6 i < ψ−1(p, kp) and βψ−1(p,kp) 6= 0. Let n =

ψ−1(p, kp). It follows that

| log δ(y, x)| =

∣∣∣∣
n∑

i=1

βi log ri

∣∣∣∣ 6
n∑

i=1

log rn < Ln.

Since | log δ(y, x)| > L4, we have n > 5. We claim that m = n. Indeed, if m > n,

using (5.1) we would have,

| log δ(y, x)| 6

n∑

i=1

log ri 6

m−1∑

i=1

log ri < Lm−1,
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which contradicts | log δ(y, x)| > Lm−1. If m < n, then, by (5.2),

| log δ(y, x)| > log rn −

n−1∑

i=1

log ri > Ln−1 > Lm,

which contradicts | log δ(y, x)| 6 Lm. Therefore, n = m and so (p, kp) = ψ(m).

Hence, x crosses the vertex ψ(m) = (p, kp), that is x ∈ Fψ(m).

The following proposition shows that for s large enough the interval (es−δ, es+δ)

intersects at most two consecutive intervals Im and Im+1.

Proposition 5.2 Let δ > 0 and M > e2δ . Consider s > 0 and m > 1 such that

es−δ > LM and Im ∩ (es−δ, es+δ) 6= ∅. Then I j ∩ (es−δ, es+δ) = ∅ for j 6= m,m − 1 or

I j ∩ (es−δ, es+δ) = ∅ for j 6= m,m + 1.

Proof As es−δ > LM it follows that (es−δ, es+δ) does not intersect any of the intervals

I j , j = 1, 2, . . . ,M, and so m > M + 1. We have either Lm−1 6 es−δ or Lm−1 > es+δ .

Let us assume first that Lm−1 6 es−δ . Clearly, Lm > es−δ , as otherwise,

(es−δ, es+δ) ∩ Im 6= ∅. It follows that

Lm+1 =
Lm+1

Lm
Lm =

(m + 1)(m + 3)

m + 2
Lm > M · Lm > e2δes−δ

= es+δ,

and so I j ∩ (es−δ, es+δ) = ∅ for j 6= m,m + 1.

Assume now that Lm−1 > es−δ . Since (es−δ, es+δ) ∩ Im 6= ∅, we have Lm−1 < es+δ .

Hence,

Lm−2 =
Lm−2

Lm−1

Lm−1 =
m

(m − 1)(m + 1)
Lm−1 <

Lm−1

M
<

es+δ

e2δ
= es−δ

and

Lm =
Lm

Lm−1

Lm−1 =
m(m + 2)

m + 1
Lm−1 > M · Lm−1 > e2δes−δ

= es+δ.

Consequently, I j ∩ (es−δ, es+δ) = ∅ for j 6= m,m − 1.

Theorem 5.3 R does not have property A and is not of product type.

Proof From Lemmas 4.1 and 5.1, we get

lim
m→∞

µ
({

x ∈ X, ∃y ∈ X, (x, y) ∈ R and | log δ(y, x)| ∈ Im

})
6 µ(Fψ(m)) = 0.

This and Lemma 5.2 imply that for any δ > 0, we have

lim
s→∞

µ
({

x ∈ X, ∃y ∈ X, (x, y) ∈ R and | log δ(y, x)| ∈ (es−δ, es+δ)
})

= 0.

By using Proposition 2.3, we conclude that R does not have property A, and therefore

it is not of product type.
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Notice that M(X, µ,R), the von Neumann algebra associated with R (see [6]),

provides an explicit example of an approximately finite dimensional factor that is not

an ITPFI factor.

Note also that the associated flow of this equivalence relation is, up to conjugacy, a

flow built under a ceiling function and having as base automorphism the Pascal adic

transformation. To obtain this realization of the flow we refer the reader to [8] or [9].
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