
Genet. Res., Camb. (1976), 28, pp. 199-203 1 9 9
Printed in Great Britain

SHORT PAPER

Regressions between relatives

BY M. G. BULMER

Department of Biomathematics, Pusey Street, Oxford

(Received 26 January 1976)

SUMMARY

A metric character determined by a large number of loci without epistasis is
normally distributed. In the absence of linkage the joint distribution in two or
more relatives is multivariate normal, so that all regressions are linear and have
constant residual variance. In the presence of linkage this is no longer true
except in the case of parent and child; for all other types of relatives the regres-
sion line is unaffected by linkage but the residual variance about this line is no
longer constant but increases away from the mean.

The theory of correlations between relatives is well established, but it is sometimes
necessary to possess more information than is given by the correlation coefficients; in
particular one might want to know whether the regression of an individual on one or more
relatives is linear and whether the variance about the regression is constant.

Consider a character determined by n loci without epistasis and assume random mating
without selection or mutation in an effectively infinite population. To find the joint dis-
tribution of the character in a number of related individuals, write gti for the genetic
contribution from thej'th locus in the ith individual, ĝ  for the vector of these contributions
at the jth locus in the different individuals, Ot = 2 g^ for the genotypic value of the ith

individual and G for the vector of genotypic values.
In the absence of linkage loci assort independently of one another so that the vectors

6i> §2> •••> 6« are statistically independent. It follows from the multivariate form of the
central limit theorem that, under rather general conditions, their sum G will have a multi-
variate normal distribution as n-> oo. In particular all regressions will in the limit be linear
with constant variance about them, whether or not there is dominance.

In the presence of linkage the vectors gj, g2,..., gn will not in general be independent of
each other. The reason is that knowledge of g^ for example, provides some information
about the number of genes which are identical by descent in the different individuals at
the first locus, which provides information about g2 if the first and second loci are linked.
However, if the individuals are related as parent and child the number of identical loci
is known to be exactly 1 at each locus, so that no further information about it can be
obtained. Thus the joint distribution of parent and child, or of mother, father and child,
will become multivariate normal in the limit even in the presence of linkage. This will not
be true if the individuals are related in any other way (Bulmer, 1971).

To investigate the effect of linkage in more detail consider a pair of related individuals.
The marginal distributions of the two genotypic values, Gx and G2, will in the limit be
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normal, with mean/< and variance a%, say. The conditional mean and variance of G2 given
G± can be expressed as

) (11
va,T(G2\Gj) = S ™(jy|G1) + 2 2 cov(<7y, j724

The distribution of g2i only depends on Gx through the information contained in Gt about
gXj; furthermore the distribution of gti given Gx is unaffected by hnkage provided that the
population is in hnkage equilibrium. Hence the distribution of g2i given Glt and in particu-
lar its mean and variance, are unaffected by hnkage. On the other hand the joint distribu-
tion of g2j and g2k, and in particular their covariance, conditional on Gv will be affected by
hnkage for the reasons discussed above. It can be concluded that the regression of G2 on Gr
is unaffected by hnkage and will thus become linear in the limit, but that the variance
about this regression line will be affected by hnkage and will only become constant in
the limit in the absence of hnkage or in the case of parent and child.

To evaluate the effect of hnkage on the variance we first consider an extreme situation
with complete Hnkage between all pairs of loci but with hnkage equilibrium; no assump-
tions are made about the genetic model except that there is a large number of loci without
epistasis. Denote by Ps (s = 0,1, 2) the probabihty that the two related individuals have
s identical genes at a particular locus. With complete hnkage the number of identical genes
must be the same at all loci, so that the conditional distribution of G2 given Gt is a mixture
of three distributions: (i) with probability Po there are no genes identical by descent at any
locus and G2 will be normal with mean ft and variance o%; (ii) with probability P1 there is
one identical gene at every locus, so that the distribution of G2 given Gx win be the same
as that of child given parent and will be normal with mean /t + ̂ fe2((?1— ji) and with
variance (1 — J&4)cr2

3, where h? is the ratio of the additive to the total genetic variance;
(iii) with probabihty P2 there are two identical genes at every locus so that G2 = Gv
The variance about the regression line is easily found to be

If there is environmental as well as genetic variance, then

(3)

In this equation Yx and Y2 are the phenotypic values in the two relatives, (r2, is the pheno-
typic variance, h? is the (narrow) heritabihty (ratio of additive genetic to phenotypic
variance) and h^, is the wide heritabihty (ratio of total genetic to phenotypic variance).

In the absence of hnkage the variance about the regression line is given by the first term
on the right hand side of (2) or (3). The effect of the second term is to increase the variance
about the regression line as the first individual's genotypic (or phenotypic) value departs
from the mean. For parent and child, Po = P2 = 0, P1= 1; thus the second term vanishes
and the variance is constant, as already shown. By contrast, in sibs Po = P2 = J, P-y = £;
putting h2 = 1 in (2) and W- = h%, = \ in (3) to represent a situation with equal amounts of
additive genetic and environmental variance, we find that

var(Cr2|Cr1)
i _ 2 9var(7, |r i) =

There is thus a substantial amount of heteroscedasticity, particularly in the genotypic
regression.

In the more realistic case with partial linkage, a solution has only been found under a
simplified genetic model in which there are two alleles, + and —, at each locus which
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contribute 1 and 0 respectively to the character and in which the + allele has the same
frequency, p, at each of the n loci. Under this model it is shown in the Appendix that

varfGy*?!) = (l—Jr2)o
2

G + (n2 — R2)(G1—/i)2 +terms of smaller order of magnitude inm.

(5)

In this equation R = ^P1 + P2 is the coefficient of relationship between the individuals.
772 is the probability that if one gene is chosen at random at each of two loci in one indi-
vidual, then the other individual will possess genes identical to both of them; n2 will depend
on the recombination fraction between the loci, and Jf2 is its average value over all pairs
of loci. In the absence of linkage n2 = R2 so that the variance is constant, but in the
presence of linkage n2 > Rz for any relatives except parent and child so that the variance
about the regression line increases as Ox moves away from its mean value. Equation (5)
has been obtained by assuming genes with equal effects and frequencies, and with
only two alleles per locus, but it seems likely that it would remain valid under a more
general model without dominance provided that an appropriate averaging process for
calculating n2 was used. It should be noted that if there is complete linkage at all loci,
then n2 = JPX + P2so that (5) is equivalent to (2) in the absence of dominance. If there is
environmental as well as additive genetic variance, equation (5) is replaced by

var(r2|F1) = (l-7f8**)Or» + (5F8-.B»)*«(01-,O*. (6)

To evaluate the magnitude of the effect shown in (5) and (6) it is necessary to estimate a
typical value for (Jf2—R2). For sibs it can be shown that (n2 — Ri) = % — \r( 1 — r) for a pair
of loci with recombination fraction r. Consider a chromosome with a length of 1 morgan.
If loci are distributed at random along the chromosome, then the map distance, x, between
two randomly chosen loci will have the density function/(a;) = 2(1— x) (O^x^ 1). If
the recombination fraction is related to map distance by the standard mapping function
r = £ [1 — exp (— 2a;)], the Expected value of J — \r( 1 — r) is found by a simple integration
to be 0-047. In a species with k chromosomes each of unit length, (n2 — R*) for sibs is thus
0-047/fe, and equation (5) becomes

0-047
v a r ^ G j ) = (0-75-0-047/*)<7& + — ( G ^ ) " (7)

for sibs. The effect is Ukely to be negligible unless the number of chromosomes is small. The
absence of crossing-over in the male in Drosophila can be taken into account by using the
mapping function r = J[l—exp ( — 2a;)]. In this case the Expected value of-g- — | r( l — r) is
0-079, so that (n2-R

2) for sibs is 0-079/3 = 0-026 if Drosophila is assumed to have
three chromosomes of unit length. Thus for sibs in this species

| /*)2. (8)

It will be seen from equation (6) that for the phenotypic regression the factor (if 2 — R2}
must be multiplied by the square of the heritability.

It is concluded that the increase in the residual variance away from the mean is likely
to be too small to be experimentally detectable in a single generation. This factor may
nevertheless have an appreciable cumulative effect, particularly in an organism such as
Drosophila, if stabilizing or disruptive selection is continued over many generations. It
should therefore be taken into account in any theoretical analysis of the effect of selection
on genetic variability.
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APPENDIX. DERIVATION OF EQUATION (5)

Leta;t^j(j = 1,2, ...,n;l = 1,2) be the contribution from the Jth gene at the jth locus in
the ith individual. Each x takes the value 1 or 0 with probability p orq(= 1 — p). The joint
distribution of the x'a in a particular individual given their sum, G{, is

l ̂ jxijl = «"<) ~ ^ I \Q ) '

This is the distribution of Oi balls in 2n boxes; the balls are placed at random in boxes,
subject to not more than one ball per box.

The genetic effect at the jth locus in the ith individual is g^ = x^ t + xi:j 2. Consider the
distribution of g^ given the genotypic value in a related individual, Ov This distribution
only depends on Gx through the information contained in Gx about jfy.lt can be seen from
the ' balls-in-boxes' model that this distribution is as follows:

Value of g2f Probability of this value given Ox

Hence

where /i = 2np is the genotypic mean and R = \PX + P2 is the coefficient of relationship
between the individuals.

To evaluate the covariance of g^ and g2k given Gx we first define the quantity
ns(s = 0,1,2) as the probability that if one gene is chosen at random at each of the two loci
in the first individual, then the other individual will possess s genes identical to one or
other of them. wgwill depend on the recombination fraction (r) between the two loci, but it
should be noted that n^ + 2TT2 = P1 + 2P2 (= 2B) from the additive property of Expected
values. For example, for two full sibs n0 = n2 = §• — |r(l — r), nx — J+r(l — r); and for
grandparent-grandchild n0 = £+-|(l —r), itx = l(l+r),n2 = -|(1 — r).

The conditional covariance between gti and gik can be found from the following facts:

= 4cov (xm,xikl\G1),

cov(a;23.1,a;m|(?1) = E^.x^GJ -E^x^

E(x2jl. XunlGJ = prob [x2jX = x2kl = 1 |Gy,

Hence
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Finally the conditional variance of O2 given Gx can be found from the summation shown
in equation (1). Thus

var(G2|(?1) = 2npq-(G1-/i)(p-q)B+ (<?1~/t)2 [n(na-R

n

where n2 is the average value of na over all pairs of loci. Treating ^ - / t a s a quantity of
order ni and writing o% = 2npq, we find that
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