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Tubular neighbourhoods for submersions

of topological manifolds
David B. Gauid

Let ¢ : M+ ¥ be a submersion from a metrizable manifold to

any (topologicel) manifold, let B C M be compact, y € N and
cc (p-l(y) be a compact neighbourhood (in (p-l(y)) of

B nel(y) . It is proven that there is a neighbourhood U of
y in N and an embedding € : U X C > M such that ¢e is

projection on the first factor, €(y, ) = x for each =z € C ,

and B n zp_l(U) c e{U x C) . The main application given is to
topological foliations, it being shown that if C 1is a compact
regular leaf of a foliation F on M then every neighbourhood
of C contains a saturated neighbourhood which is the union of

compact regular leaves of F .

1. Introduction

Throughout this paper, by an n-manifold or just manifold we will mean

a topological space in which each point has a neighbourhood homeomorphic to
euclidean space er . In particular, manifolds are not assumed to be

Hausdorff. By a submersion is meant a map ¢ : Mw -+ IVn between manifolds,
satisfying the following condition: for each a € M , there are embeddings

f: A"+ M and g : R* + ¥ such that f[R’n] is a neighbourhood of =z in
M and g—l(pf =9 - » Wvhere g is projection onto the first n

co-ordinates. For each y € ¢(M) , the set cp-l(y) , which is an
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{m-n)-submanifold of M , is called the fibre over y .

Our main result is the following, the differential analogue of which
has been obtained by Short and Smith [4, Lemmas 3 and L4].

THEOREM 1 (Tubular Neighbourhood Theorem). Let ¢ : M" + N be a
submersion where M i8 metrizable, let y € N , let Bc M be compact and

let Ccoy) bea compact neighbourhood (in ¢ 1(y) ) of B n ¢ l(y) .
Then there is a neighbourhood O of y in N and an embedding
€ : 0%XC+M such that:

(1) ¢€ <8 projection on the first factor;

(ii) ely, z) = x for each = €C ;

(iii) B n ¢ 1(0) c e(0 x C) .

The following definition appears in [5]. A topological space is
strongly p-connected if every compact subset is contained in a compact

p-cormected subset.

COROLLARY 2. Every surjective submersion with strongly p-connected

fibres i8 p-connected.

Corollary 2, which is the topological analogue of Theorem 1 of Smith
[5], is proven in the same way as the proof of Smith's Theorem 1, but with
the topological Tubular Neighbourhood Theorem used in place of the
differential Tubular Neighbourhood Theorem of Short and Smith.

The second application of the Tubular Neighbourhood Theorem is to

(topological) foliations. Let M' be a metrizable manifold. By &

foliation F of dimension p on M is meant a collection {Ua.’ (pa}aeA
where {Ua} is an open cover of M and Py ¢ Ua + AP ig a submersion
satisfying the condition: for each =z« € Ua n UB ,

-1 R §

0y (0g(2)) n Uy = 0 (0g(2)) n v, .

For further definitions and elementary properties involving foliations, see
[2]. 1f x €M, let L(x) denote the leaf of F containing x . A lesf
L(z) is regular if Vy € L(z) , 3(U,, ¢,) € F and embeddings
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f:R’n-'Ua, g : TP 5> F"P gsych that f(0) =y , g-lq)‘rf‘=ga and

vz € F(AT) , L(2) n FE") = o te (2) n FET) .

L(x) is a p-submanifold of M . Let M/F={L(x) | z €M} . In 83 we
will show that the quotient topology makes M/F into an (m-p)-manifold

and the projection L Dbecomes a submersion. A subset of M is saturated

if it is a union of leaves of F , that is, if it is of the form L-l(T)

for some T < M/F .

THEOREM 3 (cf. Palais [3, Theorem VI, page 151). Let F be a
foliation on a metrizable manifold M . If C is a compact regular leaf
of F and U 1is any neighbourhood of C then there is a saturated
netghbourhood V of C contained in U such that V is a union of

ecompact regular leaves.

The following corollary follows from Theorem 3 just as does the
differential analogue in Palais.

COROLLARY 4. Let F be a foliation on a metrizable manifold M .
If each leaf of F is compact and regular then M/F is Hausdorff.

2. Proof of the Tubular Neighbourhood Theorem

LEMMA 5. Let ¢ : M > 5 bea submerasion, C C M be compact and

y €N . Then we can find embeddings fi:Rm-'M (=1, ..., 1) and

g : R' + N such that:

(2) g{0) =y ;
_l Z
(ii) cne (e U £ (&) ;
1=1
(121) for each i , we have g-l(pfi =g A+ g,

Proof. Since every manifold is Fréchet, cp-l(y) is closed in M ,
so Cn (p_l(y) is compact. Thus we can find a finité set of embeddings

fi : A"+ M and g; * Y] , where 7 =1, ..., I such that conditions
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(Z), (i1) and (ZiZ) of the statement hold but with g replaced by g; -

One can then proceed as in the proof of Lemma 1 in [2] to alter the
embeddings f2, ceuy fZ to satisfy the requirements of Lemma 5 with

g = gl * u
We can now prove Theorem 1. Let ¢, y, B and C be as in the

statement of Theorem 1. Let the embeddings fi A (=1, ..., 1)

and g : KF' > N be as in Lemma 5. The neighbourhood O will be chosen so
as to lie inside g(}?n) , so ve may actually assume that N = R and
g=1 sothat y=0. Let U, = ft[ﬁm) - We may assume that Cl U. is
compact. Refine the cover {Uz} to an open cover {Vi rr =1, o.., Z}
of ¢ so that C1 Vi c Ui . We will inductively construct open

7 i

U Cl1 V., so that Wi c U U. , neighbourhoods
j=l J':l d

neighbourhoods Wi of
Oi of 0 in A’ and embeddings € ¢ 01: x C'i + M , where
C. = (p—l(o) n W. , so that
7 i’

(i) oe; is projection on the first factor and

(ii) ei(o, x) = x for each x € Ci .

Start of the induction. Let Wl =U > 0l = F' and define
€ : 0, XxC, M by e (t,z) =71 |t+f (z)| for t € F* and z €C
1799 1'% 1177 1

The expression ¢t + le(a:) denotes the sum of the vectors t € R* c A"

and f_l(:c) € i . Since the first n co-ordinates of f;l(:c) are all
zero and cpfl = §, we see that (pel is the projection on the first
factor.

Continuation of the induction. Suppose Wi’ Oi and ) have been

constructed. Choose open subsets X, Y, S erd T of M so that

https://doi.org/10.1017/5S0004972700045494 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700045494

Tubular neighbourhoods 97

Ci V, 1 cXcClXc¥YcClYc Ui+1

i+
and
i
UClV,cScCl1ScTcClTCW, .
. J 7
J=1
Define Wi+l =SuX. Then Wi+1 is an open neighbourhood of
i+l i+l
U C1 V. and W€+l c U v, .
J=1 J=1

Let 2' = Fr W, nClYn(p-l(O) , and 2" =FrTnc1an>'l(o) .

where Fr denotes the frontier of a set. Let Z=2'u 2" .

The idea involved in constructing €, is as follows: let €,
1+l 1+l

agree with Ei over T , comstruct €i+l from f%+1 as in starting the

induction outside of Wi and then use the isotopy extension theorem of
Edwards and Kirby [1] to fill in the region between- 2' and 2" .

For ¢t € ol sufficiently close to 0O we can define an embedding

7+ ¢ 1(0) vy

2 if z €2',

ht(z) = N
Py n

i+1{fi+lei(t’ z)-t] if =z €2" .

For ¢t sufficiently close to O , ht is & proper isotopy having a proper

extension to a neighbourhood of Z . Since 2 is compact and ¢_1(0) is

a metrizable manifold, by Corollary 1.2 of [!], there is an isotopy

1
(

H, : ¢°1(0) > ¢"1(0) such that #

t 0
0 . Actually Corollary 1.2 of [1] concerns isotopies parametrized by I ,

=1 and ht=Ht|Z for all t near

but one can easily generalise it to the case of isotopies parametrized by a

neighbourhood of 0 in g

Letting 0i+1 be a suitable neighbourhood of 0 in Rn , we can

define the embedding €41 ° 0, + M by

xC.
1 1+l CL+1
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fei(t, x) if z€ec1rT,

t+f'lH(x)] it z€CLW nCLX-T,

417 ¢

iyt @) = 'fi+1[

-1
Lfiﬂ[ﬂfiﬂ(x)] if T €CLX~W, .
This completes the induction.

By restriction of the embedding €, » We now have a neighbourhood 0Z
of 0 in F' and an embedding €' : 0Z X C + M such that

(i) ¢€' is projection on the first factor;
(ii) €'(0, ) =x for each « €C .

To ensure that condition (Z{Z) in the statement of Theorem 1 is also

satisfied, it may be necessary, as in Lemma 4 of [4], to take a
neighbourhood 0 of O in Rn vhich is smaller than the neighbourhood

0, and then let e=c'|0oxC. 0

3. Foliations

The following notation is fixed in this section. M" is a metrizable
menifold, F = {Ua’ wa}ueA is a foliation of dimension p on M ,

N=M/F,and L: M~>N is the projection.

THEOREM 6. If all leaves of F are regular, then N is a manifold

of dimension m - p and L 1is a submersion.

Proof. Let x € M. We must find an embedding % : AP ¥ so that

h(}'{"-p) is a neighbourhood of L(x) . Use regularity to find U, wvith
x €Ua and embeddings f : I-'(’m->Uu and g : A"P » F™P such that

o) =z, glof=@: & +HP , ana

vy € FEN , Liy) n FE = ‘D;l(Pa(y) n FIEY .
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Define h : K" P > N by h(t) =Lf(t) for t e " P c A" .

(1) L(z) € n(F"P) since A(0) = Lf(0) = L(x) .

(ii) h 1is continuous, being a composition of continuous functions.

(iii) h is injective, for if &, t € &' P and h(s) = h(t) then

Lf(s) = Lf(t) , so that g'lcpaf(e) = g-l(paf(t) . But

g—lwuf‘= ®: A"+F"P ,s0 & and t must agree on the first
(m—p) co-ordinates, that is, & = ¢ .

(iv) & is an embedding. Although this is not necessarily the case,

one can arrange for it by restricting % to a subset of

AP ir necessary and then appealing to (ii) and (iii).

(v) h(ﬁ'm-p) is open in N . To prove this, it suffices to show

that L-lh (Hm-p) is open in M , which we now proceed to do.

Suppose y € L-lh(lim_p) . Then for some t € R" P , we have
L{y) = h(t) . Let w= f(¢£, 0) . Then L(y) = L(w) . Now L(w) is a
connected, and hence path-connected, manifold. Let 7 : I + L(w) be a
path with 7(0) =w and 7(l) =y .

Let {0 =8y <8 <...0< 8, = 1} be a partition of I , and for each
i=1,...,n,lt (U,0;) €F andlet f, : K > U, and
g;° F"P? + F"P ve embeddings so that Uy U, s £;00)=m(s,)
g;l(pifi =p: B +F"P, ana 17[81:_1, si] c fi(}i’m) .

We may assume that for each % and each 3z € fi+l (") , the set

L(z) n fi*l (Rm] is non-empty. Indeed, proceed by induction on <% .

Given 1 , let

V= {(q, r) €ATP x| 3 ¢ P with frerlas v') € fi(#”)} .

V is open in H" since f.(A") is openin M. If 3z € f.,.{(V) , then
7 i+l
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L{z) n fi[}i’") # @ , since it z= f. .{(q, r) ana r' € R  is such that

1+l

f.

1’+l(q, r') € fi(ﬂm) , then L(z) = L(fi+l(q’ r')} . Further,

fi+l(v) nL{w) = f1:+1(Rm) n L(w) , so by restricting fi+l to some subset
of V homeomorphic to & , we can ensure that the condition
2 € f,, (@) =10) € £, (") # 9

is satisfied. Precisely, there is some positive real number p such that
P . [}
me- xPcv. Replace fi+l and 9741 by the embeddings fi+1 and

' :
gi 1 given by

!

1

+l(q, r) = fi"’l[p—-%q—l" 1’] for all (q, r) € AP x P

- -p
g7E+l(q) - gi+1[?—%qT] for all q €X' .

With this replacement, the induction is allowed to proceed.
Now notice that f (Hm) is a neighbourhood of (1) = y . Moreover,
fn[Rm) CL-lh[R’"—p] , for if =z € fn(Rm) then IL(z) n fn_l(ﬂm) #9 , so0

3 €f, 1 (") with L(z) = L{

zn—l) . Continuing thus, we obtain a

n-1

s Bpqe cees B > With z; Efi(ﬁm] and L(ziﬂ] = L(zi] .

sequence 3 = 3

In particulsr, 2z, €f] (#") cuy , so that L(z) ¢ R(EP) | and
L(z) = L(zl) . Thus L(z) €h(1¥"-p) , that is, =z EL_lhtl?(n-p) .

This proves that h(ﬁm-p) is open and hence completes the proof that
N is an (m-p)-manifold.

With the charts f and h as above, it is clear that

h-lLf : " +HF"P is projection on the first (m-p) co-ordinates, so that

L 1is a submersion. 0
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PROPOSITION 7. Let PP be a non-empty compact manifold and let &
be a connected Hausdorff manifold. Then any embedding e : P+ Q is a
homeomorphism.

Proof. We must show that e 1is surjective. Since @ 1is Hausdorff,
the compact set e(P) is closed in @ . On the other hand, e(P) is also

open in @ , for if x € P then we can find a neighbourhood U of 2
which is homeomorphic to B . Then e(U) is a subset of the manifold @

end e(U) is homeomorphic to A . Thus by invariance of domain, e(U)
is a neighbourhood of e(x) , so e(P) is open in @ . Since @ is
connected, the open and closed subset e(P) must be the whole of @ , that

is, e 1is a homeomorphism. (w}

LEMMA 8. Let C be a compact space, let X be any space, let
x € X and let U be an open subset of X x C containing {x} x C . Then
we can find a neighbourhood 0 of =z in X 8o that 0 xCcU.

The proof of this lemma is straightforward and hence omitted. 0

We can now prove Theorem 3. As in the proof of Theorem 1 we can find
a neighbourhood X of L(C) in N and an embedding € : X x C + M so
that Le 1is projection on the first factor and Vx € C , we have
e(L(c), z) = x .
1
(

€(X xC) = L™"(X) . Indeed, since L€ is projection on the first

factor, we have e(X x ¢) < L™ Y(x) . Conversely, if z € L-l(X) , then
e|{L(x)} x ¢ gives us an embedding of the compact manifold C in the
connected Hausdorff manifold ZL(x) . Thus by Proposition 7,

z € e({L(x)} x C) , and hence (X x () = L_l(X) .

Now applying Lemma 8, we can find & neighbourhood O of L(C) in X
so that

rYNo)=c0oxc)cu.

Setting V = L_l(O) , we obtain a saturated neighbourhood of the desired
type. a
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