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Abstract

We introduce complex differential geometry twisted by a real line bundle. This provides a new approach
to understand the various real objects that are associated with an anti-holomorphic involution. We also
generalize a result of Greenleaf about real analytic sheaves from dimension 2 to higher dimensions.

2000 Mathematics subject classification: primary 58A05,53C07, 14J60, 53C56.

1. Introduction

Recently there has been considerable interest in gauge theory over complex manifolds
with anti-holomorphic involutions. In physics, such complex manifolds are referred to
as orientifolds. Ooguri and Vafa [9] propose a duality on open strings from a physicists'
point of view, which suggests mathematical formulae counting holomorphic curves
on a disc with boundary conditions in a Lagrangian submanifold of a Calabi-Yau
threefold. When the Lagrangian submanifold is the real part of an anti-holomorphic
involution, Katz and Liu [5] observe that these holomorphic curves on the disc can
be identified with real holomorphic curves on the double CP1 of the disc. As a
consequence, they are able to verify partially the mathematical formulae of [9]; see
also Li and Song [6]. However when the real part of the anti-holomorphic involution is
empty, the method of Katz and Liu does not work. Indeed, here one encounters closed
strings rather than open ones, and Sinha and Vafa [10] propose a different duality that
would suggest formulae for RP2-amplitudes.

In the case of complex surfaces with anti-holomorphic involutions, Welschinger
[14] has given a definition and computation that enumerates real rational (holomorphic)
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274 Shuguang Wang [2]

curves in rational surfaces. For arbitrary complex surfaces with anti-holomorphic
involutions, Tian and Wang [11] consider corresponding real Seiberg-Witten theory.

All the mathematical works cited above are for anti-holomorphic involutions that
have non-empty real parts. The case of empty real parts requires different approaches
which are yet to appear. In a simpler instance, the difference between the cases of
empty and non-empty real parts is illustrated by the vanishing theorem of [12]. When
the real part is non-empty, the adjunction formula can be applied to the real part which
then implies the vanishing of the Seiberg-Witten invariants of the quotient manifold.
If the real part is empty, then one has to use a different method as in [12], since the
adjunction formula no longer applies.

The main purpose of this paper is to develop a new approach, based on which one
can find methods suitable for the situations stated above that involve empty real parts.
Our approach originates from Klein surfaces which were systematically investigated
by Ailing and Greenleaf [ 1 ]

Ailing and Greenleaf studied Klein surfaces from the point of view of algebraic
function fields. Greenleaf [3] compared the cohomology of analytic sheaves on
such surfaces and that on the double covers. More recently, Klein surfaces have
found applications in solitons, KdV equations, and conformal field theory, as seen in
Natanzon's survey [8].

In this paper we generalize the concept of Klein surfaces to high dimensions.
Furthermore, we investigate new differential geometry in the corresponding set-up.
The key difference between [ 1 ] and our approach is that our emphasis is on the role
played by a certain twisting line bundle, resulting in what we call twisted complex
geometry. As an example, our twisted complex structures are a generalization of
di-analytic structures in [1]. We will lay down the foundation of the twisted complex
geometry by resolving various technical issues and also discuss a number of immediate
applications.

In either Gromov-Witten or Seiberg-Witten theories over complex manifolds with
anti-holomorphic involutions, one has to deal with the moduli spaces of real holo-
morphic curves or real Seiberg-Witten solutions. These moduli spaces appear as the
real parts of the ordinary moduli spaces under the anti-holomorphic involutions in
question. Twisted complex geometry allows the identification of real moduli spaces
with the moduli spaces defined on twisted complex manifolds. Since the twisted com-
plex geometry and the usual complex geometry enjoy many formal similarities, the
advantage of the identification is that real moduli spaces can be treated formally like
the ordinary complex moduli spaces in the twisted set-up. In a subsequent publication
we intend to use this approach to study the real Gromov-Witten invariants suggested
by [10] and the real Seiberg-Witten invariants not covered by [11].

The outline of the paper is as follows. In Section 2, we define basic concepts
in twisted complex geometry, such as twisted functions, and twisted bundles. We
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[3] Twisted complex geometry 275

take a more global view in Section 3, where a twisted, almost complex structure
is adapted to characterize the same set-up in an equivalent way. Section 4 gives
the comparison between twisted complex objects on a manifold and real objects on
the double covering manifold. In particular, we prove Greenleaf's theorem in any
dimension. Section 5 continues with more applications towards gauge theory. After
defining twisted stable bundles and Hermitian-Einstein connections on Klein surfaces,
we prove the Narasimhan-Seshadri-Donaldson correspondence in this set-up, which
extends our earlier result [13] where the correspondence was established in the special
case of trivial topological twisted bundles. Section 6 concludes the paper with several
further remarks and comments.

2. The L-twisted theory

We begin with basic concepts in the twisted complex geometry. The key idea is to
twist the imaginary part with the help of a real line bundle L.

Let X be a smooth manifold of any dimension. Assume that X is closed without
boundary. Fix any real line bundle L ->• X, which we call a twisting bundle in this
paper. This is so named since we will use L to twist various complex values. We
are mainly interested in the case of a non-trivial L, hence Hl(X,Z2) is typically
non-trivial. In particular, X is allowed to be non-orientable and L may be taken as the
orientation bundle of X.

Fix a fiber metric on L (the choice will be immaterial). Consider a system of
orthonormal trivilizations % = ((U, Sy)} of L. Then the transition function sUV'
between two charts U, U' must be ± 1 . For convenience, let 0 = (U, sv) denote the
trivilization. Strictly speaking, one should also use SOQ, rather than just sUU' • However,
to avoid excessive notation, we will use the latter. The same remark applies to similar
situations in the future without additional explanation. Although not necessary, using
a fiber metric on L will greatly facilitate the descriptions.

Consider a pair ( ^ ,/<&•), where /&• is a family of complex functions /Q:U-*-C

associated to each U € %. The family f<% is subject to the following twisted
compatibility condition on the intersection of two charts U, U':

(l)

where the JQ, is the complex conjugate of JQ,. Let (V, gy) be another pair similarly
defined, where V is a second system of trivilizations of L. We say that ( ^ , / ^ ) is
equivalent to (V, gy) if, on the intersection of two charts U e W, V e V, we have
fy = gy or fjj = gy depending on the whether transition suv is 1 or —1.
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DEFINITION 2.1. An L-twisted complex function f is an equivalence class of pairs

REMARK. (1) It is convenient to write / = [/Q] a n d / \Q = f(, (called a compo-
nent of / ) .
(2) We emphasize that f\o = fu,Su depends on the choice of a trivilization Sy of L,

which is a key feature of the twisting theory in this paper.

From the remark above, a twisted complex function / is not well-defined anywhere
on X unless it is real valued. However its real part Rm / = {Re /Q] is clearly a well
defined real function on X. Also well defined is the function / + : X —• C+,
/ + = {Re /,} + i | Im /y |}, where C + is the set of complex numbers of non-negative
imaginary part. Note / + is only a continuous function on X if / is smooth, that is,
each fjj is smooth.

The set 'tfx = ^x.z. of smooth twisted complex functions forms an R-algebra.
Moreover the conjugate / , defined to be {%, fa), is also twisted complex.

Let (Y, K) be a second smooth manifold with a twisting bundle. We say a smooth
function h : X —*• Y is (L, K)-compatible or twist-preserving if L is isomorphic to the
pull-back h*K. Equivalently, h can be lifted to a bundle homomorphism h : L —• K
which is fiberwise non-trivial (that is, fiberwise isomorphic) everywhere. Notice here
one bundle homomorphism canonically determines the other. Of course any smooth
function h may not be (L, AT)-compatible. For example, any constant function is not
so if L is non-trivial.

Take a lifting h as above. Then any system of trivilizations of K induces that of L.
Furthermore, a A"-twisted complex function on Y pulls back in an obvious way to
an L-twisted complex function on X. The resulting function h* : ^V —>• ̂ x is an
R-algebra homomorphism. Assuming X is connected, one sees that any two different
liftings of h differ by a sign. Hence the induced maps from ^V to ^x differ at most
by conjugation.

As a special case, take any open subset Y C X and K = L\Y. The canonical
inclusion K —> L is a fiberwise non-trivial bundle morphism, which yields the
restriction map tfx -* ^Y, though this is not the usual restriction map of ordinary
functions. Under this restriction map, ^x forms a sheaf of R-algebras in the usual
sense.

As another example, the lifting (—1) : L —>• L of the identity map X —> X pulls
back any twisted complex function f e^x to its conjugate f etfx-

In a similar way, an L-twisted complex manifold structure on X is an equivalence
class of pairs ( ^ , <p&), where <p^ is an open cover of ^-holomorphic charts <PQ :
U -> Cm. The transition function <PQQ, = <PQ o <p^ between two charts U, 0'
should be subject to the twisted compatibility condition that it is either holomorphic
or anti-holomorphic on a domain of Cm, depending on whether Suw is 1 or —1.
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The equivalence relation has an obvious meaning here. For example, the pairs
Cfy,<p&) and {—<&,<()%) are equivalent, where — ̂  is the trivilization system
[(U, — Su)}, hence leading to the same twisted complex structure on X.

When X has real dimension two, the twisted complex structure is called a di-analytic
structure in [1], and X is then called a Klein surface.

Any twisted complex manifold X has a conjugate X. Moreover, an L-twisted
holomorphic function f on X is by definition a twisted complex function / = {/Q}
such that every component function /Q ocp^ is holomorphic on Im <PQ.

The set &x of twisted holomorphic functions on X is again an R-algebra.
Next we define twisted holomorphic maps between two twisted complex manifolds.

Let X and Y be twisted complex manifolds. A smooth map h : X -> Y is (twisted)
holomorphic if X and Y have representatives (ffl, (p&) and (Y, xf/y) with the following
property. For any point x e X, there are holomorphic charts (U,<PQ), (V, x/fy)
containing x, h(x) respectively such that the restriction of h is holomorphic, that is,
rj/y o h o (p~-' is holomorphic.

REMARK. (1) Under this definition, a twisted complex manifold X is always
isomorphic to its conjugate X through the identity map. This is because if X is
represented by (<%, <pw), then X can be represented by (—<&\ #%) and the restriction
of Id : X ->• X is clearly holomorphic under these charts.
(2) We point out that a twisted holomorphic function and a twisted holomorphic

map have been defined with a subtle difference in nature. The former is a family of
locally defined functions depending on trivilizations of the twisting bundle, while the
latter is a globally defined map. These differences are best explained in Section 4
where we consider the double cover picture.

The definition of a twisted holomorphic map h should ensure that h is (L, K)-
compatible. Indeed the following result is a little stronger.

PROPOSITION 2.2. (1) lfh : (X, L) - • (Y, K) is twisted holomorphic, then h is
(L, K)-compatible and admits a canonical lifting h : L —> K. Consequently, there is
a uniquely induced map h* : <̂V —>• tfx-
(2) By restriction, h* : GY -* 6X.

PROOF. (1) Let °tt = {(17, %)} and Y = {(V, tv)} be trivilizations of L and K as
in the definition of a twisted holomorphic map h. Then for any x e X and y = h(x),
there are charts (£/, sy) and (V, tv) containing JC, y such that the restriction of h is
holomorphic. Using sv, tv, we define the unique lifting locally h\v : L\v -> K\v

that is also fiberwise non-trivial. All this says is that local trivilizations of L, K are
matched in pairs; otherwise the restriction of h would be anti-holomorphic. Patching
the charts U e % together, we have the required lifting h : L ->• K.
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(2) It is clear from the definitions of h* = h* and h from (1). •

For example, the twisted bi-holomorphism Id: X -* X lifts to — 1 on the twisting
bundle L.

Having introduced twisted complex functions and manifolds, let us now consider
bundles in the twisting theory. As before choose any trivilization system % =
{([/, Su)} of a twisting bundle L —> X. A rankr L-twisted complex vector bundle E
is defined to be the quotient

where the twisted gluing ~ is defined as follows. Take two typical trivial products
U x Cr, U' x Cr associated with trivilizations 0 = (£/ ,%), (]' = {U',sw). Let
gCC' € GL(r, C) denote the (twisted) transition function. For (*, £) e t/ x Cr and
(JC, £') e U' x Cr , we have (x, £) ~ (A:, £') if and only if

( 2 ) t' = Ut/u-^)^ w i t h

U ( « ) i with

The cocycle condition for the transition functions gQQ, has the form

,.,* \800-80-0" w h e n suw = 1,
(3) ^y,}" = j _

l t ) ' t / " w h e n 1

To indicate that a local trivilization of E depends on that of L, we use the notation
E\Q := U x Cr. This definition of twisted complex bundles coincides with that of
d-complex vector bundles introduced in our earlier work [13].

Since the twisted gluings (2) still preserve the real linear structure, the underlying
space of E carries a real vector bundle structure over X, which we denote by ER.
It can be viewed as the realization of E. Conversely, E can be viewed as a twisted
complex vector bundle structure on ER.

Obviously, £ is a smooth manifold with projection onto X. So the set of all
(twisted) sections, denoted by F(E), is well-defined. Since £, £R have the same total
space, we have F(E) = F(ER), making F(E) a vector space over R. In terms of local
trivilizations, a section s G F ( £ ) is a family of local sections {po}de<& glued together
using the twisted compatibility condition. This shows that F(E) is a "^-module.

EXAMPLE 1. The twisted trivial complex line bundle C -* X is defined by the
transition functions g^Q. — 1 under any trivilization system ^ of L. The sections
are precisely the twisted complex functions, that is, F(C) = ^x- Its realization CR is
isomorphic to R © L.
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[7] Twisted complex geometry 279

Twisted complex bundle can be characterized in terms of sheaves as in the usual
case of complex bundles.

PROPOSITION 2.3. Through sections, there is a one-to-one correspondence between
twisted complex bundles and locally free sheaves of^x-m°dules.

PROOF. Let us focus on the rank 1 case; higher ranks can be shown in essentially
the same way.

Suppose that & is a rank 1 locally free sheaf of ^-modules . Then for each small
enough open set U C X, the restriction &\v is sheaf-isomorphic to ffxlu- Choose
any trivilization 0 = (£/, sv) of L so that ^x\v is sheaf-isomorphic to C~|u, where
CJ1 is the sheaf of smooth complex valued functions on X. Combining the two
isomorphisms, we have a sheaf isomorphism gQ : &\v —> C~|[/. Since 0>°%\u is a
sheaf over C, &\u is over C also.

Take another open set U' C X and a trivilization U' of L. By the same argument, we
have a sheaf isomorphism gQ, : J^\y —> C£\u-. Since gQ, gQ, are sheaf isomorphisms,
by restriction to U D U' we can introduce a sheaf isomorphism

800' — 80 ° 8Q. '• ^x wnw ~> ̂ x \unw-

In terms of isomorphisms of stalks, this induces equivalently

gd6.:Ur\U'-+GUl,C).

It is now straightforward to check that gQQ, satisfies the twisted cocycle condition (3)
and hence yields a twisted complex line bundle.

Conversely, suppose that £ is a twisted complex line bundle. We need to verify
that the sections of E and their restrictions form a sheaf c?{E) that is locally free and
composed of ^-modules . First &(E) = <^(ER) is certainly a sheaf. Moreover, for
any small open set U C X and trivilization U = (U,su) of L, identify F(E\Q) =
C~(f/). Since tfxiU) = C~((7) and both are subject to the same twisted compatibility
condition, we see that &{E)\V wh&c£x\u are isomorphic sheaves, thus &(E) is locally
free of ^V-modules. D

From Proposition 2.3, it is possible to use the same formal language of ordinary
sheaves in twisted bundle theory. However in practice it is more useful to employ the
definition of local product decompositions, which is what we often do.

Given two /--twisted complex bundles E, F on X, a strong homomorphism k :
E —• F is a family of local complex linear homomorphisms subject to the twisted
compatibility condition. More precisely, there is a common trivilization system ^
of L such that

E = JJ U x C7 ~, F= |Jf / x C7 ~
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and k = {ky}, where kv : E\Q = U x Cr —> E\Q = U x Cs is fiberwise complex
linear over U. The compatibility condition is straightforward to write down. Then we
define Hom~(£\ F) to be the twisted bundle of all strong homomorphisms between E
and F.

Similarly we can introduce other familiar operations such as E ig» F, E © F, E A F,
which are all L-twisted complex vector bundles, provided that the same trivilization
system of L is used throughout the definition. Alternatively these operations can
be formally defined in terms of the sheaf operations of the associated sheaves. In
particular, E* = HoirT(£\ C) and d e t £ are well-defined twisted complex vector
bundles, and E ® C = E clearly holds.

REMARK. For twisted complex bundles E, F on X, the associated real vector
bundles (E ® F)R and ER ® FR have different ranks, hence can not be isomorphic
each other. On the other hand, we have (E © F) R RS F,R © FR naturally.

Similarly to ordinary complex bundle theory, one can define the rank rs twisted
complex vector bundle £ ® R W , where E and W are now a rank r twisted complex
bundle and a rank s real vector bundle respectively. More precisely, start with the nat-
ural correspondence Cr ®R Rs % C " so that conjugation on the C -factor corresponds
to conjugation of C" . Then define

(4) E 8>R W = ] J U x C " / ~ = J J U x (Cr 0R R o -

under the obvious twisted gluing ~ . Unlike ®, we do have a natural isomorphism

(£ ®R W)R « £ R ®R W.

As a special case, one has the (twisted) complexification of W, We := C (§»R W.
Conversely, £ ®R W = £ ® W?. For example, C is the complexification of the trivial
real bundle R, while the complexification of L is a twisted complex bundle given by
transition functions guw = %(/••

When the context is clear, we will often drop the ' ~ ' sign in the various operations
introduced above.

EXAMPLE 2. For any smooth manifold (X, L) with twisting bundle, consider the
twisted complex bundle

f\T*X:=C® [\T*X.

Then the section space Q[.(X) contains precisely the twisted complex valued r-forms
on X, so for example Q"(X) = ^x- The exterior differential extends to d : Q[.(X) - •
Qr

c
+i(X) by differentiating the component forms.
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Let X be an L-twisted complex manifold. Then an L-twisted holomorphic bundle
E -*• X can easily be defined with little modification. The only requirement is that the
transition functions must be either holomorphic or anti-holomorphic. Equivalently £
is simply a locally free sheaf of @x -modules. A homomorphism between two twisted
holomorphic bundles can be defined similarly as in the case of twisted complex
bundles.

EXAMPLE 3. If X is a twisted complex manifold, then the tangent bundle TX
admits a twisted holomorphic vector bundle structure. The resulting bundle will be
denoted by fx.

There are two ways to recover the twisting bundle L from a twisted complex bundle,
which is a useful fact on occasion.

PROPOSITION 2.4. (1) If the rank of a twisted complex bundle E is odd, then
det(£R) can be identified with L canonically. If it is even, then det(£R) is trivial
canonically.

(2) With any rank, det(det £ ) R is isomorphic to L canonically, where det E is the
twisted determinant bundle.

PROOF. (1) Take any trivilization system ^ of L so that E\Q = U xC. Then
ER\0 = ( / x R 2 ' and det(ER)\D = U x R = L\o canonically. If (£/', sv.) € ^ is a
second chart with suv> — — 1, then E\Q is glued with E\Q, under £ H> <PQQ,%, where
<PQQ, is the complex transition function of E. This gluing (that is, the conjugation
£ \-+ | ) preserves the natural fiberwise orientation on det(£R)|,) if and only if r is
even.

Hence when r is odd, det(£R)|(> is glued with det(£R)|y, in the same way as L\Q
is glued with L\Q,. Therefore, det(£R) «a L. The isomorphism is canonical because
it is independent of the choice of %.

When r is even, the twisted gluing always preserves the complex orientation and
det £R is surely trivial.

(2) Since det £ is a twisted complex bundle of odd rank, by part (1) its realization
has a determinant isomorphic to L canonically, that is, det(det £ ) R = L. •

Clearly any strong homomorphism k : E -> F induces a homomorphism det k :
det £ -*• det F, hence also k : L —>• L by part (2) of Proposition 2.4, which is in fact
+ 1 by definition of k. Compare this with the remark below.

It is possible to generalize the concept of strong homomorphisms as defined above.
Let h : X —> Y be a smooth map and £ —>• X, F —> Y be respectively L- and
Af-twisted complex bundles. We define a lifting bundle homomorphism k : £ —> F
of h in the following familiar way: there are trivilization systems 9/ of L and Y of K,
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such that for every point x e X, there are U e % containing x and V e f containing
h(x) so that k restricts to a local complex linear homomorphism kyy : E\Q -*• F\y.
Clearly one has an induced bundle homomorphism detfc : de t£ - • de tF and real
linear homomorphism &R : £R -+ FR. Furthermore, by Proposition 2.4 above, detk
induces a morphism k : L -*• K canonically, which means that h : X -*• Y is
(L, K)-compatible with respect to the lifting k. Conversely, if h : X ->• Y is
(L, AT)-compatible with a lifting h : L -*• K, then the pull-back h*F can be defined
and there is a unique twisted bundle homomorphism h*F —> F which lifts h.

REMARK. (1) In the special case that K = L and h = Id : X ->• X, the induced
lifting /t : L -> Lof Id must be ± 1 . Only when k = 1, the homomorphism k : E -*• F
is a strong homomorphism.
(2) In terms of these definitions, we now see that any twisted bundle E is isomorphic

to its conjugate E, but not strongly isomorphic. The importance of this distinction is
seen in a later section.

Finally the case of trivial twisting bundles is what one may expect.

PROPOSITION 2.5. If twisting bundles are trivial, then the twisted theory reduces to
the usual complex geometry.

PROOF. The theory includes twisted complex functions, twisted complex structures,
twisted bundles, and twisting-preserving maps. We use the case of twisted complex
functions as an illustration; the rest can be done similarly.

Let the bundle L —> X be with a fixed global trivilization t of norm 1. Suppose / =
{/Q} is an L-twisted complex function associated with a system of local trivilizations
{({/, sy)} of L. We need to modify /Q SO that we can patch them together to form a
global complex function / . In fact, let us define f\u = /Q if t\u — Su and f\u = JQ
\it\u = — su. Then it is easy to check that / is a globally well-defined function. The
procedure can be reversed. Hence we obtain a one-to-one correspondence between
twisted complex functions and global complex functions. •

We call a twisted complex structure trivial if it can be reduced to an ordinary
complex structure. Note that if the global trivilization t is switched into —/, then we
will get the conjugate function under the correspondence in the proof. In other words,
the reduction into the ordinary theory stated in the proposition is not unique but up to
conjugation, unless a trivilization of the twisting bundle is fixed.

COROLLARY 2.6. A twisted complex manifold of even dimensions is always ori-
entable as a smooth manifold. In the case of odd complex dimension, the manifold is
orientable if and only if the twisted complex structure is trivial.
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PROOF. Recall that fx denotes the tangent bundle of a twisted complex mani-
fold X. The realization is the smooth tangent bundle fRX = TX. When the rank
of fx is even, det TX = det(fRX) should be trivial by Proposition 2.4. Hence X is
orientable.

When the rank of f X is odd, det TX = det(fRX) is the twisting line bundle L
of X by Proposition 2.4. Hence X is orientable if and only if L is trivial, that is, if
and only if the twisted complex structure is trivial, by Proposition 2.5. •

This means that we have to consider non-orientable manifolds in the case of odd
complex dimension in order to find interesting twisted complex structures.

3. Twisted almost complex structures

We have seen that a twisted complex vector bundle E carries a real vector bundle
structure, namely ER. It is important to recognize that there is some kind of additional
structure on ER; this is the main purpose of the section. We shall take a global and
intrinsic approach here, rather than the approach of using local trivilization systems
of the twisting bundle as done in the previous section.

First for any real line bundle L, L2 = L <g> L is a trivial real line bundle. With
a fixed fiber metric on L, L2 has a canonical global trivilization given by patching
together the constant trivilizations sv <8> sv, where ^ = {(£/, su)} is any orthonormal
trivilization system of L. Hence we have a canonical isomorphism L2 «» R.

DEFINITION 3.1. Let ER ->• X be a real vector bundle and L ->• X a real line bundle
with fiber metric. An L-twisted (fiberwise) almost complex structure on ER is a real
bundle isomorphism J : £ R -*• ER ® L such that the following composition is - 1 :

(5) ER-U ER®L^X ER®L2^ ER,

where the last homomorphism uses the canonical isomorphism L2 «s R.

The key difference from the usual almost complex structure is that this is only
a globally meaningful concept and cannot be pointwisely defined, because of the
involvement of L.

Recall an L-twisted complex vector bundle E has local complex trivilizations built
upon trivilizations of L. From this perspective, we are led to the following.

THEOREM 3.2. A real vector bundle ER —> X admits an L-twisted complex vector
bundle structure E if and only if ER carries an L-twisted almost complex structure.
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PROOF. Suppose that £ is a rank r twisted complex bundle. With respect to a
trivilization system <%/ = {(£/, sy)\ of L, E is by definition JJ U x C r / ~ , subject
to the twisted gluing rule ~ . Let us define J : ER -*• ER <g> L first locally by
J0(x, £) = (x, i£ <g> sv), where 0 = (U, su) € % and (x, 5 ) s ( / x C . Certainly
7y is real linear fiberwise. To see that different JQ'S fit together to yield J, let
(]' = ([/ ' , su-) € ^ be another trivilization over [/'. One needs to verify that JQ and
7y. commute with the gluings on ER and ER ® L. On the ER side, £ is glued with g£
or gf according to %(/' = 1 or — 1, where g — guv- is the transition function of E.
On the £ R ® L side, i£ ® 5^ is glued with g(i£) ® %- or g(i£) (8) (—v) under the
same conditions. Now

J0-(x, g$) = (x, ig% ® it/-) = (x,

or

from which the aforementioned commutativity follows in either case. Thus J is well-
defined. It is easy to check that J is a twisted almost complex structure, since JQ
satisfies the analogous property locally.

Conversely, suppose that ER is a rank 5 real vector bundle with a twisted almost
complex structure J : ER —> ER ® L. Take any trivilization system W of L as
before. Suppose, after a common refinement if necessary, that ER can be trivialized
also over each U with transition functions huu- so that ER\u ^ U x R5. Under
these trivilizations of ER and L over {/, write 7(x, £) = (A;, •/(>(§) ® sy) for any
(x, ^) € U x R \ Then JQ : Rv -> Rs is real linear and property (5) is equivalent
to Jl = — 1. Hence the fiber Rv over x carries a complex structure given by JQ. If
—sv is used as a trivilization of L over U, then the corresponding complex structure
on Rv is the conjugate —JQ. In other words, the complex structure on a fiber of E is
contingent on the choice of trivilizations of L. Incorporating JQ and huw, one obtains
twisted complex transition functions guw for an L-twisted complex bundle structure
on ER. •

Thus a twisted complex bundle E can be characterized as a pair (ER, J). If F -»• y
is a A^-twisted bundle over y and h : X -> y is any smooth map, recall a lifting bundle
morphism k : E —>• F of h associates to two real morphisms kR : £R —• FR and
k : L -* AT. We can now reinterpret this in terms of twisted almost structures.

COROLLARY 3.3. Given twisted complex bundles (ER, JE) on (X, L) and (FR, JF)
on (y, K), a pair of real bundle homomorphisms kR : ER —> FR and k : L —• K
yield a twisted complex bundle homomorphism if and only if the following diagram
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commutes:

ER®L • FR <g> # .

/n particular, when X = Y and L — K, kR yields a strong twisted homomorphism if
and only if the following diagram commutes:

ER - FR

JF

PROOF. It is enough to show one direction, since the process will clearly be invert-
ible. Suppose that k induces a twisted homomorphism on the corresponding twisted
complex bundles E, F and that k covers a map h : X —> Y. By definition, for
any x e X, there are neighborhoods U, V of x, h(x) respectively, such that we can
trivialize L\u = U x R under a local frame % with respect to which E\Q = U x C
and we can trivialize K\v = V x R under a local frame tv with respect to which
F\y = V x C \ Furthermore, k : E\Q —>• F\y is fiberwise complex linear and
k = I : L\u —> K\v under the trivilizations since k must map sy to tv. Hence the
following diagram commutes:

E\o * " F\y

(6) i®

k®k

L.

From the proof of Theorem 3.2, locally JE —\®\ : E\Q -> E\Q <g> L\u if we
identify £ with ER as total spaces. Similarly, JF — i ® 1 : F|y -> F|y <g> K\v. Thus
diagram (6) translates into the one that appears in Corollary 3.3. •

REMARK. The conjugate E is of course given by (ER, —J). The twisted bundles
(ER, J) and (ER <g> L, J <g> 1) are strongly isomorphic through J : ER —> ER ® L by
Corollary 3.3.

Recall that the section space V(E) = F(£R) for any twisted complex bundle £.
Since a twisted almost structure is always a real bundle isomorphism, the following
corollary is obvious.
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COROLLARY 3.4. Any real linear operator P : F(£ R ) -> F(FR) induces a unique
real linear operator P' : F (£ R <g> L) -*• F(F R <g> L) SMC/I f/iaf the following diagram
commutes:

In view of twisted almost structures, one should define a twisted complex linear
operator to be a pair (P , P') as in the diagram above. Corollary 3.4 means that
any real operator P determines uniquely a twisted complex operator pair, although,
the choice of P' does depend on the twisted complex structures. We see a proper
explanation of this in the next section.

Another basic concept can be generalized to the twisted set up.

DEFINITION 3.5. A connection on a twisted complex bundle £ is a real linear
operator D : F (£ ) -»• F(T*X <g> £ ) such that the Leibnitz formula

D(fs) =df ®s + f Ds

holds for any twisted complex function / and section s e F (£ ) .

In this definition, the twisted complex information is built in the multiplication
by the twisted complex function. In order to make sense of / Ds, one should view
T*X ® £ as the twisted complex bundle £ ®R T*X, that is, £ ® f*X (see equation
(4)).

Alternatively, it is possible to characterize D using a compatibility involving the
twisted almost complex structure. First, with the chosen metric on L the transition
functions suw = ±1 a r e constant, so the exterior differential d on X extends to
d' : F(L) -*• T(T*X <g> L) by differentiating sections locally. Then a real connection
D : F(£ R ) -> F(T*X ® £R) induces a connection on the twisted complex bundle £
if and only if the following diagram commutes:

F(£ R ) - F(T*X <g> £R)

j

F(£ R <g> L) • F(T*X ® L ® £ R ) .

Incidentally and for later use, we observe that d' extends to the differential complex

1+ F(T*X <8> L) -£+ F ( A 2 r X ® L) -^ • • •

from which we obtain the cohomology of X with twisted coefficients Hk(X, L) :=
Kerrf'/Imrf'.
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4. Comparison with the real parts

In this section, we compare the twisted complex geometry on X with the equivariant
geometry on a certain cover of X. Via such a comparison, we clarify a few issues that
arose in the previous sections.

Let L -*• X be a non-trivial twisting line bundle with fiber metric. The associated
Z2-principal bundle n : X —> X is a non-trivial double cover of X. It is important
to note that the pull-back bundle n*L —> X is canonically trivialized, which will be
denoted as L. Likewise, as a convention, we will mark with the '"' sign other pull-back
data on X. Then L has a canonical global trivilization, that is, the fibers of L are
canonically oriented.

Use o : X —• X to denote the covering involution, so that na = n. We summarize
the comparison of elementary results together.

THEOREM 4.1. (1) Any L-twisted complex function f on X can be lifted to a

unique complex function f : X —> C, which is (a, conj)-equivariant: f o a = f.

The conjugation f lifts to that of f.

(2) Given a second manifold with twisting bundle (Y, K) and its associated double
cover Y, any twisting-preserving map h : X —> Y can be lifted to a unique smooth
map h : X -> Y that is (or, x)-equivariant, where r : Y —• Y is the covering
transformation.
(3) An L-twisted complex bundle E —> X can be lifted to a complex vector bundle

E - • X, which admits afiberwise anti-linear homomorphism a : E -> E covering
a. Furthermore, o is an involution.
(4) Ifk.E—tFisa twisted bundle homomorphism covering h : X -*• Y, then

k itself can be lifted to a complex vector bundle homomorphism k : E —*• F, which
covers h and is (o, x)-equivariant.
(5) If k : E —• F is a strong twisted homomorphism (so h = Id : X -*• X), then

h = Id : X —• X and k : E —>• F covers Id (h would be a if k is a non-strong
homomorphism).
(6) IfX is an L-twisted complex manifold, then X has a canonical complex structure

under which a acts as anti-holomorphic involution. Furthermore, if f is twisted
holomorphic on X, then its lift f is holomorphic on X.
(7) If h : X —* Y is a twisted holomorphic map, then its lifting h : X —*• Y is

holomorphic and (a, z)-equivariant.
Moreover, all the statements above have appropriate converses, and as a result,

we have a one-to-one correspondence between twisted complex objects on X and
equivariant complex objects on X.

PROOF. (1) Since n : X —> X is a (L, L)-twisting preserving map, the pull-back
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/ = n*f is an Z-twisted complex function on X. Since L is canonically trivial,
it follows that / can be identified with a well-defined complex function on X by
Proposition 2.5 and the remark following it. Alternatively, choose any trivilization
system {(£/, sy)} of L. Then X is the union of open sets of the form U = (U, sv).
If / is represented by {fo), then its pull-back / is defined locally to be / l ^ = fv

on U. Either way, clearly / is (a, conj)-equivariant and the conjugation of / lifts to
the conjugation of / .

Conversely, any (a, conj)-equivariant complex function / on X can be pushed
down to an L-twisted complex function / on X by reversing the argument. This
proves part (1) and its converse.

Parts (2)-(5) can be proved analogously and details are omitted.
(6) Using n, X has a pull back L-twisted complex structure. Since L is canonically

trivialized, by Proposition 2.5, X inherits a unique complex structure. The rest is
straightforward.

(7) Similar to (6). •

REMARK. In part (7), the twisted holomorphic map h is obtained from h by quo-
tienting both X and Y (under a and r). If we were to do this for a holomorphic
function / on X, then we would have to quotient C under conjugation, but C/conj
is not so convenient to use because of the boundary. To avoid this, as in part (6), we
only quotient the X side. However, as a result, our twisted holomorphic function /
is defined by a family of functions depending on trivilizations of L. This explains
the subtle difference between the definitions of a twisted holomorphic function and a
twisted holomorphic map that was alluded to in the remark before Proposition 2.2.

In the next theorem, we do not distinguish between a twisted complex bundle E
and its realization ER.

THEOREM 4.2. For a twisted complex bundle E, the twisted almost complex struc-
ture J : E —• E ® L lifts to the almost complex structure J on E.

PROOF. Since a : E -* E is anti-complex linear fiberwise, the almost complex
structure J : E -*• £<g>R is equivariant under the maps a and (a, —1). Quotienting the
bundles E, E ® R and noting that a is free, we have the induced map J : E ->• E <8> L.
In other words, J is the lift of J. •

COROLLARY 4.3. Any section s € r(E) lifts to a a*-equivariant section s on E,
where the action is 5*s = a"1 osoa. In fact, under the pull-back map n*, more is
true:

Fix5*, F(E®L) = Fix"a* := [t € T(£) \ a*t = -t}.
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PROOF. TO verify that F(£ (g> L) = Fix" a*, note that F(£ <g> L) contains precisely
those sections in £ ® R which are fixed under (a, — 1). These in turn are precisely in
the set [t G T{E) \ a*t = -t). The rest of the corollary is clear. •

The corollary implies the decompositions

(7) F(£) = Fixer*© Fix" CT* = Fixer* 0 ./(Fixer*).

Consider a real linear operator P : T{E) —> F(£). Pull it back to the covers so one
has P : Fixer* -> Fixer* by Corollary 4.3. In order to extend this to an equivariant
complex linear operator on F (£), it is necessary and sufficient to define P'(t) = J P (t)
for t € Fix" a*, in view of (7). Quotienting £ (g> Rby (or, -1) and by Corollary 4.3,
one has a linear operator P' : F(£ ® L) —• F(£ <g> L) that is uniquely determined
by P and J. Compare with the discussion after Corollary 3.4 (here for simplicity, the
same bundle £ is taken to replace F).

REMARK. (1) One can verify easily that a connection D on £ corresponds
uniquely to a connection D on £ that is a -equivariant. Here the action is defined by

(2) Similar to sections, we have over the field R that

Hk(X) = {a € Hk(X) \a*a = a]

and

Hk(X, L) = {a e Hk(X) | a*a = -a}.

REMARK. In parts (3) and (6) of Theorem 4.1, a and a are usually referred as
real structures on £ and X respectively. The K-theory of such virtual bundles with
real structures is the well-known KR group of X defined by Atiyah in his early work.
Of course, the main point of our approach has been to work on the quotient X.
Theorem 4.1 and its corollaries tell that the real parts of objects defined on X can
be identified naturally with the twisted objects on X. In particular, KR(X) can be
identified with the K-group of twisted bundles on X.

Another result in a similar spirit is Greenleaf's formula [3] for analytic sheave
cohomology on Klein surfaces, which we now generalize to higher dimensions.

Recall for a twisted complex manifold X, the structure sheaf 6 = Gx is by
definition the sheaf of twisted holomorphic functions. This is a sheaf of R-algebras.
On the other hand, for the double X with the canonical complex structure, the structure
sheaf of holomorphic functions 6 is of course defined over C. Theorem 4.1 implies
that n induces an injective cohomomorphism n* : ff -~-+ 6, that is, on the space
of sections, n* : &(U) -*• 0(0) is injective for any open set U c X, where
U = JZ-'(£/) as before.
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If F is a sheaf on X and h : Y —> X is a smooth map, then the inverse image sheaf
h*F on Y is defined by the direct limit

h*F(V) = \im{F(U) | U 2 h(V) is open in X]

for each open set V c K. In particular, if/i is onto, then h*F(h~[U) = F(U) for any
open set f/ C X.

Now take any (twisted) analytic sheaf F on X, that is, a sheaf of ^-modules on X.
Its inverse image F = n*F on X is only a sheaf of ^-modules. To get an analytic
sheaf on X, a suitable tensor product is required.

DEFINITION 4.4. The lifted analytic sheaf of F is defined to be F' = & ®e F,
where we use the cohomomorphism n* : G ~-> 6 in the tensor product.

The sheaf cohomology HP(X, F) is a real vector space, while HP(X, F') is a
complex vector space. Since F' is coherent, HP(X, F') is finite dimensional, and so
is HP(X, F) as a consequence of the theorem below.

THEOREM 4.5. For any analytic sheaf F on X and its analytic lift F' on X, there is
a canonical isomorphism C ®R HP(X, F) « HP(X, F').

PROOF. First we show that for any open set U C X, there is a canonical isomor-
phism between the spaces of sections, C ®R F{U) «S F'(U), or equivalently,

(8) 8C ®R F(U) « 0(U) ®om F{U)

by noting that F(U) = F(U) canonically since n is onto.
In fact, for any holomorphic function g G &(U), decompose g ~ g' + ig", where

g' = (g + D A g" = Kg - g)/2 and g(x) = g(a(x)). Since g' = g',g" = g",
by Theorem 4.1 g', g" are both in the image of n* : &(U) -> &{U). Thus the
natural map C ®R G(U) —*• i?(U) is surjective, and hence an isomorphism since it
is injective by Theorem 4.1. Therefore, C ®R F{U) = (C ®e (U)) <S)ff(U) F(U) is
naturally isomorphic to &{(]) ®ew) F(U), which verifies (8).

Let ^ ° , 'tf®, denote the sheaves of discontinuous sections of F, F'. Then the
canonical isomorphism in (8) induces one between C ® ^(U) and ^ , ( t / ) , and
hence between their quotients C (8) 2?}(U) = C ® tf°(U)/C ® ff(U) and J^,((7) =
(^,(U)/d'(U). This in turn induces a canonical isomorphism on their discontinuous
section spaces C ® ^p(U) -*• ^^{U). By induction, we have the following diagram
concerning the canonical resolutions of F and F' by discontinuous sections:

0—+ J
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in which the vertical arrows are all isomorphisms. The commutativity follows because
all isomorphisms are canonical.

Finally, setting U = X so U = X in the last diagram, we obtain the diagram for
the global sections:

o ^ c<g>r(F)
I

o—>

which yields the desired isomorphisms C <g> HP(X, F) ->• HP(X, F') for p =
0 , 1 , . . . . D

Consider a twisted holomorphic bundle E on X and its pull back E. Let S, S"
denote their structure sheaves of sections. By Theorem 4.1, the anti-holomorphic
lifting CT on £ induces a complex anti-linear sheaf isomorphism a : §' —>• £', hence
an anti-linear involution a : HP(X, S') -+ HP(X, £").

COROLLARY 4.6. The real part H"(X, S")R := Fixer is naturally isomorphic to
Hp(X, S\

The corollary follows from Theorem 4.5 since the lift analytic sheaf of $ is £".
This result can be used in describing the deformation of the moduli space of real stable
bundles.

5. Applications

We continue using the same notation as in previous sections. So for example,
E —> X denotes an L-twisted complex vector bundle, fy = [0] a unity trivilization
system of L, and E ->• X the lifting complex vector bundle.

A Hermitian metric h on E is a family of Hermitian metrics IIQ on E\Q subject
to the twisted compatibility that over U D U', IIQ equals hy, or hy, depending on
whether svu. = 1 or —1. Equivalently, h is a Riemannian metric on ER where the
almost complex structure J : ER —• ER ® L is an isometry, £ R ® L has the product
metric. Of course, in either case, h lifts to a unique Hermitian metric h on £ that is
cr-equivariant, which means

h(au, av) — h(u, v),

since CT : £ —*• E is complex anti-linear fiberwise.
In particular, if T*X has a twisted complex structure f*X, then a Hermitian metric

on X is a Riemannian metric g on T*X such that J : T*X ->• T*X ® L is isometric.
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Further, let us extend g to the twisted complexification f*X in the standard way, and
define the associated fundamental 2-form with values in L:

co(V,W) = g(V,JW)

for vector fields V, W on X. Naturally we say X is twisted Kahler if co is a closed
form. Then the Kahler class [co] € H2(X, L).

We defined the concept of a connection D on £ in Section 3. Extend D in the usual
way to D : V(T*X <g> E) -+ T(A2T*X <g> E) so that the curvature F can be produced.
Note that F € F(A2r*X <8> End~ E) should be viewed as a strong endomorphism
of E. We need to examine F more carefully in order to define the Chern classes for E
via a Chern-Weil type formula.

A typical local component FQ of F consists of r x r-complex matrix valued 2-forms,
where r is the complex rank of E. Define

Then the twisted compatibility for F implies that the complex 2-forms Q'j(U),
must satisfy the condition that on U n [/',

(9) ^ ) = { ^ tfl™" = 1'
[-n'j(U') ifSl/l/. = - i .

Expand the determinant and set

d e t ( / + J - F t f ) = 1 + YI(U) + y2(U) + ••• + yr(U).

Apply the standard determinant formula and (9) so that on U Pi U' we find

A • • • A n£ (LO if Suu. = i,

( ^ ' ) A • • • A fij(i/') if suy = - i

= [yt(0') if suu. = 1.

The last step uses the fact that the 2&-forms y*(t/), YkW') are real valued. Thus if
k = 21, yk(0),yk(U') can be patched together to yield a global 4/ form on X, which
results in our Chern class c2,(£) € H4I(X). If* = 2/ + 1, y*((/), yt({/') are glued
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the same way as L, and hence lead to a global form with values in L. This produces
the Chern class c2/+i(£) e //4/+2(X, L). As a special case, cx(E) is represented by
(27T)-1 J tr F, with values in L since J tr F € r(A2T*X ® L).

Although less instructive, it is possible to define ck(E) using the equivariant Chern
classes ck(E). Since a : E —> E is complex anti-linear, one sees clearly that
a* ck(E) = {—\)kck{E). Hence when k is even, ct(£) is equivariant, descending to a
class ck{E) in Hk(X). When & is odd, c^E) is anti-equivariant, descending to a class
ck{E)inHk{X,L).

If £ ->• X is a twisted complex bundle, then C <g> £R = E © E. In particular, if
X is a compact twisted Kahler manifold which we assume for the rest of the section,
then T£X <g> C = fx'° © fj ' 1 . Although f^°, f""1 are isomorphic each other, only
f̂ 1 is strongly isomorphic to f *X. Let Ap

x
q = (A"f|°) A ( A ' 7 ^ 1 ) .

Since X is a twisted Kahler manifold, by Proposition 2.4 the orientation bundle £ =
det T*X of X is canonically trivial, that is, X is canonically oriented, if m = dimc X
is even; or canonically isomorphic to L if m = dimt X is odd. As a consequence,
the integral fx a is well-defined for any 2m-form a with values in the line bundle Lm

(recall L1 is canonically trivialized). For example, any twisted complex bundle E has
a degree defined by

= f
Jx

deg£= f c1(E)Aco
Jx

n-\

where the Kahler form co e F(A^' <g> L) c T (A^ ® L).
Using the orientation bundle, we have the Hodge star operator

* : A*x

see for example [13]. This extends naturally to

after twisted complexification.
The Kahler form OJ as usual defines the map

W :

The adjoint of W yields the contraction operator

Kg~i ® L).

The bundle £ is canceled after both * and * '.
Consider a twisted holomorphic bundle £ -»• X. Any Hermitian metric h on E

induces a unique compatible connection D. Its curvature is F 6 F ( A X ' <g> End~ E),
so applying the contraction operator gives a section AF on End"" £ ® L.
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DEFINITION 5.1. The metric h is called Hermitian-Einstein if the curvature of the
associated connection satisfies AF = cJ{I), where c is some constant, / is the
identity homomorphism on E, and / ( / ) € P(End~ E ® L) using the twisted almost
complex structure J on End~ E.

It can be verified easily that the constant

c = - deg E/(rank £• • volX) = - / z ( £ ) / volX,

where fJ.(E) := deg E/ rank E is usually referred to as the slope of E.
An analytic sheaf ^ on X is called coherent if any point x € X has an open

neighborhood U such that there is an exact sequence for some integers p, q

where C is the structure sheaf of twisted holomorphic functions over X.

DEFINITION 5.2. A twisted holomorphic bundle E is called stable if for every proper
coherent sub-sheaf & of &E, we have / i ( ^ ) <

We now state the essential part of the Narasimhan-Seshadri-Donaldson correspon-
dence. Recall a Klein surface is a twisted complex manifold of real dimension 2.

THEOREM 5.3. Any stable twisted holomorphic bundle E over a Klein surface X
with Kdhler metric admits a Hermitian-Einstein fiber metric h.

In the special case that £ is a topologically trivial rank-2 twisted bundle, the
theorem was proved in Wang [13]. This extra assumption was made there because the
correspondence was stated as between Yang-Mills connections on an ordinary S U{2)
bundle and twisted stable bundles. However, essentially the same argument in [13]
can be carried over to the more general case in this paper. Basically this amounts to an
adaptation of Donaldson's analytic proof [2] to the local twisted picture. The details
are omitted.

We have not checked the higher dimensional version of the theorem, although we
believe it is plausible to go through the arguments of Donaldson or Uhlenbeck-Yau
to establish the same correspondence between stable bundles and Hermitian-Einstein
metrics for the case of dim X > 2.

6. Some further remarks

Consider a twisted Kahler manifold X and its Kahler double cover X. There are
many interesting problems about the moduli space Mx of twisted stable bundles on X
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that are of a fixed rank and degree. For example, one is tempted to determine the
orientability and cohomology of Mx, especially in the case of a Klein surface X.
Perhaps there is some perfect Morse-Bott function in the picture.

Let Mx denote the moduli space of ordinary stable bundles on X. The anti-
holomorphic involution a : X —> X induces an involution

a : Mx - • Mx, [E] )-+ [cr*E].

The real moduli space on X is by definition MR = Fix a. If [E] e MR, then E admits
a lifting r : E —> E of a that has a finite even order (the order depends on E only
following from the fact that stable bundles must be simple). The most familiar cases
are order two and four, the so-called real or quaternionic types. Only those stable
bundles with real type liftings can descend to twisted stable bundles on X. Thus by
focusing on twisted bundles, we actually only single out part of the real moduli space
on X. This is why we expect to get stronger results in the twisted set-up. Moreover,
we expect the complement of the twisted moduli space in the real moduli space to
have co-dimension 1, thus comprising a relatively small part.

We have been restricted to closed smooth twisted manifolds; thus the involution
a is free of fixed points so the real part XR = 0. We have done so partly because
this is important in applications alluded in the introduction. In the dimension 2 case,
one can allow a non-free involution, provided one is willing to consider surfaces with
boundary. Indeed, Klein surfaces include those with boundary. The higher dimension
case appears more subtle, since the twisted manifolds are bound to be singular (except
dimension 4).

It is interesting to compare with twisted vector bundles over a gerbe, as defined
in [7]. A gerbe, in the sense of Hitchin, consists of a family of complex line bundles
defined on the intersections of pairs of charts from an atlas of the underlying manifold.
A twisted bundle is given by a family of vector bundles on the charts, such that on a
pairwise intersection, the local bundles become the same after one is twisted by the
complex line bundle in the given gerbe. Our twisted complex bundles are twisted by
global real line bundles which are at a lower hierarchy than gerbes, hence may be
viewed as a prototype of gerbe-twisted complex bundles. Another kind of twisting
appears in the thesis of Gualtieri [4], in which the integrability of a generalized almost
complex structure on a manifold X can be characterized using the twisting by the
maximal isotropic complex sub-bundle of (TX © T*X) ® C of the generalized almost
complex structure (see [4, Section 4.4]).
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