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ON THE SOLUBLE LENGTH OF GROUPS WITH PRIME-POWER
ORDER

SusaN Evans-RILEY, M.F. NEWMAN AND CSABA SCHNEIDER

To B. H. Neumann in his 90th year.

We show that for every integer k¥ > 3 and every prime p > 5 there is a group with
soluble length k and order pzk -2,

1. INTRODUCTION

There has been interest since the time of Burnside in the question: given a prime
p and a positive integer £ what is the smallest ‘order of a group of p-power order with
soluble length (exactly) k? Let pP»¢) denote this smallest order.

The first paper which discussed problems like this is one by Burnside [4] in 1913.
In that paper he observed that there are groups of order p® with soluble length 2; and
groups of order p® with soluble length 3. Moreover he showed that a group with soluble
length k + 1 must have order at least p3; and said: but it seems probable that for greater
values of k the actual lower limit for the order exceeds p®*.

Burnside [5] confirmed this expectation by proving: p**V(*+2)/2 is a lower limit
for the order of a prime power group whose k-th derived group is not the identity; and
moreover: this lower limit is not attained except when k is 1 or 2. So, in particular, a
p-group with soluble length 4 has order at least p'!.

The theme was taken up and a major advance was made by P. Hall and reported in
his now famous paper (8] of 1934. In it he proved that 2¥-14+k—1 < B,(k) < 26-2(2%-1-1)
(pp. 56-7). For k < 4 this lower bound is no better than Burnside’s bound. Hall also
established that fo(k) < 2% — 1.

In 1950 It [12] refined the upper bound given by Hall. He showed that 8,(k) <
3-2¥~1. Further progress was made by Blackburn in his thesis [1] in 1956. [The relevant
part of that work has never been otherwise published or announced. We are indebted
to Professor Blackburn for recently supplying us with a copy of his thesis.] Blackburn
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proved [1, Theorem 10] for every p > 3 every group of order p'3 has soluble length at
most 3; therefore 3,(4) > 14. He also described examples of Hall, later published in [9],
of groups with order p?*~! and soluble length k (for p odd). (Details of the Hall examples
can be found conveniently in Huppert [11, Satz I11.17.7].)

In this paper we present examples which complete the story for k¥ = 4. Namely,
there are p-groups with soluble length 4 and order p'* for all p > 5. More generally, in
Section 3 we describe a series of finite p-groups with soluble length k and order p?*~2 for
all p 2 5. In the context of this problem the primes 2, 3 behave differently already for
soluble length 3 (see Blackburn [2, pp. 89-91]).

One of the contributions that Burnside and Hall made was to show the significance
of commutators in the study of groups of prime-power order. Hence some results about
p-groups come as corollaries of results about nilpotent groups. In Section 2 we show that
there is a 2-generator torsion-free nilpotent group with soluble length 4 and Hirsch length
14. (The Hirsch length is the number of infinite cyclic factors in a polycyclic series.) This
group has nilpotency class 11. Factoring out the p-th powers of the generators gives that
for all p > 11 there is p-group with soluble length 4, order p'* and exponent p. Examples
for the primes 5 and 7 are also described in Section 2.

While, in some sense, the upper and lower bounds have the same order of magnitude,
there is still a gap to fill even at this level. The quoted results give k—1 < log, G,(k) < k.
Does log, B,(k) — k have a limit and, if so, what is it?

2. SOLUBLE LENGTH 4
Consider the pro-p-presentation

{a,b| @ =1, =1, [ba,b =1, [b,a,0,0,a,a] =1,
[b,a,a,a,b,0,a,b,a,a,a] = 1}.

With the help of the p-Quotient Program (Havas et al. [10]) it is easy to establish that the
pro-p-group G, defined by this presentation is a finite p-group of order p* forp = 5,7,11 -
and other individual primes as far as resources allow. Moreover, using the same program,
one can see that the presentation

{a,b| =1, =1, ba,b =1, [ba,aaaa=1,
[b,a,a,a,b,a,a,b,a,a,a] =1,
(b, a, a, a), [b,a]], [[b, a, a], [b,a]]] = 1 }

defines a finite p-group of order p'® for the same primes. Thus G, must have soluble
length at least 4.

A more general result can be obtained by using the Nilpotent Quotient Program
(Nickel {14]) as follows. Let G denote the group defined by the presentation

{a,b] [b,a,b] =1, [b,a,a,a,a,6) =1, [b,a,a,a,b,a,0,b,a,a,a] =1 }.
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Then the program shows that the largest class 11 quotient of G has Hirsch length 14.
Moreover the largest class 11 quotient of the group H defined by the presentation

{a,b | [ba,b]=1,[ba,a,a,a,0]=1,
[b,a,a,a,b,a,a,b,a,a,a] =1,
[[[b’ a,a, a]! [b, a’]]’ [[b’ a, a‘]w [bv a]]] =1 }

has Hirsch length 13.

Hence the largest torsion-free and class 11 quotient of G has Hirsch length 14 and
soluble length 4.

The presentations used in this section were suggested by some in Caranti et al. [6]
and the considerations in the next section.

3. THE GENERAL CASE

Our starting point is the p-adic Lie algebra 7 of dimension 8 described in Caranti
et al. [6]. Note that 7 is a free Z,-module with Z,-basis {z,y,c¢,d,v,s,t,w} and the
multiplication can be described by the following table:

[y,2) =¢, [c,z]=d, [c,y]=0, {d,z] = v, [d,y] =0,
[v,z) =s, [v,y]=t, Is,2]=0, [s,y]=2w, [t,z] = w,
[t,y] =0, [w,z]=pz, [wy]=-2py.

It is shown in Caranti et al. that the quotients 7;/7 ;41 of the lower central series
have characteristic p. The dimensions (over the field of p elements) of the 7;/7 ;;, are
periodic with period 2,1,1, 1,2, 1. The terms D, of the derived series are easy to calculate
and this gives that T4, < Dy < T, for k > 2, where j = 3-2¢"! — 1. (Thus 7;/7 ju1
is the second 2-dimensional lower central factor of the appropriate period.) This means
that Dy is one of the p + 1 ideals between 7 ;3 and 7;. Factoring out one of the p
other ideals gives an algebra of class j, soluble length k + 1 and dimension 25*! — 2. The
same p-adic algebra appears in Klaas et al. 13, p. 51] (taking I1 = /p/3). Using the
Cayley map z +— (1 — z)(1 + z)~! whose properties are described in [13, pp. 31-7] gives
a pro-p-group with the corresponding lattice of normal subgroups. The corresponding

quotient is a group with soluble length k + 1 and order p?*'~2,
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