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Abstract
This paper studies the problem of delay-dependent robust H∞ control for singular
systems with multiple delays. Based on a Lyapunov–Krasovskii functional approach, an
improved delay-dependent bounded real lemma (BRL) for singular time-delay systems
is established without using any of the model transformations and bounding techniques
on the cross product terms. Then, by applying the obtained BRL, a delay-dependent
condition for the existence of a robust state feedback controller, which guarantees that
the closed-loop system is regular, impulse free, robustly stable and satisfies a prescribed
H∞ performance index, is proposed in terms of a nonlinear matrix inequality. The
explicit expression for the H∞ controller is designed by using linear matrix inequalities
and the cone complementarity iterative linearization algorithm. Numerical examples are
also given to illustrate the effectiveness of the proposed method.
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1. Introduction

The study of delay systems has received a lot of attention in recent years since time
delays are often encountered in various engineering systems and are frequently the
source of instability and poor performance. Many results on stability analysis and
control of linear and nonlinear time-delay systems have been reported in the literature;
see, for example, [1, 5, 7, 10, 11, 16, 17], and references therein. Singular time-
delay systems, which are also referred to as implicit time-delay systems, descriptor
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time-delay systems or generalized differential-difference equations, often appear in
engineering systems, including aircraft attitude control, flexible arm control of robots,
large-scale electric network control, large-scale chemical engineering systems and
lossless transmission lines. Since singular time-delay systems are matrix delay
differential equations coupled with matrix difference equations, the study of such
systems is much more complicated than that for standard state-space time-delay
systems or singular systems. For results on stability of singular time-delay systems,
readers are referred to [3, 4, 12, 18, 24, 26, 27, 29].

On the other hand, the problem of H∞ control has been the subject of extensive
research during the past few decades. The main objective of H∞ control is to
design a controller to stabilize the system, and to guarantee that the L2-induced
norm from the disturbance input to the controlled output of the closed loop satisfies
a prescribed H∞ performance level. Recently, H∞ control for singular time-delay
systems has attracted increasing attention in the research community. The existing
results can be classified into two types: delay-independent ones [8, 9, 19, 23] and
delay-dependent ones [6, 22, 25, 28]. Generally speaking, delay-dependent conditions
are less conservative than the delay-independent ones, especially when the delay is
small. Moreover, in engineering practice, information on the delay range is generally
available. So recent effort has focused more on delay-dependent control.

It is now known that the conservativeness of the existing delay-dependent
conditions stems from two causes: one is the model transformation used and the
other is the inequality bounding technique employed for some cross product terms. In
view of this, an equivalent model transformation, the descriptor system transformation
method, was adopted in [6, 25], and another bounded real lemma (BRL) was obtained
in [28] without resorting to any model transformations. However, conservativeness
still remains as a result of the inequality bounding technique employed in [13, 14].
In the derivation of the BRL in [22], neither bounding techniques nor model
transformations were involved, while only a single delay was considered. This
motivates us to study further towards less conservative results on robust H∞ control
for singular systems with multiple delays.

In this paper, we shall consider the robust H∞ control problem for singular systems
with multiple delays. For simplicity, we discuss only the case of two delays, which
are constant but unknown. First, we will establish, based on the Lyapunov–Krasovskii
functional approach, a new delay-dependent BRL in terms of linear matrix inequalities
(LMIs). It is noted that this BRL is obtained without using any model transformations
and bounding techniques, and can be theoretically proved to be less conservative than
that in [28]. Then we propose, by applying the obtained BRL, a delay-dependent
condition for the existence of a robust state feedback controller, which guarantees
that the closed-loop system is regular, impulse free, robustly stable and satisfies a
prescribed H∞ performance index, in terms of a nonlinear matrix inequality. It
is shown that the design for the robust H∞ controller can be converted to a cone
complementarity problem subject to LMIs and consequently can be solved by using
an iterative linearization algorithm.
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2. Problem statement and preliminaries

Let us begin by introducing some notation for later use. We denote by R the set
of real numbers, Rn the n-dimensional Euclidean space over the reals, and Rn×m

the set of all n × m real matrices. For a real symmetric matrix X , the notation
X ≥ 0 (X > 0) means that the matrix X is positive semidefinite (positive definite).
Cn,τ := C([−τ, 0], Rn) denotes the Banach space of continuous vector functions
mapping the interval [−τ, 0] into Rn; xt := x(t + θ), θ ∈ [−τ, 0], t ≥ 0 denotes the
function family defined on [−τ, 0] which is generated by the n-dimensional real
vector-valued continuous function x(t), t ∈ [−τ,+∞). Obviously, xt ∈ Cn,τ . The
following norms will be used: ‖ · ‖ refers to the Euclidean vector norm or spectral
matrix norm; ‖φ‖c := sup−τ≤t≤0 ‖φ(t)‖ stands for the norm of a function φ ∈ Cn,τ .
The superscript T represents the transpose. The symbol ∗ will be used in some matrix
expressions to induce a symmetric structure, for example,[

X Y
∗ Z

]
=

[
X Y

Y T Z

]
.

Consider the following uncertain singular system with two delays:
Eẋ(t)=

2∑
i=0

Ai1x(t − τi )+ B11u(t)+ B21w(t),

z(t)= G1x(t)+ D1u(t),

x(t)= φ(t) t ∈ [−τ, 0],

(2.1)

where x(t) ∈ Rn is the state, u(t) ∈ Rq is the control input, w(t) ∈ Rr is the
disturbance input and w(t) ∈ L2[0,∞), z(t) ∈ Rs is the controlled output to be
attenuated. τ0 = 0 and τi > 0, i = 1, 2, are unknown constant delays and satisfy
τ =max{τ1, τ2} ≤ τm . We take for simplicity two delays, but all the results are
easily generalized to the case of any finite number of delays τ1, . . . , τl . φ(t) ∈ Cn,τ
is a compatible vector-valued initial function. The matrix E ∈ Rn×n is singular
and we assume that 0< rank E = p < n. The system matrices with norm-bounded
uncertainties are assumed to be of the following forms:

[
A01 A11 A21 B11 B21
G1 ? ? D1 ?

]
=

[
A0 A1 A2 B1 B2
G ? ? D ?

]
+

[
M1
M2

]
F
[
N0 N1 N2 N3 N4

]
FTF ≤ I, F ∈ Ri× j

where Ai (i = 0, 1, 2), Bi (i = 1, 2), G, D, Mi (i = 1, 2), Ni (i = 0, 1, 2, 3, 4) are
known real constant matrices with appropriate dimensions, F is an uncertain real
constant matrix and ? are matrices which are not specified.
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REMARK 1. Based on consideration of the robust H∞ controller design for (2.1), to
ensure the zero initial function φ(t)≡ 0, t ∈ [−τ, 0] is a compatible initial function,
we limit the initial value of w(t) as w(0)= 0. Generally speaking, the instantaneous
value of disturbance will not influence the system, so the above-mentioned limit
remains general.

Without loss of generality, we assume that

E =

[
Ip 0
0 0

]
(2.2)

and denote

x(t)=

[
x1(t)
x2(t)

]
, Ai =

[
Ai1 Ai2
Ai3 Ai4

]
(2.3)

with xi (t) ∈ R p, Ai1 ∈ R p×p, i = 0, 1, 2.
The purpose of this paper is to design a state feedback controller

u(t)= K x(t) (2.4)

such that for any constant time delay τi : 0< τi ≤ τm : i = 1, 2,

(i) the closed-loop system constructed by (2.1) and (2.4),
Eẋ(t)= A01x(t)+

2∑
i=1

Ai1x(t − τi )+ B21w(t),

z(t)= Gk1x(t),

x(t)= φ(t) t ∈ [−τ, 0],

(2.5)

with

Ak1 = Ak + M1 F Nk, Gk1 = Gk + M2 F Nk,

Ak = A0 + B1K , Nk = N0 + N3K , Gk = G + DK ,

is regular, impulse free and robustly internally stable (that is, the closed-loop
system is robustly stable when w(t)≡ 0);

(ii) the H∞ performance index

J (w)=
∫
∞

0

(
zT (t)z(t)− γ 2wT (t)w(t)

)
dt ≤ 0 (2.6)

of the closed-loop system (2.5) is guaranteed for all nonzero disturbance
w(t) ∈ L2[0,∞) and a prescribed γ > 0 under zero initial condition.

In this case, System (2.1) is said to be robustly stabilizable with H∞ performance γ
and (2.4) is said to be a robust H∞ controller for (2.1).
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REMARK 2. Concerning the definition that the singular time-delay system is regular,
impulse free and asymptotically stable, see [4, 18, 27, 29]. It is well known that if A04
in (2.3) is nonsingular, then System (2.1) is regular and impulse free.

Define the difference operator D :

D(x2t )= x2(t)+
2∑

i=1

A−1
04 Ai4x2(t − τi ). (2.7)

To get the main results of this paper, the following preliminary lemmas are needed.

LEMMA 2.1 ([4]). If there exist matrices P3, Q13 > 0, Q23 > 0 with appropriate
dimensions that satisfyP3 A04 + AT

04 PT
3 +

∑2
i=1 Qi3 P3 A14 P3 A24

∗ −Q13 0
∗ ∗ −Q23

< 0, (2.8)

then A04 is nonsingular and the difference operator D is stable for all τi > 0, i = 1, 2
(that is, the equation D(x2t )= 0 is asymptotically stable).

LEMMA 2.2 ([4]). Consider the unforced singular time-delay system

Eẋ(t)=
2∑

i=0

Ai x(t − τi ) (2.9)

with E, Ai , i = 0, 1, 2, given in (2.2) and (2.3). If the operator D is stable and there
exist positive numbers α, β, γ and a continuous functional V : Cn,τ → R such that

β‖x1(t)‖
2
≤ V (xt )≤ γ ‖xt‖

2
c, V̇ (xt )≤−α‖x(t)‖

2,

and the function V (t)= V (xt ) is absolutely continuous for xt satisfying (2.9),
then (2.9) is asymptotically stable.

LEMMA 2.3. Given matrices A11 < 0, A12, A13, A22 < 0 and A33 < 0 with appro-
priate dimensions, then A11 A12 A13

∗ A22 0
∗ ∗ A33

< 0

if and only if there exists a matrix N11 > 0 such that[
A11 + N11 A12
∗ A22

]
< 0 and

[
−N11 A13
∗ A33

]
< 0.

PROOF. See Appendix A. 2
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3. Delay-dependent bounded real lemma

First of all, consider the unforced nominal system of (2.1):
Eẋ(t)=

2∑
i=0

Ai x(t − τi )+ B2w(t),

z(t)= Gx(t),

x(t)= φ(t) t ∈ [−τ, 0].

(3.1)

In the following theorem, based on the Lyapunov–Krasovskii functional approach, we
present a new delay-dependent bounded real lemma for (3.1), which will play a key
role in solving the aforementioned robust H∞ control problem.

THEOREM 3.1. Suppose, for some prescribed γ > 0, that there exist matrices

P =

[
P1 P2
0 P3

]
, P1 > 0, Qi =

[
Qi1 Qi2
∗ Qi3

]
> 0, Zi =

[
Zi1 Zi2
∗ Zi3

]
> 0,

(3.2)

Yi =
[
Yi1 0

]
, Wi =

[
Wi1 0

]
, Hi =

[
Hi1 0

]
, i = 1, 2, (3.3)

with appropriate dimensions and P1 ∈ R p×p, Qi1 ∈ R p×p, Zi1 ∈ R p×p, Yi1 ∈ Rn×p,
Wi1 ∈ Rn×p, Hi1 ∈ Rr×p, i = 1, 2, satisfying the following LMI:

211 + GT G 212 213 214 −τmY11 −τmY21 τm AT
0 Z1 τm AT

0 Z2

∗ 222 0 −H T
1 −τm W11 0 τm AT

1 Z1 τm AT
1 Z2

∗ ∗ 233 −H T
2 0 −τm W21 τm AT

2 Z1 τm AT
2 Z2

∗ ∗ ∗ −γ 2 I −τm H11 −τm H21 τm BT
2 Z1 τm BT

2 Z2

∗ ∗ ∗ ∗ −τm Z11 0 0 0

∗ ∗ ∗ ∗ ∗ −τm Z21 0 0

∗ ∗ ∗ ∗ ∗ ∗ −τm Z1 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −τm Z2


< 0,

(3.4)

where

211 = P A0 + AT
0 PT

+

2∑
i=1

(
Yi + Y T

i + Qi
)
, 212 = P A1 − Y1 +W T

1 ,

213 = P A2 − Y2 +W T
2 , 214 = P B2 +

2∑
i=1

H T
i ,

222 =−W1 −W T
1 − Q1, 233 =−W2 −W T

2 − Q2.
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Then the System (3.1) is regular, impulse free, internally stable and satisfies (2.6) for
all nonzero w(t) ∈ L2[0,∞) and time delay τi satisfying 0< τi ≤ τm , i = 1, 2.

PROOF. Substituting (2.2), (2.3), (3.2) and (3.3) into (3.4) gives (2.8), which, by
Lemma 2.1, implies that A04 is nonsingular. Therefore, System (3.1) is regular and
impulse free. In addition, we also conclude that the operator D in (2.7) is stable.

Construct the Lyapunov–Krasovskii functional for (3.1) as:

V (xt ) = xT (t)P Ex(t)

+

2∑
i=1

(∫ t

t−τi

xT (s)Qi x(s) ds +
∫ 0

−τi

∫ t

t+β
ẋT

1 (α)Zi1 ẋ1(α) dα dβ

)
.

Differentiating V (xt ) along with the solution of (3.1) yields:

V̇ (xt )|(3.1) + zT (t)z(t)− γ 2wT (t)w(t)

= 2xT (t)P

[
ẋ1(t)

0

]
+

2∑
i=1

(
xT (t)Qi x(t)− xT (t − τi )Qi x(t − τi )

+ τi ẋ
T (t)ET Zi Eẋ(t)−

∫ t

t−τi

ẋT
1 (α)Zi1 ẋ1(α) dα

)
+ xT (t)GT Gx(t)− γ 2wT (t)w(t). (3.5)

By the Newton–Leibniz formula x1(t)− x1(t − τi )=
∫ t

t−τi
ẋ1(α) dα, i = 1, 2,

2xT (t)P

[
ẋ1(t)

0

]
= 2xT (t)P

[
2∑

i=0

([
Ai1
Ai3

]
x1(t)+

[
Ai2
Ai4

]
x2(t − τi )

)

−

2∑
i=1

[
Ai1
Ai3

] ∫ t

t−τi

ẋ1(α) dα + B2w(t)

]

= 2xT (t)P

[
2∑

i=0

([
Ai1
Ai3

]
x1(t)+

[
Ai2
Ai4

]
x2(t − τi )

)
+ B2w(t)

]

+

2∑
i=1

[
2xT (t)

(
Yi1 − P

[
Ai1
Ai3

]) ∫ t

t−τi

ẋ1(α) dα

+ 2xT (t − τi )Wi1

∫ t

t−τi

ẋ1(α) dα + 2wT (t)Hi1

∫ t

t−τi

ẋ1(α) dα

− 2
(
xT (t)Yi1 + xT (t − τi )Wi1 + w

T (t)Hi1
) ∫ t

t−τi

ẋ1(α) dα

]
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= 2xT (t)

(
P

[
A01
A03

]
x1(t)+ P

[
A02
A04

]
x2(t)+

2∑
i=1

Yi1x1(t)

)
+ 2xT (t)P B2w(t)

+

2∑
i=1

[
2xT (t)

(
P

[
Ai1
Ai3

]
x1(t − τi )+ P

[
Ai2
Ai4

]
x2(t − τi )− Yi1x1(t − τi )

)
+ 2xT (t − τi )Wi1x1(t)− 2xT (t − τi )Wi1x1(t − τi )+ 2wT (t)Hi1x1(t)

− 2wT (t)Hi1x1(t − τi )− 2
(
xT (t)Yi1 + xT (t − τi )Wi1 + w

T (t)Hi1
)

×

∫ t

t−τi

ẋ1(α) dα

]
= 2xT (t)

(
PA0 +

2∑
i=1

Yi

)
x(t)+ 2xT (t)PB2w(t)

+

2∑
i=1

[
2xT (t)

(
P Ai − Yi +W T

i

)
x(t − τi )− 2xT (t − τi )Wi x(t − τi )

+ 2xT (t)H T
i w(t)− 2xT (t − τi )H

T
i w(t)− 2xT (t)Yi1

∫ t

t−τi

ẋ1(α) dα

− 2xT (t − τi )Wi1

∫ t

t−τi

ẋ1(α) dα − 2wT (t)Hi1

∫ t

t−τi

ẋ1(α) dα

]
. (3.6)

Here and subsequently we define 8(C, M)= C MC T whenever the product exists.
More generally we shall also use 8(C, M, E)= C ME T . Combining (3.6) and (3.5),
we get

V̇ (xt )|(3.1) + zT (t)z(t)− γ 2wT (t)w(t)

=
1
τ1

∫ t

t−τ1

ηT (t, α)�1η(t, α) dα +
1
τ2

∫ t

t−τ2

ηT (t, α)�2η(t, α) dα, (3.7)

where

η(t, α) =
[
xT (t) xT (t − τ1) xT (t − τ2) wT (t) ẋT

1 (α)
]T
,

�1 =



211 + GT G + N11 212 + N12 213 + N13 214 + N14 −τ1Y11

∗ 222 + N22 N23 −H T
1 + N24 −τ1W11

∗ ∗ 233 + N33 −H T
2 + N34 0

∗ ∗ ∗ −γ 2 I + N44 −τ1 H11

∗ ∗ ∗ ∗ −τ1 Z11


+

2∑
i=1

8(C1, τi Zi ),
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and

C1 =



AT
0

AT
1

AT
2

BT
2

0

 , �2 =


−N11 −N12 −N13 −N14 −τ2Y21
∗ −N22 −N23 −N24 0
∗ ∗ −N33 −N34 −τ2W21
∗ ∗ ∗ −N44 −τ2 H21
∗ ∗ ∗ ∗ −τ2 Z21


with Ni i > 0, i = 1, 2, 3, 4.

If �1 < 0 and �2 < 0, which is equivalent, by using Lemma 2.3, to

211 + GT G 212 213 214 −τ1Y11 −τ2Y21

∗ 222 0 −H T
1 −τ1W11 0

∗ ∗ 233 −H T
2 0 −τ2W21

∗ ∗ ∗ −γ 2 I −τ1 H11 −τ2 H21

∗ ∗ ∗ ∗ −τ1 Z11 0

∗ ∗ ∗ ∗ ∗ −τ2 Z21


+

2∑
i=1

8(C2, τi Zi ),

C2 =
[
A0 A1 A2 B2 0 0

]T
, (3.8)

then integrating from 0 to∞ on both sides of (3.7) yields∫
∞

0
V̇ (xt )|(3.1) dt +

∫
∞

0

(
zT (t)z(t)− γ 2wT (t)w(t)

)
dt ≤ 0,

that is,
J (w)≤ V (xt )|t=0 − V (xt )|t=∞ .

Noticing that V (xt )|t=0 = 0 and V (xt )|t=∞ ≥ 0, we obtain J (w)≤ 0, for all w(t)
∈ L2[0,∞], w(t) 6= 0.

Now, applying the Schur complement equivalence to (3.4) leads to

2+8(C3, M1)+

2∑
i=1

8(C4, τm Zi ) < 0

with

2=


211 + GT G 212 213 214

∗ 222 0 −H T
1

∗ ∗ 233 −H T
2

∗ ∗ ∗ −γ 2 I

 , C3 =


−Y11 −Y21

−W11 0
0 −W21
−H11 −H21

 ,
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C4 =


AT

0

AT
1

AT
2

BT
2

 , M1 =

[
τm Z−1

11 0
0 τm Z−1

21

]
.

Therefore, for any τi satisfying 0< τi ≤ τm , i = 1, 2, we have

2+8(C3, M2)+

2∑
i=1

8(C4, τi Zi )≤2+8(C3, M1)+

2∑
i=1

8(C4, τm Zi ) < 0

where

M2 =

[
τ1 Z−1

11 0
0 τ2 Z−1

21

]
which, by Schur complement again, is equivalent to �1 < 0 and �2 < 0.

We now consider the internal stability of (3.1). In the case of w(t)≡ 0, we have

V̇ (xt )|(3.1) =
1
τ1

∫ t

t−τ1

ζ T (t, α)31ζ(t, α) dα +
1
τ2

∫ t

t−τ2

ζ T (t, α)32ζ(t, α) dα,

where

ζ(t, α)=
[
xT (t) xT (t − τ1) xT (t − τ2) ẋT

1 (α)
]T
,

31 =


211 + N11 212 + N12 213 + N13 −τ1Y11
∗ 222 + N22 N23 −τ1W11
∗ ∗ 233 + N33 0
∗ ∗ ∗ −τ1 Z11

+ 2∑
i=1

8(C5, τi Zi ),

C5 =


AT

0

AT
1

AT
2

0

 , 32 =


−N11 −N12 −N13 −τ2Y21
∗ −N22 −N23 0
∗ ∗ −N33 −τ2W21
∗ ∗ ∗ −τ2 Z21


with Ni i > 0, i = 1, 2, 3. By Lemma 2.2, the internal stability of (3.1) is achieved
from the stability of the operator D and31 < 0, 32 < 0, which is equivalent, by using
Lemma 2.3 again, to

211 212 213 −τ1Y11 −τ2Y21
∗ 222 0 −τ1W11 0
∗ ∗ 233 0 −τ2W21
∗ ∗ ∗ −τ1 Z11 0
∗ ∗ ∗ ∗ −τ2 Z21

+
2∑

i=1

8(C6, τi Zi ) < 0 (3.9)
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where C6 = [ A0 A1 A2 0 0 ]T . It is easy to see that (3.9) follows from (3.8)
immediately. This completes the proof. 2

In the case of single delay, System (3.1) becomes
Eẋ(t)= A0x(t)+ A1x(t − τ)+ B2w(t),

z(t)= Gx(t),

x(t)= φ(t) t ∈ [−τ, 0].

(3.10)

By Theorem 3.1, the delay-dependent BRL for (3.10) is obtained as follows.

COROLLARY 3.2. For some prescribed γ > 0, if there exist matrices

P =

[
P1 P2
0 P3

]
, P1 > 0, Q > 0, Z =

[
Z1 Z2
∗ Z3

]
> 0, Y =

[
Y1 0

]
,

W =
[
W1 0

]
, H =

[
H1 0

]
(3.11)

with P1 ∈ R p×p, Z1 ∈ R p×p, Y1 ∈ Rn×p, W1 ∈ Rn×p, H1 ∈ Rr×p, satisfying

F P A1 − Y +W T P B2 + H T
−τmY1 τm AT

0 Z

∗ −W −W T
− Q −H T

−τm W1 τm AT
1 Z

∗ ∗ −γ 2 I −τm H1 τm BT
2 Z

∗ ∗ ∗ −τm Z1 0

∗ ∗ ∗ ∗ −τm Z

< 0, (3.12)

where F = P A0 + AT
0 PT

+ Y + Y T
+ Q + GT G, then for any delay τ satisfying

0< τ ≤ τm , System (3.10) is regular, impulse free, internally stable, and satisfies (2.6)
for all nonzero w(t) ∈ L2[0,∞).

REMARK 3. From Corollary 3.2, it is easy to get the internal stability result for (3.10),
which was recently provided in [29, Theorem 1] and is omitted here. It is worth
noticing that only the stability problem was considered in [29], while in this paper,
H∞ performance index and controller design is discussed as well. Furthermore, only
the case of single delay was considered in [29]. From the proof of Theorem 3.1 in
this paper and that in [29], it can be seen that, to avoid using the bounding technique,
V̇ (xt ) is written in the integral form finally. However, it cannot be extended from the
case of single delay to that of multiple delays directly. As shown by (3.7) and (3.8)
in this paper, Lemma 2.3 is important in solving this problem successfully. So the
main contribution of this paper is the improved BRL and the design of the robust H∞
controller for singular systems with multiple delays. The stability result in [29] is only
a by-product of Theorem 3.1.

REMARK 4. Compared with existing results, it is worth noting that there are mainly
three advantages of our result. Firstly, the BRL in Theorem 3.1 (Corollary 3.2)
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is obtained without using any model transformations and bounding techniques on
the related cross product terms [6, 25, 28], which leads to some conservatism in
some sense. Secondly, the LMI (3.12) involves fewer variables. For example,
for System (3.10) with x(t) ∈ Rn, x1(t) ∈ R p, w(t) ∈ Rr , r ≤ n, the number of the
variables to be determined in (3.12) is no more than 2n2

+ 2np + p2/2+ n + p/2,
while the number of variables in [6] is 5n2

+ 5np + 11p2/2+ 2n + 3p/2 and in [25]
is 12n2

− 2np + p2
+ 4n + p. Thirdly, unlike in [6], no decomposition of the system

matrices is needed in this paper and thus the analysis procedure is relatively simple
and reliable. Furthermore, it is easy to see that, following the method usually used to
deal with the norm-bounded parametric uncertainties, Theorem 3.1 in our paper can
be extended to deal with the delay-dependent robust H∞ control problem for singular
time-delay systems with norm-bounded parametric uncertainties, while with the BRL
in [6] it is difficult to solve the aforementioned problem.

REMARK 5. In [22], another BRL was also obtained without resorting to any
bounding techniques and model transformations. It can be seen that the method of
introducing slack matrices in Theorem 3.1 is different from that in [22]. So in some
cases, the number of the variables in the LMI (3.12) is less than that in [22] (see
Example 1 below).

REMARK 6. When E = I , System (3.10) becomes a standard state-space system with
single delay. It is easy to see that Corollary 3.2, with H = 0 in (3.12), coincides
with [21, Theorem 1] with constant delay and without uncertainties. So Corollary 3.2
can be viewed as an extension of the BRL for a standard state-space time-delay system
to the case of a singular time-delay system.

For (3.10), the delay-dependent BRL in [28] is obtained as follows.

LEMMA 3.3 ([28]). For some prescribed γ > 0, if there exist matrices P, Q, Z and Y
of (3.11) and X ≥ 0 such that the LMIs

F + τm X PA1 − Y PB2 τm AT
0 Z

∗ −Q 0 τm AT
1 Z

∗ ∗ −γ 2 I τm BT
2 Z

∗ ∗ ∗ −τm Z

< 0, (3.13)

[
X Y1

∗ Z1

]
≥ 0 (3.14)

hold, then for any time delay τ satisfying 0< τ ≤ τm , System (3.10) is regular, impulse
free, internally stable, and satisfies (2.6) for all nonzero w(t) ∈ L2[0,∞).

In the following theorem, we are in a position to show the relationship between
Corollary 3.2 and Lemma 3.3.
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THEOREM 3.4. For given γ > 0, there exist matrices P, Q, Z, Y of (3.11) and
W = 0, H = 0 satisfying (3.12) if and only if there exist matrices P, Q, Z ,Y of (3.11)
and X ≥ 0 such that (3.13) and (3.14) hold.

REMARK 7. The proof of Theorem 3.4 is similar to [20, Theorem 2] and is omitted.
We can see from Theorem 3.4 that, since the number of the variables in Corollary 3.2
(W = 0, H = 0) is fewer than that in Lemma 3.3, redundant variables are introduced
when inequality (3.14) is employed to derive the upper bounds of some cross product
terms. When W and H are matrices to be determined, the BRL in Corollary 3.2 is
improved compared with Lemma 3.3, which implies that the introduction of W and H
reduces the conservatism of the BRL and W , H are not redundant matrices. The
detailed example in Section 5 will illustrate the above results as well.

4. State feedback robust H∞ control

In this section, based on Theorem 3.1, we are in a position to present the result on
delay-dependent robust H∞ control for System (2.1). The following lemma is needed.

LEMMA 4.1 ([15]). Given matrices �, 0 and 4 of appropriate dimensions with �
symmetrical, then�+ 0F4+ (0F4)T < 0 for all F satisfying F FT

≤ I , if and only
if there exists a scalar ε > 0 such that �+ ε00T

+ ε−14T4< 0.

THEOREM 4.2. Suppose, for some prescribed γ > 0, that there exist matrices P,
Qi , Zi , Yi , Wi , Hi , i = 1, 2, of (3.2) and (3.3), L and a scalar ε > 0 with P
nonsingular, such that

4 := [A B]< 0 holds where

A=



411 K1 K2 B2 +
2∑

i=1
H T

i −τmY11 −τmY21

∗ L1 0 −H T
1 −τm W11 0

∗ ∗ L2 −H T
2 0 −τm W21

∗ ∗ ∗ −γ 2 I −τm H11 −τm H21

∗ ∗ ∗ ∗ 455 0

∗ ∗ ∗ ∗ ∗ 466

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗



,
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B =



417 418 0 PGT
+ LT DT M M

τm P AT
1 τm P AT

1 0 0 P N T
1 0

τm P AT
2 τm P AT

2 0 0 P N T
2 0

τm BT
2 τm BT

2 0 0 N T
4 0

0 0 0 0 0 0

0 0 0 0 0 0

−τm Z1 0 ετm M1 0 0 0

∗ −τm Z2 ετm M1 0 0 0

∗ ∗ −ε I 0 0 0

∗ ∗ ∗ −I + εM2 MT
2 0 0

∗ ∗ ∗ ∗ −ε I 0

∗ ∗ ∗ ∗ ∗ −ε I



, (4.1)

for M= P N T
0 + LT N T

3 , Ki = Ai PT
− Yi +W T

i , Li =−Wi −W T
i − Qi , (i = 1, 2)

and

411 = A0 PT
+ P AT

0 + B1L + LT BT
1 +

2∑
i=1

(
Yi + Y T

i + Qi
)
+ εM1 MT

1 ,

417 =418 = τm
(
P AT

0 + LT BT
1

)
+ ετm M1 MT

1 ,

455 =−τm
[
P1 0

]
Z−1

1

[
P1 0

]T
, 466 =−τm

[
P1 0

]
Z−1

2

[
P1 0

]T
.

Then System (2.1) is robustly stabilizable with H∞ performance γ and the gain matrix
of the H∞ controller (2.4) is given by

K = L P−T . (4.2)

PROOF. Pre-multiplying by

ρ = diag
{

P−1, P−1, P−1, I, P−1
1 , P−1

1 , Z−1
1 , Z−1

2 , I, I, I, I
}

and post-multiplying by ρT on both sides of (4.1), and noticing that K = L P−T ,
Ak = A0 + B1K , Gk = G + DK , Nk = N0 + N3K , we get from the Schur
complement that there exist P̄ , Q̄i , Z̄i , Ȳi , W̄i , H̄i , i = 1, 2, and ε satisfying

ϒ + ε8(C7, I )+ ε−18(C8, I ) < 0, (4.3)
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where

ϒ =



ϒ11 ϒ12 ϒ13 ϒ14 −τm Ȳ11 −τm Ȳ21 τm AT
k Z̄1 τm AT

k Z̄2 GT
k

∗ ϒ22 0 −H̄ T
1 −τm W̄11 0 τm AT

1 Z̄1 τm AT
1 Z̄2 0

∗ ∗ ϒ33 −H̄ T
2 0 −τm W̄21 τm AT

2 Z̄1 τm AT
2 Z̄2 0

∗ ∗ ∗ −γ 2 I −τm H̄11 −τm H̄21 τm BT
2 Z̄1 τm BT

2 Z̄2 0

∗ ∗ ∗ ∗ −τm Z̄11 0 0 0 0

∗ ∗ ∗ ∗ ∗ −τm Z̄21 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −τm Z̄1 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −τm Z̄2 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I



,

C7 =



P̄ M1 0
0 0
0 0
0 0
0 0
0 0

τm Z̄1 M1 0
τm Z̄2 M1 0

0 M2


, C8 =



N T
k N T

k

N T
1 0

N T
2 0

N T
4 0

0 0

0 0

0 0

0 0

0 0



,

ϒ11 = P̄ Ak + AT
k P̄T

+

2∑
i=1

(
Ȳi + Ȳ T

i + Q̄i
)
, ϒ12 = P̄ A1 − Ȳ1 + W̄ T

1 ,

ϒ13 = P̄ A2 − Ȳ2 + W̄ T
2 , ϒ14 = P̄ B2 +

2∑
i=1

H̄ T
i , ϒ22 =−W̄1 − W̄ T

1 − Q̄1,

ϒ33 =−W̄2 − W̄ T
2 − Q̄2, P̄ = P−1

:=

[
P̄1 P̄2

0 P̄3

]
, P̄1 = P−1

1 > 0

and, for i = 1, 2,

Q̄i = P−1 Qi P−T > 0, Z̄i = Z−1
i :=

[
Z̄i1 Z̄i2

∗ Z̄i3

]
> 0,

Ȳi = P−1Yi P−T
= P̄

[
Yi1 0

] [ P̄1 0

P̄T
2 P̄T

3

]
=
[
P̄Yi1 P̄1 0

]
:=
[
Ȳi1 0

]
,
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W̄i = P−1Wi P−T
=
[
P̄Wi1 P̄1 0

]
:=
[
W̄i1 0

]
,

H̄i = Hi P−T
=
[
Hi1 0

] [ P̄1 0

P̄T
2 P̄T

3

]
=
[
Hi1 P̄1 0

]
:=
[
H̄i1 0

]
.

Note that Ak1 = Ak + M1 F Nk , Gk1 = Gk + M2 F Nk , and from Lemma 4.1
and (4.3), we have that the above P̄ , Q̄i , Z̄i , Ȳi , W̄i , H̄i , i = 1, 2, such that

ϒ̄ = ϒ +8(C7, M3, C8)+8(C7, M3, C8)
> < 0 with M3 =

[
F 0
0 F

]
holds for all uncertainties F satisfying FT F ≤ I , where ϒ̄ is the matrix obtained by
replacing Ak , A1, A2, B2 and Gk in ϒ by Ak1, A11, A21, B21 and Gk1, respectively.
By Theorem 3.1, one gets that the closed-loop system (2.5) is regular, impulse free,
robustly internally stable and satisfies (2.6) for all nonzero w(t) ∈ L2[0,∞) and τi
satisfying 0< τi ≤ τm , i = 1, 2. This completes the proof. 2

REMARK 8. It is clear that the nonlinear terms455 and466 in (4.1) lead to a nonlinear
matrix inequality. However, we can follow a similar line as in [28] to convert
solving (4.1) to solving a sequence of convex optimization problems subject to LMIs.

First, introducing new matrices

Ui =

[
Ui1 Ui2
∗ Ui3

]
> 0, V1 > 0, Ti1 > 0, Si1 > 0, (4.4)

with Ui ∈ Rn×n , Ui1 ∈ R p×p, V1 ∈ R p×p, Ti1 ∈ R p×p, Si1 ∈ R p×p, i = 1, 2, we can
see that if there are matrices P , Qi , Zi , Yi , Wi , Hi , i = 1, 2, of (3.2) and (3.3),
Ui , V1, Ti1, Si1, i = 1, 2, of (4.4), L and ε > 0 such that

4̄ < 0, (4.5)[
Ui1 V1
∗ Si1

]
≥ 0, i = 1, 2 (4.6)

and
Ui Zi = In, P1V1 = Ip, Ti1Si1 = Ip, i = 1, 2,

then (4.1) holds for the above P , Qi , Zi , Yi , Wi , Hi , i = 1, 2, L and ε, where 4̄ is
the matrix obtained by replacing 455 and 466 of 4 in (4.1) by −τm T11 and −τm T21,
respectively. Thus the H∞ control problem can be considered as a complementary
problem subject to LMIs:

minimize {tr(U1 Z1 +U2 Z2)+ tr(P1V1 + T11S11 + T21S21)}

subject to LMIs : (3.2), (3.3), (4.4)−(4.6) and, for i = 1, 2,[
Ui In
∗ Zi

]
≥ 0,

[
P1 Ip
∗ V1

]
≥ 0,

[
Ti1 Ip
∗ Si1

]
≥ 0.
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TABLE 1. Comparison of maximum τm allowed for Example 1.

γ 4 20 40

[6] 0.8563 1.0883 1.1208
Lemma 3.3 0.3721 0.5500 0.5641
[22] 0.9079 1.1151 1.1348
Corollary 3.2 0.9079 1.1151 1.1348

TABLE 2. Comparison of minimum γ allowed for Example 1.

τm 0.1 1 1.12

[6] 2.2451 8.1293 39.0732
Lemma 3.3 3.0276 – –
[22] 3.0045 5.2026 22.8635
Corollary 3.2 3.0045 5.2026 22.8635

The above nonconvex optimization problem can be solved by using the linearization
iterative algorithm proposed in [2, 13, 25, 28].

5. Numerical examples

EXAMPLE 1. Consider the unforced singular time-delay system in [6] of form (3.10)
and

A0 =

[
0.5 0
0 −1

]
, A1 =

[
−1 1

0 0.5

]
, B2 =

[
1

0.5

]
,

E =

[
1 0
0 0

]
, G =

[
0.5 1

]
.

When w(t)= 0, applying the stability conditions in [29] and [6], we can obtain that
the system is internally stable for τ ≤ 1.1547 in both cases. When w(t) 6= 0, the
comparison results on maximum τm allowed for different values of γ and minimum γ

allowed for different values of τm are listed in Tables 1 and 2. It can be seen that
the result in Theorem 3.1 is less conservative than those in [6] and Lemma 3.3. And
though the computational result by Corollary 3.2 is identical to that by [22], the LMI
in Corollary 3.2 involves fewer variables in this example since the number of variables
is 14 in Corollary 3.2 and 17 in [22], respectively.
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FIGURE 1. State response of x1 and x2 of the closed-loop system when w(t)= 0.

EXAMPLE 2. Consider the singular time-delay system in [6] of form (2.1) with single
delay and

A0 =

[
0 0
0 0

]
, A1 =

[
−1 0

1 −1

]
, B1 =

[
−0.5

1

]
,

B2 =

[
1
1

]
, D = 0.1, E =

[
1 0
0 0

]
, G =

[
1 0.2

]
.

When τm = 1.2, the authors of [6] obtained a near minimum value of γ = 21 and
the corresponding controller gain matrix was K = [175.62 − 430 680]. In [25], the
minimum γ allowed was 4 after 51 iterations and the corresponding controller gain
matrix was K = [1401 − 25 036]. And in [22], the minimum γ = 15.0268 was
calculated and K = [0.0651 − 1.3454] . However, by Theorem 4.2, for the same
τm = 1.2, the minimum γ allowed is 3.4349 after ten iterations, and in the case
of γ = 21 and γ = 4, the corresponding gain matrix is K = [272.225 − 809.4105]
and K = [238.6 − 3249.5], respectively. It was also shown that in [25], when
γ = 21, the maximum τm allowed was 1.8 after 22 iterations and the corresponding
gain matrix was K = [1097 − 13 461]. Now, for the same γ = 21, using
Theorem 4.2, the maximum τm allowed is 6.0168 after ten iterations. And when
τm = 1.8, γ = 21, the corresponding controller gain matrix computed by Theorem 4.2
is K = [−46.7047 − 994.0828].
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FIGURE 2. Response of zT (t)z(t)− γ 2wT (t)w(t) of the closed-loop system when w(t)= e−0.5t .

The simulation results of the state of the closed loop when w(t)= 0 are shown in
Figure 1, from which we can see that the closed loop is internally stable. And the
simulation results of zT (t)z(t)− γ 2wT (t)w(t) are given in Figure 2, which shows
that the designed H∞ controller satisfied the performance index (2.6). Here τm = 1.2,
γ = 21, φ(t)= [2.966 1]T , t ∈ [−1.2, 0] and K = [272.225 − 809.4105].

EXAMPLE 3. Consider the uncertain singular time-delay system of form (2.1) with

A0 =

[
0 0
0 0

]
, A1 =

[
−1 0

1 −1

]
, A2 =

[
−1 −0.5

0 −1

]
,

B1 =

[
−0.5

1

]
, B2 =

[
1
1

]
, D = 0.1, E =

[
1 0
0 0

]
,

G =
[
1 0.2

]
, M1 =

[
0.05 0

0 0.05

]
, M2 =

[
0.1 0.1

]
,

N0 = N1 = N2 =

[
1 0
0 1

]
, N3 =

[
0

0.1

]
, N4 =

[
0.1
0

]
.

When τm = 1, γ = 21, by Theorem 4.2, the corresponding controller gain matrix
computed is K = [−580.6 − 1166.6] after ten iterations.
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6. Conclusions

We have presented in this paper an improved delay-dependent BRL for singular
systems with multiple delays, which is established without using any of the model
transformations and bounding techniques on the cross product terms. Based on this
BRL, we have solved the robust H∞ control problem in terms of a nonlinear matrix
inequality. To get the H∞ controller, both a linear matrix inequalities technique and the
cone complementarity method have been employed. Three numerical examples have
been proposed to illustrate the effectiveness and less conservativeness of the proposed
method.

Appendix A. Proof of Lemma 2.3

We begin with a proof of sufficiency. Suppose that there exists a matrix N11 such
that [

A11 + N11 A12
∗ A22

]
< 0 and

[
−N11 A13
∗ A33

]
< 0. (A1)

According to the Schur complement, we can deduce that

A11 + N11 − A12 A−1
22 AT

12 < 0 and − N11 − A13 A−1
33 AT

13 < 0,

which implies that

A11 − A12 A−1
22 AT

12 − A13 A−1
33 AT

13 < 0. (A2)

By the Schur complement again, (A2) is equivalent toA11 A12 A13
∗ A22 0
∗ ∗ A33

< 0. (A3)

This completes the proof of sufficiency.
Turning to necessity, if (A3) holds, which is equivalent to (A2), then it is clear that

there exists a scalar ε > 0 which is sufficiently small, such that

A11 − A12 A−1
22 AT

12 − A13 A−1
33 AT

13 + ε I < 0.

Let N11 =−A13 A−1
33 AT

13 + ε I > 0. Then

A11 + N11 − A12 A−1
22 AT

12 = A11 − A12 A−1
22 AT

12 − A13 A−1
33 AT

13 + ε I < 0,

−N11 − A13 A−1
33 AT

13 = A13 A−1
33 AT

13 − ε I − A13 A−1
33 AT

13 =−ε I < 0,

which by the Schur complement, is equivalent to (A1). This completes the proof of
necessity.
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