ON THE SOLUBLE LENGTH OF GROUPS WITH PRIME-POWER ORDER

Susan Evans-Riley, M.F. Newman and Csaba Schneider

To B. H. Neumann in his 90 th year.

We show that for every integer $k \geqslant 3$ and every prime $p \geqslant 5$ there is a group with soluble length k and order $p^{2^{k}-2}$.

1. Introndictinn

There has been interest since the time of Burnside in the question: given a prime p and a positive integer k what is the smallest order of a group of p-power order with soluble length (exactly) k ? Let $p^{\beta_{p}(k)}$ denote this smallest order.

The first paper which discussed problems like this is one by Burnside [4] in 1913. In that paper he observed that there are groups of order p^{3} with soluble length 2 ; and groups of order p^{6} with soluble length 3 . Moreover he showed that a group with soluble length $k+1$ must have order at least $p^{3 k}$; and said: but it seems probable that for greater values of k the actual lower limit for the order exceeds $p^{3 k}$.

Burnside [5] confirmed this expectation by proving: $p^{(k+1)(k+2) / 2}$ is a lower limit for the order of a prime power group whose k-th derived group is not the identity; and moreover: this lower limit is not attained except when k is 1 or 2 . So, in particular, a p-group with soluble length 4 has order at least p^{11}.

The theme was taken up and a major advance was made by P. Hall and reported in his now famous paper [8] of 1934. In it he proved that $2^{k-1}+k-1 \leqslant \beta_{p}(k) \leqslant 2^{k-2}\left(2^{k-1}-1\right)$ (pp. 56-7). For $k \leqslant 4$ this lower bound is no better than Burnside's bound. Hall also established that $\beta_{2}(k) \leqslant 2^{k}-1$.

In 1950 Itô [12] refined the upper bound given by Hall. He showed that $\beta_{p}(k) \leqslant$ $3 \cdot 2^{k-1}$. Further progress was made by Blackburn in his thesis [1] in 1956. [The relevant part of that work has never been otherwise published or announced. We are indebted to Professor Blackburn for recently supplying us with a copy of his thesis.] Blackburn

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/99 \$A2.00+0.00.
proved [1 , Theorem 10] for every $p>3$ every group of order p^{13} has soluble length at most 3 ; therefore $\beta_{p}(4) \geqslant 14$. He also described examples of Hall, later published in [9], of groups with order $p^{2^{k}-1}$ and soluble length k (for p odd). (Details of the Hall examples can be found conveniently in Huppert [11, Satz III.17.7].)

In this paper we present examples which complete the story for $k=4$. Namely, there are p-groups with soluble length 4 and order p^{14} for all $p \geqslant 5$. More generally, in Section 3 we describe a series of finite p-groups with soluble length k and order $p^{2^{k}-2}$ for all $p \geqslant 5$. In the context of this problem the primes 2,3 behave differently already for soluble length 3 (see Blackburn [2, pp. 89-91]).

One of the contributions that Burnside and Hall made was to show the significance of commutators in the study of groups of prime-power order. Hence some results about p-groups come as corollaries of results about nilpotent groups. In Section 2 we show that there is a 2-generator torsion-free nilpotent group with soluble length 4 and Hirsch length 14. (The Hirsch length is the number of infinite cyclic factors in a polycyclic series.) This group has nilpotency class 11. Factoring out the p-th powers of the generators gives that for all $p \geqslant 11$ there is p-group with soluble length 4 , order p^{14} and exponent p. Examples for the primes 5 and 7 are also described in Section 2.

While, in some sense, the upper and lower bounds have the same order of magnitude, there is still a gap to fill even at this level. The quoted results give $k-1<\log _{2} \beta_{p}(k)<k$. Does $\log _{2} \beta_{p}(k)-k$ have a limit and, if so, what is it?

2. Soluble length 4

Consider the pro-p-presentation

$$
\begin{aligned}
\{a, b \mid & a^{p}=1, b^{p}=1,[b, a, b]=1,[b, a, a, a, a, a]=1 \\
& {[b, a, a, a, b, a, a, b, a, a, a]=1\} . }
\end{aligned}
$$

With the help of the p-Quotient Program (Havas et al. [10]) it is easy to establish that the pro- p-group G_{p} defined by this presentation is a finite p-group of order p^{14} for $p=5,7,11-$ and other individual primes as far as resources allow. Moreover, using the same program, one can see that the presentation

$$
\begin{aligned}
\{a, b \mid & a^{p}=1, b^{p}=1,[b, a, b]=1,[b, a, a, a, a, a]=1, \\
& {[b, a, a, a, b, a, a, b, a, a, a]=1 } \\
& {[[[b, a, a, a],[b, a]],[[b, a, a],[b, a]]]=1\} }
\end{aligned}
$$

defines a finite p-group of order p^{13} for the same primes. Thus G_{p} must have soluble length at least 4.

A more general result can be obtained by using the Nilpotent Quotient Program (Nickel [14]) as follows. Let G denote the group defined by the presentation

$$
\{a, b \mid[b, a, b]=1,[b, a, a, a, a, a]=1,[b, a, a, a, b, a, a, b, a, a, a]=1\}
$$

Then the program shows that the largest class 11 quotient of G has Hirsch length 14. Moreover the largest class 11 quotient of the group H defined by the presentation

$$
\begin{aligned}
\{a, b \mid & {[b, a, b]=1,[b, a, a, a, a, a]=1 } \\
& {[b, a, a, a, b, a, a, b, a, a, a]=1 } \\
& {[[[b, a, a, a],[b, a]],[[b, a, a],[b, a]]]=1\} }
\end{aligned}
$$

has Hirsch length 13.
Hence the largest torsion-free and class 11 quotient of G has Hirsch length 14 and soluble length 4.

The presentations used in this section were suggested by some in Caranti et al. [6] and the considerations in the next section.

3. The general case

Our starting point is the p-adic Lie algebra \mathcal{T} of dimension 8 described in Caranti et al. [6]. Note that \mathcal{T} is a free \mathbb{Z}_{p}-module with \mathbb{Z}_{p}-basis $\{x, y, c, d, v, s, t, w\}$ and the multiplication can be described by the following table:

$$
\begin{array}{lllll}
{[y, x]=c,} & {[c, x]=d,} & {[c, y]=0,} & {[d, x]=v,} & {[d, y]=0} \\
{[v, x]=s,} & {[v, y]=t,} & {[s, x]=0,} & {[s, y]=2 w,} & {[t, x]=w} \\
& {[t, y]=0,} & {[w, x]=p x,} & {[w, y]=-2 p y .} &
\end{array}
$$

It is shown in Caranti et al. that the quotients $\mathcal{T}_{j} / \mathcal{T}_{j+1}$ of the lower central series have characteristic p. The dimensions (over the field of p elements) of the $\mathcal{T}_{j} / \mathcal{T}_{j+1}$ are periodic with period $2,1,1,1,2,1$. The terms \mathcal{D}_{k} of the derived series are easy to calculate and this gives that $\mathcal{T}_{j+1}<\mathcal{D}_{k}<\mathcal{T}_{j}$, for $k \geqslant 2$, where $j=3 \cdot 2^{k-1}-1$. (Thus $\mathcal{T}_{j} / \mathcal{T}_{j+1}$ is the second 2 -dimensional lower central factor of the appropriate period.) This means that \mathcal{D}_{k} is one of the $p+1$ ideals between \mathcal{T}_{j+1} and \mathcal{T}_{j}. Factoring out one of the p other ideals gives an algebra of class j, soluble length $k+1$ and dimension $2^{k+1}-2$. The same p-adic algebra appears in Klaas et al. [13, p. 51] (taking $\Pi=\sqrt{p / 3}$). Using the Cayley map $x \mapsto(1-x)(1+x)^{-1}$ whose properties are described in [13, pp. 31-7] gives a pro-p-group with the corresponding lattice of normal subgroups. The corresponding quotient is a group with soluble length $k+1$ and order $p^{2^{k+1}-2}$.

References

[1] N. Blackburn, Problems on the theory of finite groups of prime-power order, (Ph.D. Thesis) (University of Cambridge, Cambridge, U.K., 1956).
[2] N. Blackburn, 'On a special class of p-groups', Acta Math. 100 (1958), 45-92.
[3] W. Bosma, J. Cannon and C. Playoust, 'The Magma algebra system I: The user language', J. Symbolic Comput. 24 (1997), 235-265.
[4] W. Burnside, 'On some properties of groups whose orders are powers of primes', Proc. London Math. Soc. (2) 11 (1913), 225-243.
[5] W. Burnside, 'On some properties of groups whose orders are powers of primes', (second paper), Proc. London Math. Soc. (2) 13 (1914), 6-12.
[6] A. Caranti, S. Mattarei, M.F. Newman and C.M. Scoppola, 'Thin groups of prime-power order and thin Lie algebras', Quart. J. Math. Oxford (2) 47 (1996), 279-296.
[7] K.W. Gruenberg and J.E. Roseblade (eds), The collected works of Philip Hall (Clarendon Press, Oxford, 1988).
[8] P. Hall, 'A contribution to the theory of groups of prime-power order', Proc. London Math. Soc. (2) 36 (1934), 29-95; or collected works [7] pp. 57-125.
[9] P. Hall, 'A note on $\overline{S I}$-groups', J. London Math. Soc. 39 (1964), 338-344; or collected works [7] pp. 653-661.
[10] G. Havas, M.F. Newman and E.A. O'Brien, 'The ANU p-Quotient Program (version 1.4)', The Australian National University, Canberra, (1996); Available as part of GAP [15] and MAGMA [3]; also via ftp from ftpmaths.anu.edu.au/pub/algebra/PQ/.
[11] B. Huppert, Endliche Gruppen I, Die Grundlehren der Mathematischen Wissenschaften 134 (Springer-Verlag, Berlin, Heidelberg, New York, 1967).
[12] N. Itô, 'Note on p-groups', Nagoya Math. J. 1 (1950), 113-116.
[13] G. Klaas, C.R. Leedham-Green and W. Plesken, Linear pro-p-groups of finite width, Lecture Notes in Mathematics 1674 (Springer-Verlag, Berlin, Heidelberg, New York, 1997).
[14] W. Nickel, 'The ANU Nilpotent Quotient Program (version 1.2)', Available as part of GAP [15]; also via ftp from ftpmaths.anu.edu.au/pub/algebra/NQ/.
[15] M. Schönert et al., GAP - Groups, Algorithms and Programming, (fifth edition) (Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany, 1995).

School of Mathematics and Statistics
The University of Sydney
New South Wales 2006
Australia
e-mail: susan@maths.usyd.edu.au

School of Mathematical Sciences
The Australian National University
Canberra ACT 0200
Australia
e-mail: csaba@maths.anu.edu.au

School of Mathematical Sciences The Australian National University Canberra ACT 0200
Australia
e-mail: newman@maths.anu.edu.au

[^0]: Received 15th October, 1998
 We are indebted to Professor Avinoam Mann for drawing our attention to his unpublished result that $2^{k-1}+2 k-4 \leqslant \beta_{p}(k)$ and to Blackburn's thesis. We are also indebted to Dr Werner Nickel for his helpful comments on a draft.

