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Abstract

The projection-based strictness analysis of Wadler and Hughes is elegant and theoretically
satisfying except in one respect: the need for lifting. The domains and functions over which
the analysis is performed need to be transformed, leading to a less direct correspondence
between analysis and program than might be hoped for. In this paper we shall see that the
projection analysis may be reformulated in terms of partial projections, so removing this
infelicity. There are additional benefits of the formulation: the two forms of information
captured by the projection are distinguished, and the operational significance of the range of
the projection fits exactly with the theory of unboxed types.

Capsule Review

This paper provides a reformulation of projection-based program analysis using partial
projections. The advantage is that by working with partial projections the Hughes/Wadler
'lightening bolt' becomes unnecessary and, as a result, the theory is much more elegant.
Projections-based analyses capture two types of demand: 'active' demands which require
arguments of a specific form and 'latent' demands which do not require argument evaluation
but cause failure when combined with an active demand. The current formulation highlights
these two types of demand, whereas the earlier formulation (with lifting) tended to obscure
the differences. The authors also show that there is a good match between the partial
projections and the theory of unboxed types. The paper is concluded by a section relating
partial projections to partial equivalence relations; the latter were used by Sebastian Hunt to
provide a framework for abstract interpretation and Hughes/Wadler projections. The work
based on partial equivalence relations treats higher-order features in a rather natural way; it
will be interesting to see if the partial projections work can be extended to higher-order - the
framework presented in this paper is likely to prove more accessible to a wider audience than
the partial equivalence relations framework.

1 Introduction

The method of projection-based backwards strictness analysis for first-order, lazy
functional languages was first presented by Wadler and Hughes (1987), and has un-
dergone significant development since then. The method is elegant and theoretically
satisfying except in one respect: the need for lifting. While projections are great at
representing complex strictness patterns, they cannot represent simple strictness.

The solution adopted from early on is to give an alternative interpretation to
programs in which all the domains are lifted with an additional bottom element. This
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adds complication and confusion, and provides far less of a direct correspondence
between the analysis and the program's semantics than might be hoped for.

In this paper we propose an alternative technique for capturing simple strictness:
using partial projections. While the change is small, its ramifications are significant.
No longer is an alternative presentation of domains required, and no longer is an
alternative program semantics required with all its potential for confusion. Instead,
the analysis relates directly with the standard semantics, and the projections are
defined structurally with respect to the standard formation of domains.

In addition, using partial projections has benefits with regard to operational
intuition. The two roles of a projection, that of propagating demand, and that of
equating distinct values, are distinguished: the former corresponding directly with
the lower sets which arise in BHA strictness analysis (Burn et al, 1986), and the
latter with the equivalence classes of Hunt's PERs (Hunt, 1991). Furthermore, the
link between projection analysis and unboxed types (Peyton Jones and Launchbury,
1991) becomes clearer, though the full implications remain to be studied.

Projection analysis has progressed significantly since the early days, yet this paper
is fairly complete in its coverage of modern projection analysis. That is, despite
the change to partial projections, all the development of the last few years carries
through largely unchanged.

We begin with a brief review of the history and method of projection-based
strictness analysis. Then we introduce partial functions and partial projections,
after which we introduce our example language, with its model for types and its
semantics. We provide an abstract semantics based on partial projections which
defines a strictness analysis. We then prove the correctness of the analysis.

2 Historical background

Detecting strictness by backwards analysis was originally proposed by Johnsson
(1985), who used a two point domain, then developed by Wray using a four point
domain (Wray, 1985). However, backwards analysis came into its own under Hughes
(1985), who demonstrated the power of propagating demands for finding strictness
within data structures. He used contexts - evaluators defined over a universal domain
representing closures (delayed evaluations) - and relied on performing complex
series of simplifications to the contexts. Unfortunately, this caused the results of
the analysis to degrade unpredictably. Moreover, the transformations of contexts
received no more than informal justification. Hughes concluded that the work was
"a demonstration of a possibility, and a potential basis for further work".

In 1987, two other papers were published which brought the work closer to
practicality. The first introduced abstractions of Hughes' original context domains
which were much more tractable, and demonstrated a number of other analyses
which fitted the backwards mould (Hughes, 1987). In addition, he showed how the
technique could be extended to higher-order functions, as a combination of abstract
interpretation and backwards analysis.

The second paper, written in conjunction with Wadler, is now seen as the seminal
paper on projection-based analysis (Wadler and Hughes, 1987). The thrust of the
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paper was that contexts could be modelled semantically by domain projections
defined over domains representing individual data types. This was a significant
development. It became far easier to perform proofs of correctness for the analysis,
and it was now possible to define finite domains of projections which captured
standard strictness patterns. There was a problem, however. While projections could
capture rich strictness patterns within data structures, they were completely unable
to capture simple strictness! The solution adopted in the paper was to lift the
domains and introduce a new bottom element (called 'lightning bolt'). Then simple
strictness could be represented. We discuss this device in more detail in section 3.1.

In the same year, Launchbury demonstrated that the same projection framework
could be used in partial evaluation to express binding-time analysis (Launchbury,
1987), though here there was no need for lifting. Interestingly, this analysis was
a forwards analysis, demonstrating that projections had no inherent direction of
analysis. Indeed this was shown in later papers by Hughes and Launchbury where
the correspondence between these forwards and backwards analyses was explored
(Hughes and Launchbury, 1991; Launchbury, 1991b). Again, the presence of lifting in
strictness analysis meant that the two analyses were hard to compare formally. They
existed in different worlds, and the mapping between these worlds was non-trivial.

Since then, projection-based analysis has been generalised to handle polymorphism
and arbitrary user-defined data types, though only for first order functions (Hughes
and Launchbury, 1992), it has been implemented both for binding-time and strictness
analysis (Launchbury, 1991a; Kubiak et al., 1992), and further refined to handle
higher-order functions (Davis, 1993), though non-polymorphically as yet.

In addition, the relationship between projection-based backwards analysis and
BHA abstract interpretation (Burn et al., 1986) has received some attention. Burn
(1990) explored the correspondence between the Scott-closed sets of BHA and the
so-called lift-strict projections, though once again the presence of lifting caused
confusion: should (non-lifted) BHA be compared with the lifted or the non-lifted
version of projection analysis?

More recently still, Hunt developed analyses based on partial equivalence relations
(PERs). The analysis was applied both to strictness and to binding-time analysis
(Hunt, 1991; Hunt and Sands, 1991). At the base types, the PERs used by Hunt
corresponded exactly to the non-lifted projections, except for an anomolous one
introduced especially to capture strictness. We shall discuss this more in section 6.2.

The question then is, can we do better? Can projection-based analysis (and even
PER-analysis) be reformulated so that simple strictness does not need to be handled
specially?

3 Intuition

Recall that, in domain theory, a projection is a function a such that a o a = a and
a C. Ide (= Xx .x). The essential intuition for strictness analysis is that a projection
performs a certain amount of evaluation of a lazy data-structure. For example, the
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projection

Left : Nat x Nat -> Nat x Nat
Left (x,y) = (1,-L) if x = ±

= (x,y) otherwise

may be thought of as evaluating the first component of a pair, while

Both : Nat x Nat -» Nat x Nat
Both (x,y) = (J_,_L) i f x = ± o r y = ±

= (x,.y) otherwise

evaluates both. Now we can regard a function as Both -strict - performing as much
evaluation as Both - if evaluating its argument with Both before the call does not
change its result. For example, the function + : Nat x Nat -> Nat evaluates both its
arguments, and so + = + o Both. More generally, there may be parts of a function's
argument that are evaluated only if certain parts of its result are evaluated - a
function may evaluate more or less of its argument depending on context. Take
swap for example.

swap : Nat x Nat —* Nat x Nat
swap (x,y) = (y,x)

While swap is not Both -strict, it is Both -strict in a Both -strict context since

Both o swap = Both o swap o Both

Thus, if both components of swap's result will be evaluated, then the components
of its argument can be evaluated before the call without changing the meaning. We
make the following definition:

Definition

Let / be a function and a and P be projections. We say / is a-strict in a jS-strict
context if P of = /? of o a (or equivalently, P of C/oa) .

The definition has a very natural reading as a means of propagating demand. If
we demand p of ( / o g), say, then

and so the demand of P on / has now been propagated to become a demand of a
ong.

Using this formulation, the aim of strictness analysis may be summarised as
follows. From/, together with a projection p representing the demand for the result
of/, we want to find an a such that /? of Of o <x. We can always choose a to be the
identity projection Ide, but this is uninformative: Ide corresponds to performing no
evaluation at all. We would like to find the smallest a such that the condition holds.
In general this is equivalent to the halting problem, but methods are known for
finding quite small as, and later in this paper we give an example of these methods.
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3.1 Lifting

In some sense projections capture the notion of evaluating a component within
a data-structure. They cannot capture the notion of evaluating a single value. A
trick suggested by Wadler and Hughes is always to embed simple values within a
'data-structure' having a single component, which we can think of as representing
an unevaluated closure.

In Wadler and Hughes' framework, we think of a closure of type t as an element
of t±, and we 'evaluate' it with the projection

Str :t± -» t±
Str ± = ±
Str {lift x) = _L if x = _L

= lift x otherwise

(writing the non-_L elements in the form lift x). Now, any function/ : s —> t induces
a function f± : s± —> tj_ which behaves l i k e / on elements of s, but maps the new
_L to ±. It is easy to show that,

/ is strict <s> Str o / x C / x o Str

This is fine except that now, rather than analysing/, we end up analysing f±. This
has consequences for all the types of / ' s arguments which too must be lifted. So, for
example, if/ has the type

/ : (Int x lnt) -* Int

then the analysis actually works with

/i_ : (Int x

though, in turn, the lifting o n / ' s argument needs to be pushed through the product
using the isomorphism (A x B)± = A± <g> B± giving

f± : Int± ® Int±. —> Int±.

where ® is smash product.
If this was the limit of the additional complexity then things wouldn't be too

bad, but as was shown in Kubiak et al. (1992), this and other isomorphisms work
their way into the definitions of structured domains as well. Consequently, it is not
only the functions that become modified by lifting, but the very domains that they
manipulate suffer too.

On the other hand, lifting has given exactly what we want. There are four fun-
damental projections over lifted types which capture various degrees of evaluation,
and these correspond to Wray's original 4-point domain. We have already seen Ide
(no evaluation), and Str (evaluate). In addition there is Abs defined by

Abs :tx-+t±

Abs ± = ±
Abs (lift x) = lift _L

and the constant bottom function Fail (= Xx.L). These are discussed in more detail
later when they reappear as partial projections.
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In the next section we see how broadening our view to include partial projections
provides all the advantages of lifting without its ugliness.

4 Partial functions

Denotational semantics has traditionally been formulated in the category of complete
(pointed) partial orders with continuous functions (which we write #). Plotkin has
reformulated it in the context of partial continuous functions (Plotkin, 1985). We
call this category &\ objects of this category are unpointed complete partial orders
(Schmidt, 1986) - they don't necessarily have a bottom element.

It is inappropriate here to cover the theory of partial functions in great depth.
However, all the necessary intuition may be gained by recognising that & may be
injected into the category £f of pointed complete partial orders and strict continuous
functions by lifting (denned slightly more generally than before). On cpo's, lifting
adds a new bottom element (making the cpo pointed if it was not previously). On
partial functions we have:

f± ± = -L
/± (lift X) = ±, if / X = <UNDEF>

= lift (f x), otherwise

where, as before, we write lift x for elements coming from the original domain.
The major insight gained from this transformation is that partial continuous

functions may be undefined only on some lower portion of their source (i.e. a Scott-
closed set). Undefinedness cannot occur at arbitrary points. By providing an extra
bottom on the target domain the function may be made total, mapping to the new
bottom where previously it was undefined.

Note that partial functions are 'strict' in undefinedness in the sense that if g x is
undefined, then so i s / (g x), whatever the definition of/. For this reason, & is ideal
for modelling strict functional languages, taking non-termination to correspond
to partiality. Similarly, partial functions correspond very naturally with low-level
machine concepts where immediate (rather than delayed) evaluation is the norm.
One may almost describe & as the category for implementation semantics, whereas
^ is more convenient for reasoning.

In 2P we have to use Kleene's equality: e\ = ^2 means that either both e; and
e2 are undefined, or they are both defined and equal. Similarly, e\ Q e2 means that
either ex is undefined, or they are both defined and ej is dominated by e2 in the
partial order of the cpo.

Not only is there an injection of 2P into %>, but SP includes # as a sub-category,
so we may view our language semantics as being within &, but with no partiality,
i.e. delays everywhere and no explicit strictness behaviour. Using partial projections
we will introduce strictness behaviour, and propagate it through the program by
the projection analysis. Thus the results of projection analysis may be viewed as
improving upon the naive translation of <& semantics into 0> semantics that is given
by the natural embedding.
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4.1 Partial projections

The injection from $? into Sf was built into the original formulation of projection
analysis (though it hasn't previously been perceived as such). All the projections
which arise in the analysis, therefore, are images of projections which exist in &. For
this reason we shall reuse the names, and no longer think of them as being projections
over lifted domains. By viewing them in 0> we find we can see the structure more
clearly, without the lifting encoding obscuring the essential behaviour.

The four basic projections may be defined as follows:

Ide x = x

Abs x = -L

Str x = <UNDEF> if x = -L

= x otherwise

Fail x = <UNDEF>

These definitions are simpler than their lifted images given earlier because we
no longer need to code up the behaviour of the lifting transformation within the
projections.

4.1.1 Demands

A partial projection corresponds to a demand: the values on which the projection
is undefined are 'unacceptable'. Any other value is fine. So, for example, if a term
is under evaluation and is needed in weak head normal form (i.e. the outermost
constructor is required) then ± is unacceptable as a result, but any other value is
fine. The demand on the value is expressed by Str.

Now if we define, f x = bottom and place a demand of Str on the result of/,
what is the demand on / ' s argument? The answer is Fail. There is no value for x
which makes / x return a non-bottom value, so every value of x is unacceptable.
Formally,

Str of = Str of o Fail

where/ is the semantic image of f.
In contrast, if we define, g x = 3 then a demand of Str on the result of g

propagates to a demand of Abs on x. No value is unacceptable, and furthermore,
all values are equivalent. Formally,

Str o g = Str o g o Abs

A projection may be undefined only on some lower portion of its domain, a
Scott-closed set. For example, Str corresponds with {±} as it is undefined only
on _L, whereas Fail corresponds with the whole domain. On the other hand, Ide
corresponds to {}, as it is defined everywhere.

Truly-partial projections (i.e. projections which are undefined on a non-empty
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set of values) correspond to the projections that have previously been (improperly)
called strict-projections (Wadler and Hughes, 1987) or, more properly, 'lift-strict'
(Burn, 1990). However, (partial) projections go beyond this. The projection Abs,
for example, implies no demand, but it states that as far as the computation is
concerned, all values are equivalent. Thus, if ever any active demand (such as Str)
were combined with Abs, the demand on the term would immediately become
Fail: all values are equivalent, and at least one is unacceptable; therefore all values
are unacceptable. It is possible to see the equivalence of values specified by Abs
as a 'latent demand': if ever one value becomes unacceptable, then all the values
equated by the projection also become unacceptable. Perhaps an analogy is in order.
A projection corresponding to a latent demand is like a pilot with sealed orders.
Sealed orders are merely potential orders - they may never happen. However, the
order to open the envelope also activates the orders within.

The four projections we have been discussing exist over every domain, so they are
necessarily limited. Domains with a richer structure possess richer projections. List
domains, for example, possess a projection Head defined by,

Head [] = []
Head (x : xs) = -L, if x = _L

x : Head xs, otherwise

(where we write [] for nil, and : for cons). This Head projection contains lots of
pockets of equivalences working along a list. For example, Head (J_ : []) = _L, or,
Head (2 :(± : (3 :[]))) = Head (2 : _L). Each equivalence corresponds to a latent
demand which, if any value in an equivalence class ever becomes unacceptable, then
all the values in the same class become unacceptable also. This concept forms the
essence of Hunt's PER-based approach to strictness analysis (Hunt, 1991).

In previous formulations of projection strictness analysis, the two forms of demand
were confused (literally) by the lifting trick. Both were simply equivalences. Without
the trick, their distinct nature becomes clear. Active demands are represented by
undefinedness, latent demands by equivalences.

4.1.2 Combining projections

Wadler and Hughes introduced two operations for combining projections: u and
&. The first is usual least upper bound (i.e. pointwise). The second is similar, except
that it conjoins demand. In the setting of partial projections they may be defined as
follows.

(a U P) x = P x if a x = <UNDEF>

= a x if P x = <UNDEF>

= (a x) u (P x) otherwise

(a&/3) x = <UNDEF> if a x = <UNDEF>or p x = <UNDEF>

= (a x) U (P x) otherwise

In contrast with the earlier setting, both of these functions arise entirely naturally,
again because of the clear distinction between active and latent demands.
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Any truly-partial projection is expressible in the form Str o a where a can be total
or partial. Similarly any total projection can be written in the form Abs u a, where
again a may be either total or partial. The first of these formulations is so important
that we denote it with a special notation. We define, !a = Str o a.

5 A particular analysis

So far we have concentrated only on the broad aspects of basing a strictness analysis
on partial projections, and have avoided being explicit about any details. Rather,
what we have discussed applies to the whole field of projection-based strictness
analysis. In this section we become more specific and demonstrate the ideas in
practice by reworking the analysis of Kubiak et al. (1992).

We introduce an example language and provide it with a concrete semantics. Then
we define the strictness analysis using partial projections and provide a proof of
correctness. This is done in detail as some aspects of manipulating terms denoting
partial functions are not always entirely familiar. Finally, the section ends with a
number of examples of the sort of information that the analysis is able to discover.

5.7 Syntax

We use a polymorphic, first-order, lazy functional language with user-defined data
types, whose syntax is similar to Haskell. Programs consist of type definitions and
function definitions. For simplicity, we require each function definition to have
explicit type information. An example program is

data List a = rec L . Nil I Cons a L

append :: List a -> List a -> List a

append xs ys

= case xs of

Nil -> ys

Cons u us -> Cons u (append us ys)

The syntax is presented in figure 1. The grammar uses the listed variables (possibly
indexed) to denote the elements in various syntactic classes, and use {pattern} to
signify zero or more repetitions.

Note that the language does not have a special syntax for products and tuples. The
programmer may introduce a type of polymorphic pairs, say, and define selectors
appropriately. For example,

data Pair a b = MkPair a b

fst:: Pair a b -> a

fst z = case z of

MkPair x y -> x
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[Value Variables]
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-> {c; {
- T{t}
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t / } l } lcn {tn}

i . S 1 S

Fig. 1. Syntactic classes and BNF syntax.

5.2 Semantics

Unlike previous presentations of projection analysis, the semantics is entirely stan-
dard. We provide interpretations for types and terms within <&.

5.2.1 Denotations of types

We use the standard model of types in lazy functional languages, so the right hand
side of a type definition of the form

d a t a F a b = C l R S I C2T

is modelled by the domain

(RxS + T)±

where R, S and T model R, S and T, respectively, the product is cartesian product,
and the sum is disjoint union. The explicit lifting is required to obtain the behaviour
of separated sum. Notice this lifting is nothing to do with the earlier lifting trick to
capture strictness, but it does interact with the analysis by turning active demands
into latent demands. We model F as a functor from domains to domains, a bi-functor
in this case.
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As an example, consider lists, defined as follows,

data Lis t a = rec L . Nil I Cons a L

We model this type by the functor,

List = Act . fiL . (1 + a x L)x

We write inNu and incons for the lifted injection functions into a named sum
(i.e. inmi = lift o inl etc.). Normally, we will drop the explicit Aa, and simply use
successive Greek letters for successive polymorphic parameters (a sort of de Bruijn
index).

5.2.2 Sums and products

We define types using + and x, so we shall provide the definitions of these over
partial functions also (and projections in particular).

Suppose a : A —> A and /? : B —> B are partial functions. Then,

(a + /?) (inl a) = <UNDEF>, if a a — <UNDEF>

= inl (a a), otherwise
(a + /?) (inr b) = <UNDEF>, if /? b = <UNDEF>

= inr (/? b), otherwise

(ax / ? ) ( a ,b ) = <UNDEF>, if a a = <UNDEF>

or /? b = <UNDEF>

= (a a,P b), otherwise

The Both projection from the introduction can be defined as

Both =AbsU(Str x Str)

so in fact it only recorded latent demand. A strict version, IBoth which treats a
bottom in either component as unacceptable is equal simply to Str x Str.

In the semantics, all uses of + occur only in the presence of an outer lifting
(modelling separated sum). From the definition of lifting it is easy to see that
(a + )5)x is total.

5.2.3 Semantics

The semantics are given in terms of two semantic functions,

&01 : FunDef -> FunEnv

$ : FunEnv —> Expr —> ValEnv —» Value

where

V € Value = UreType *>T
p e ValEnv = Var -* Value
(f> € FunEnv = Funame —»(Value x • • • x Value —> Value)

Given a program containing function definitions, the semantic function 0>0L con-
structs a global environment of functions. & interprets expressions in a given function
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environment. $ is defined as follows.

case e of • • •c , x i . . . x* -> <
= case (p$fi_ejp of

inCj (vi x • • • x vk) -> ^He,- IP[x,~v,

The function environment is constructed as the least fixed point of the function
definitions, as follows,

-,i x, . . xfc = e, •••] = fix

5.3 Analysis rules

In this section we define an abstract semantics for our language to perform backward
strictness analysis. It takes the form of a projection transformer, and corresponds
directly with the analysis of Kubiak et al. (1992) except, of course, the absence of
explicit liftings.

We extend the operations of u and & to denote corresponding point-wise opera-
tions on abstract environments. In such an environment

env e AbsEnv = Var —> Proj

names are associated with partial projections. We use [ ] to denote the initial
environment in which every identifier is mapped to Fail. By [(x,a)] we mean the
initial environment extended by binding the variable x to the projection a, and by
p\{xi,...,xk} we denote the environment differing from p in that the variables
{xi,...,Xk} are mapped to Fail. For any environments pi and p2, if x does not
belong to the domain of pi then (p; u p^)(x) = P2{x)- We also treat & in a similar
way.

The projection transformer <g#, takes an expression e and a projection a (which
expresses the demand on the value of e), and builds an environment p = <f*#[[e]]a
in which all free variables x, of e are assigned projections. The environment p is
constructed so that the following safety condition is satisfied for all projections a of
appropriate type:

• x

X(v, x ••• x vjt).<*VIIej[*.
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The projection p(x,) is the demand on parameter x,- given a demand a on the value
of e, so this condition is just a multi-argument generalisation of the condition given
in section 2. The best possible environment is one in which variables are associated
with the least projections for which the safety condition is still guaranteed.

Note that the composition operator is composition of partial functions (i.e. in
0>) and that the total function A(v/,...,Vfc).< |̂[e]][X|.,_Vi.] is embedded into &. In
particular, if we apply the function to a product element (a;, . . . , ak) and it turns out
that for some i, p(x,)a, is undefined, then

(p(x,) x ••• x p(xfc)) (a,,...,ak) = <UNDEF>

also, and so by definition of composition in @, the whole expression is undefined.
Our first use of partiality is in the definition of the projection transformer S*.

The first equation realises the guard operation from Wadler and Hughes (1987).

<^*#Ee]la = £*AeV-* LJ Xx.Abs
mTT ra/r

Note that all partial projections may be expressed in the form either a or !a (where
a is total). Recall, the intuition behind a latent demand a (a total projection) is,
"this value may or may not be required, but if it is then a's worth will be needed."
Conversely, a demand of the form !<x means, "this value will be required, and what's
more, a's worth of it will be needed". With this intuition, the equation above may
be read as follows, "to compute the demand propagated from a lazy demand, first
compute it as if the demand was strict, and then make all the resulting demands
lazy".

The rest of the equations apply to projections expressible as !a.

e,...et]!a

where [(x/.a,),...,(**,«*)] = (4>*lf 1) !a
and x;,..., xk are the parameters of f

e i . . . e f c ] ! ( • • • + c : ( a , x ••• x a k ) + • • •)

$ j , IT c a s e e of • • • c,- x i . . . Xj(->e; • • • 1] !<x

= LJ/ (**#l[e]]!(5,)& P.-\ {*/,-••,**})

where

Pi = *J#|[e»]|!a

8 t = F a i l + ••• + ( p . - ( x i ) x • • • x P i ( x k ) ) + ••• + F a i l

In these rules the structure of the contexts corresponds to their underlying types. For
example, in the rule for constructor applications the projection is a sum of products
of projections; the particular summand given is associated with the constructor c.
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Similarly, the Fails appearing in the rule for case-expressions should be understood
as the bottom projections over the target types of the remaining constructors,
different from c.

We now go back to the proof of the safety condition.

Proposition
Suppose (j) and </># are function environments such that

for all function names f and all partial projections a (of the appropriate type), where
x/, . . . ,xn are the parameters off. Then for any expression e

a o

X(v,,...,vk).S'<j>lelly.^Vi] o (p{yi) x • • • x p(yk))

where p = <?*#|[e]]a.

Proof
The proof is given by structural induction on e. It is sufficient to show that

lliy^v,.]) E

From our earlier comments, recall that if y, *-* p{y( )v, = < U N D E F > for any i then
the expression <^H.e]|[yi.,->/,(y.)vl-] = < U N D E F > .

Case: (y,)

It is easy to observe that in this case we actually have equality.

Case: (f ej . . . ek)

Let p = <S*#[[f e, . . . ek floe, a = <t>*l± ] a and xt = S*Aet I(a(x,)). Now,

e i • • • ^ , ]

^ I Bty^v;] X . . . X

,)v,] X . . .

If for any i and y, T;- (y, )v, is < U N D E F > , then the last expression in the inequality
above is also < U N D E F > , and hence the result holds. Otherwise, from the definition
of p we have x-} (y; )v, C. p(yj )v,-. Moreover,

Hence we have the desired result.

Case: (c ej . . . e/t)

We may assume that a = !(••• + c : (a/ x ••• x a/t) H ). Now,

x ... x

^ t , (y,)v,] x . . . x
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where T,- = <%*Aei lla,. On the other hand, if

= <T#|[e/]|aj & • • & <g*Aek]aik
mV (pii

then,

As in the previous case, if Ty(yf)v,- is <UNDEF> for some i and ; then so is the
value on the right hand side of the inequality above. We may therefore assume that
none of the values is undefined, so that T,(y,)v,- C p(y,)v,-. From this, we obtain the
required inequality.

Case: (case e of • • • cy xj ... xk -> e; • • •)

There are two possibilities. The first is where ^ [ e j f y ^ v j ] = -L- In this case, the
left hand side of the inequality we want to prove becomes <UNDEF>, and hence we
have the desired result. The other is the case where we may have

y.MVi] = inCj ut x . . . x uk

Now,

[case e of • • • c/ x i . . . xk -> Bj...] [y .,_„,.])

V D ly i~pj (y,- )v,- XS^PJ (xs )«s]

where Pj = <?*#[[e;- Ja. Let

P = Uj °j & T,

(T,- = <?*,,[[el !(5.)

5j = Fai7 + • • • + {pj(xi) x • • • x pj(xk)) + • • • + Fail

We now have

inCj Pj{xi)ui x . . . x pj{xk)uk = \(5j) ( i n C j u , x . . . x u k )

c-w/ x . . . x

for some w; ... wk. Notice that

[case e of • • • cy x , . . . xk -> ey...][y/-.P(y()v,]

Therefore, we have the desired result. •
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Because of the remark we made about £# we only need to construct the function
environment for active demands. Again it is constructed as the least fixed point of
the function definitions.

--, f x , . . x k = e , • • • ] = fix {X<t>*.{---J^la.g*^le] « , - • •})

It is necessary to prove that the function environments obtained satisfy the hypothesis
of the preceding proposition. For simplicity, we assume that we only have the single
function definition f x = e.

Proposition
Suppose 4> and (/># are function environments which respectively arise from the
standard semantics and the abstract semantics. Let a be a partial projection of the
appropriate type. Then

Proof
The function environments (/> and <\>* are the respective limits of the sequences {<pn}
and {<pf} where

<PoWft = Av . _L
4>n+1 If I = Av . ^ , I e![»_,]

(0j|[f]|a)(x) = Fail
(#f+,l[f]]«)tt = (**#IIe]|a)(x)

Let Sn = {4>*lf Ia)(x) and 5 = (4>#|If ]]a)(x). First, we will show that

by induction on n.

Case: Base

Since a is a partial projection, the left hand side of the inequality is <UNDEF> when
n = 0.

Case: Inductive

#

= ao(Av . ^ n |
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Case: Limit

3 U» «

This completes the proof. •

5.4 Results of analysis

The familiar head-strict and tail-strict projections over the list type fiL . (1 + a x L)x
are given by

Head = \il . (1 -+- !a x l)±

Tail = nl . (1 -I- a x !/)±

Strictly speaking, the polymorphic projections are represented by {Head Ide) and
(Tail Ide) using the de-Briujn convention mentioned earlier, but we will often
be sloppy and understand that uninstantiated parameters a, /? etc. are actually
instantiated to Ide.

Below we present results obtained by the strictness analysis defined above. In
the projections which follow, we write the constructor names in explicitly to aid
understanding.

5.4.1 Lists

We begin with some standard list-based examples.

data List a = rec L . Nil I Cons a L

append :: List a -> List a -> List a
append xs zs

= case xs of
Nil -> zs
Cons y ys -> Cons y (append ys zs)

reverse :: List a -> List a

reverse rs

= case rs of

Nil -> Nil

Cons y ys -> append (reverse ys)

(Cons y Nil)

First append. Consider the demand

\(fil . (Nil : 1 + Cons : !<x x Ox)
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for append's result. This is an active demand (hence the outer application of partial-
ity) which is recursively active each list element (hence the partiality on the a), but
latent in the list tails (the non-partiality of /). This is what we previously wrote as
\Head. From this result context, the demand on append's arguments is computed as,

[xs i-» l(nl . (Nil : 1 + Cons : !a x /)j.),zs •-> fil . (Nil : 1 + Cons : !a x l)±]

In summary, a strict, head-strict demand [Head for append's result is translated to a
strict and head-strict demand for the first argument, and a lazy, head-strict demand
for the second, i.e. \Head x Head.

Alternatively, given a demand

\(jil . {Nil : 1 + Cons : a x !/)x)

(that is, strict and tail-strict, \Tail) for the result of append, the analysis deduces a
demand of

[ X S M 1(^1 . (Nil : 1 + Cons : a x !/)X),ZSH-> [(pi . (Nil : 1 + Cons : a x !/)x)]

for its arguments, i.e. both arguments strict and tail-strict, \Tail x [Tail.
The analyser obtained the following facts about reverse. If its result is demanded

in a strict and head-strict context

[(fil . (Nil : 1 + Cons : !<x x l)±)

then its argument is in a strict and tail-strict context

[ r s w \(fil . (Nil : 1 + Cons : a x !/)x)]

Likewise, if the result is demanded strictly and tail-strictly, then so is its argument.
Combining these facts, we see that reverse is strict and tail-strict, in both [Head and
[Tail contexts.

5.4.2 Trees

For the next examples we introduce a polymorphic tree type. As with lists, the
contexts over trees are generated automatically, having a structure which corresponds
to the structure of the type definition.

data Tree a = rec T . Leaf a I Branch T T

f la t ten :: Tree a -> List a
f l a t t en t = case t of

Leaf x -> Cons x Nil
Branch 1 r -> append (f la t ten 1) (f lat r)

Whereas particular contexts over lists like Head and Tail have standard names,
allowing the results of the analysis to be written compactly, contexts over trees do
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not. However, as with the list contexts, it is very easy to read the strictness from the
contexts.

The function flatten collapses a tree down to a list. If that result list is demanded
by a strict, and head-strict context, \Head, that is,

\(jil . {Nil : 1 + Cons : !a x l)±)

then the analyser deduces a demand on the tree argument of,

[ti-> \(fit . {Leaf : !a + Branch : \t x t)x)]

That is, a strict, Lea/-strict, left-strict context. When a tree is built in such a context
its left spine may be constructed strictly, all the way down to the leaf. The rest of
the tree is left unevaluated. If any other part of the tree is required, again its left
spine is evaluated all the way to the leaf, and so on.

Alternatively, if the result of flatten is demanded in a strict, and tail-strict context,
ITail, that is,

\{ftl . {Nil : 1 + Cons : a x !/)x)

then the demand on flat's argument is,

[xsw \{nt . {Leaf : a + Branch : \t x !t)x)]

which is a strict and left-and-right-strict context. The structure of the tree will be
evaluated, but none of the leaves.

5.4.3 Instances of polymorphic functions

All the examples so far have been of polymorphic functions on their own. The final
series of examples are of instances of polymorphic functions. We define a type of
Peano numerals together with addition, and use these to define a function which
sums the leaves of a tree.

data Nat = rec N . Zero I Succ N

add :: Nat -> Nat -> Nat
add a b = case a of

Zero -> b
Succ c -> Succ (add c b)

sum :: Tree Nat -> Nat
sum t = case t of

Leaf x -> x
Node 1 r -> add (sum 1) (sum r)

Because the numerals are non-atomic, add has some interesting strictness. A result
context of

!(/zn . {Zero : 1 -f Succ : \n)±)
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produces an argument context of

[ai-v !(/in . (Zero : 1 + Succ : !n)j_),bi-» !(/in . {Zero : 1 + Succ : !n)x)]

Conversely, a result context of

\(lin . (Zero : 1 + Succ : n)j_)

generates the argument context

[aI—> !(/in . (Zero : 1 + Succ : M)j_)>bi-» /*" • (Zero : 1 + Succ : n)±]

In other words, if the complete result of add is demanded then both its arguments
are demanded completely. Conversely, if the result of add is only demanded strictly,
then its first argument is demanded strictly, but it's second lazily.

Now let us examine sum. If sum's result is demanded hyper-strictly then the
analyser deduces that its argument is also demanded hyper-strictly. That is, a result
context,

\(fin . (Zero : 1 4- Succ : !n)x)

is converted to the argument context,

[ti-> ((nt . (Leaf : !<x + Node : It x \t)±) \(fin . (Zero : 1 + Succ : !n)±))]

Notice the explicit application of one context to another. As we mentioned earlier,
all the polymorphic contexts like H and T should actually have been applied to
Ide, but this would have cluttered up the examples unnecessarily. In this case, the
argument projection should be substituted for a.

As a final example, suppose the demand for sum's result is merely strict. Then
the demand for sum's tree argument is strict, leaf-strict and left-strict. That is, the
analyser converts the result context

!(/zn . (Zero : 1 + Succ : n)±)

to the argument context

[ti-> ((^t . (Leaf : !a + Node : \t x t)±) \(^n . (Zero : 1 + Succ : n)x))]

6 Relationship to other work

6.1 Unboxed values

Peyton Jones and Launchbury (1991) showed that unboxed values are useful source-
level additions to a lazy functional language, certainly as far as compiler optimisa-
tions are concerned. They allow both flow of control and representation issues to be
exposed to the compiler while remaining purely within the functional framework.

For example, consider the double function denned as follows.

double x = x+x

In applications of double, unless something clever is done, most implementations
would attempt to evaluate the argument twice, even though on the second attempt it
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is certain to be in normal form. If, however, integers and the + function are defined
in terms of yet more primitive operations, then standard program transformation
can remove this double evaluation. We define,

data Int = Mklnt Int#

m + n = case m of Mklnt m# ->

case n of Mklnt n# ->

case m# +# n# of r# -> Mklnt r#

where Int# is the type of unboxed integers. The # on variable names is for human-
readability only, and is used to indicate an unboxed value. Now by unfolding the
definition of+, the definition of double becomes:

double x = case x of Mklnt m# ->

case x of Mklnt n# ->

case m# +# n# of r# -> Mklnt r#

which, by eliminating a repeated case, becomes,

double x = case x of Mklnt m# ->

case m# +# m# of r# -> Mklnt r#

More generally, if a (recursive) function f:: Int->Int, say, is known to be strict
then it is factorised into a worker and a wrapper:

f x = case x of Mklnt n# -> f# n#

f# n# =

where the body of f # contains the work done in f originally. Typically, the wrapper
is unfolded and disappears, leading to very efficient code which has taken advantage
of strictness.

To give a semantics for unboxed types, unpointed domains were introduced. As we
have seen, these are domains which lack a bottom element. For example, the type of
unboxed integers, called int#, is precisely the set of integers (actually some middle
portion of the set), i.e. no bottom element.

The tie-up with the work here is that partial projections lead automatically to the
same domains. The image of Str when applied to Int, for example, is exactly Int#.
This is very exciting, because it means that the results of strictness analysis should
now be able to be tied very closely to existing implementation technology. However,
it is still early days, and the implications need to be worked out in detail.

6.2 PERs

Every function specifies an equivalence relation: two values are considered equivalent
if the function maps them to the same point. Projections are functions so the same
thing applies. Moreover, in this case, it works the other way round as well: the
equivalence relation specifies the projection completely.
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This insight suggests that analyses based on equivalence relations ought to sub-
sume projection-based analyses, and indeed it does. In his thesis, Hunt (1991) defined
strictness analysis in terms of partial equivalence relations - a generalisation forced
by moving to the higher-order case. Partial equivalence relations have no reflexivity
axiom, so a point may be unrelated to anything, including itself .

At ground types, Hunt chose exactly those PERs which arise from the projections
used in projection analysis, with the addition of one other (which he called BOT)
that was used to capture simple strictness - unsurprisingly (given the projection
background), the other relations could not capture simple strictness. The PERs at
higher types were all induced from these using logical relations between PERs of
lower types.

This structure is very elegant with one glaring exception. BOT is quite anomalous
compared with the rest of the scheme. In the PER ordering it is less than ID (which
stands for 'no information') whereas all other strictness PERs are greater than ID.
Because of this, it does not combine with other strictness patterns. For example,
head-strictness can be expressed by a single PERs, but 'strict and head-strict' cannot
(unlike in the projection world).

An improvement suggested by this paper is to take PERs corresponding to partial
projections. Then the PER corresponding with STR will detect strictness. It is in the
right place in the domain, and can be combined with other strictness patterns.

There is one problem with this. In order to use the obvious model for^x, Hunt
placed a restriction on his PERs, namely that they should all be strict (relate _L to
J.) and inductive (if the corresponding elements of two chains are related, then so
are the limits). Unfortunately, the PER corresponding with STR is not strict as it
does not relate i . to anything.

What is the solution? The problem seems to come from the model for the type of
fix, namely VA . (A —• A) —• A. If function spaces are not lifted, then there seems
no choice but to use Hunt's scheme with strict PERs. On the other hand, if function
spaces are lifted as advocated by Abramsky (1990) and Ong (1988), the problem
seems to vanish. Interestingly, Davis (1994) found it essential to use lifted function
spaces in his work on higher-order projection analysis. Though more work is needed,
it appears that this device will also make the PER theory more elegant.
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