TAUBERIAN CONDITIONS FOR THE EQUIVALENCE OF WEIGHTED MEAN AND POWER SERIES METHODS OF SUMMABILITY

BY
DAVID BORWEIN

1. Introduction. Suppose throughout that $\left\{p_{n}\right\}$ is a sequence of non-negative numbers with $p_{0}>0$, that

$$
P_{n}=\sum_{k=0}^{n} p_{k} \rightarrow \infty
$$

and that $\left\{s_{n}\right\}$ is a sequence of real numbers. Let

$$
\begin{gathered}
p(x)=\sum_{k=0}^{\infty} p_{k} x^{k}, \quad P(x)=\sum_{k=0}^{\infty} P_{k} x^{k}, \\
t_{n}=\frac{1}{p_{n}} \sum_{k=0}^{n} p_{k} s_{k}, \quad \sigma(x)=\frac{1}{p(x)} \sum_{k=0}^{\infty} p_{k} s_{k} x^{k},
\end{gathered}
$$

and suppose that

$$
\begin{equation*}
p(x)<\infty \text { for } 0<x<1 \tag{1}
\end{equation*}
$$

Then

$$
\begin{equation*}
(1-x) P(x)=p(x) \quad \text { for } \quad 0<x<1 \tag{2}
\end{equation*}
$$

The weighted mean summability method M_{p} and the power series method J_{p} are defined as follows:

$$
\begin{aligned}
& s_{n} \rightarrow s\left(M_{p}\right) \text { if } t_{n} \rightarrow s, \\
& s_{n} \rightarrow s\left(J_{p}\right) \text { if } \sigma(x) \text { is convergent for } 0<x<1 \text { and } \sigma(x) \rightarrow s \text { as } x \rightarrow 1-.
\end{aligned}
$$

Both methods are known to be regular (see [3, pp. 57, 81]). It is also known (see [4]) that $s_{n} \rightarrow s\left(M_{p}\right)$ implies $s_{n} \rightarrow s\left(J_{p}\right)$.

The purpose of this paper is to establish results concerning Tauberian conditions sufficient for $s_{n} \rightarrow s\left(J_{p}\right)$ to imply $s_{n} \rightarrow s\left(M_{p}\right)$. In $\S 2$ we prove the following two theorems:

Theorem 1. Let $s_{n} \rightarrow s\left(J_{p}\right)$, let $s_{n}>-H$ for $n=0,1, \ldots$, where H is a

[^0]constant; and let $p(x)$ satisfy either
\[

$$
\begin{equation*}
\lim _{x \rightarrow 1-1} \frac{p\left(x^{2}\right)}{p(x)}=1 \tag{3}
\end{equation*}
$$

\]

or
(4) $\lim _{x \rightarrow 1-} \frac{p\left(x^{m+1}\right)}{p(x)}=\mu_{m}>0 \quad$ for $m=0,1, \ldots$, where $\left\{\mu_{m}\right\}$ is totally monotone.

Then $s_{n} \rightarrow s\left(M_{p}\right)$.
Theorem 2. Let

$$
\begin{equation*}
n p_{n}=o\left(P_{n}\right) \tag{5}
\end{equation*}
$$

let $s_{n} \rightarrow s\left(J_{\mathrm{p}}\right)$ and let $s_{n}>-\gamma_{n}$, where $\gamma_{n} \geq 0$ for $n=0,1, \ldots$, and

$$
\begin{equation*}
n p_{n} \gamma_{n}=O\left(P_{n}\right) \tag{6}
\end{equation*}
$$

Then $s_{n} \rightarrow s\left(M_{p}\right)$.
Note that (1) is a consequence of (5) and (2), since (5) implies that $P_{n-1} / P_{n} \rightarrow 1$.

The Abel-type method $A_{\alpha}(\alpha>-1)$ is the J_{p} method given by $p(x)=$ $(1-x)^{-\alpha-1}$ (see [1] and [2]) which satisfies (4) with $\mu_{m}=(m+1)^{-\alpha-1}$. Theorem 1 thus yields a Tauberian result for A_{α}. The case $\alpha=0$ of this result, which is well-known (see [3, Theorem 13] and [6, Theorem $\left.2\left(A_{\alpha}\right)\right]$), states that

$$
\text { if } s_{n} \rightarrow s(A) \text { and } s_{n}>-H \text { for } n=0,1, \ldots, \text { then } s_{n} \rightarrow s(C, 1)
$$

A being the standard Abel method and $(C, 1)$ the Cesàro method of order 1.
The logarithmic methods L and l are respectively the methods J_{p} and M_{p} given by $p_{n}=(n+1)^{-1}$. Since $p_{n}=(n+1)^{-1}, \gamma_{n}=-\mu \log (n+1)$ satisfy the conditions of Theorem 2, we get as a corollary of that theorem a result proved by Kochanovski [5], namely

$$
\text { if } s_{n} \rightarrow s(L) \text { and } s_{n}>-\mu \log (n+1) \text { for } n=0,1, \ldots, \text { then } s_{n} \rightarrow s(l)
$$

In $\S 3$ we prove two theorems which set out simple conditions sufficient for (3) or (4) to hold.
2. Proofs of Theorems 1 and 2. We introduce some additional notation. Let

$$
\phi(x)= \begin{cases}\frac{1}{x} & \text { for } c \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

where $0<c<1$, and let

$$
\psi(x)=\frac{1}{p(x)} \sum_{k=0}^{\infty} p_{k} s_{k} x^{k} \phi\left(x^{k}\right)
$$

Observe that

$$
\begin{equation*}
-\frac{c}{1-c}+\frac{x}{1-c} \leq \phi(x) \leq 1+\frac{1}{c}-\frac{x}{c} \text { for } 0 \leq x \leq 1 \tag{7}
\end{equation*}
$$

Proof of Theorem 1. Suppose without loss in generality that $H=0$, i.e., that $s_{n} \geq 0$ for $n=0,1, \ldots$.

Case 1. Suppose (3) holds. Then, by (7),

$$
\limsup _{x \rightarrow 1-} \psi(x) \leq\left(1+\frac{1}{c}\right) \lim _{x \rightarrow 1-} \sigma(x)-\frac{1}{c} \lim _{x \rightarrow 1-} \frac{p\left(x^{2}\right)}{p(x)} \sigma\left(x^{2}\right)=\left(1+\frac{1}{c}\right) s-\frac{s}{c}=s ;
$$

and similarly $\lim \inf _{x \rightarrow 1^{-}} \psi(x) \geq s$. It follows that $\lim _{x \rightarrow 1^{-}} \psi(x)=s$, and therefore that

$$
\psi\left(c^{1 / n}\right)=\frac{1}{p\left(c^{1 / n}\right)} \sum_{k=0}^{n} p_{k} s_{k} \rightarrow s .
$$

Taking $s_{k}=1$ for $k=0,1, \ldots$, we obtain

$$
\begin{equation*}
\frac{P_{n}}{p\left(c^{1 / n}\right)} \rightarrow 1 . \tag{8}
\end{equation*}
$$

Consequently $t_{n} \rightarrow s$.
Case 2. Suppose (4) holds. Then (see [3, Theorem 207]),

$$
\mu_{m}=\int_{0}^{1} t^{m} d \chi(t) \text { for } \quad m=0,1, \ldots
$$

where the function χ is non-decreasing and bounded on [0, 1]. Further, since $\mu_{1}>0$, we can choose $c \in(0,1)$ to be such that χ is continuous at c and

$$
\alpha=\int_{c}^{1} \frac{d \chi(t)}{t}>0 .
$$

Then, for $m=0,1, \ldots$,

$$
\frac{1}{p(x)} \sum_{k=0}^{\infty} p_{k} s_{k} x^{k} x^{m k}=\frac{p\left(x^{m+1}\right)}{p(x)} \sigma\left(x^{m+1}\right) \rightarrow \mu_{m} s \quad \text { as } \quad x \rightarrow 1-
$$

and so, for any polynomial $a(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m}$,

$$
\begin{aligned}
\frac{1}{p(x)} \sum_{k=0}^{\infty} p_{k} s_{k} x^{k} a\left(x^{k}\right) & \rightarrow\left(a_{0} \mu_{0}+a_{1} \mu_{1}+\cdots+a_{m} \mu_{m}\right) s \\
& =s \int_{0}^{1} a(t) d \chi(t) \quad \text { as } \quad x \rightarrow 1-
\end{aligned}
$$

Since χ is continuous at c it is readily demonstrated that given $\varepsilon>0$, there are
polynomials $a(x), b(x)$ such that

$$
a(x) \leq \phi(x) \leq b(x) \text { for } 0 \leq x \leq 1 \text { and } \int_{0}^{1}(b(t)-a(t)) d \chi(t)<\varepsilon
$$

It follows that

$$
\lim _{x \rightarrow 1-} \psi(x)=s \int_{0}^{1} \phi(t) d \chi(t)=s \int_{c}^{1} \frac{d \chi(t)}{t}=s \alpha .
$$

Hence

$$
\psi\left(c^{1 / n}\right)=\frac{1}{p\left(c^{1 / n}\right)} \sum_{k=0}^{n} p_{k} s_{k} \rightarrow s \alpha
$$

and, taking $s_{k}=1$ for $k=0,1, \ldots$,

$$
\frac{P_{n}}{p\left(c^{1 / n}\right)} \rightarrow \alpha
$$

Thus $t_{n} \rightarrow s$.
This completes the proof of Theorem 1.
Proof of Theorem 2. First we note that, for $0<x<1, m \geq 1$ we have, by (5) and (2),

$$
\begin{aligned}
0<p(x)-p\left(x^{m+1}\right) & =\sum_{k=0}^{\infty} p_{k} x^{k}\left(1-x^{k m}\right) \leq m(1-x) \sum_{k=0}^{\infty} k p_{k} x^{k} \\
& =o((1-x) P(x)) \\
& =o(p(x)) \quad \text { as } \quad x \rightarrow 1-.
\end{aligned}
$$

Since $p(x) \rightarrow \infty$ as $x \rightarrow 1-$, it follows that

$$
\begin{equation*}
\lim _{x \rightarrow 1-} \frac{p\left(x^{m+1}\right)}{p(x)}=1 \quad \text { for } \quad m \geq 1 \tag{9}
\end{equation*}
$$

Further, by (7), we have that, for $0<x<1$,

$$
\begin{aligned}
\psi(x) & =\frac{1}{p(x)} \sum_{k=0}^{\infty} p_{k}\left(s_{k}+\gamma_{k}\right) x^{k} \phi\left(x^{k}\right)-\frac{1}{p(x)} \sum_{k=0}^{\infty} p_{k} \gamma_{k} x^{k} \phi\left(x^{k}\right) \\
& \leq\left(1+\frac{1}{c}\right) \sigma(x)-\frac{1}{c} \sigma\left(x^{2}\right) \frac{p\left(x^{2}\right)}{p(x)}+\frac{1}{c(1-c) p(x)} \sum_{k=0}^{\infty} p_{k} \gamma_{k} x^{k}\left(1-x^{k}\right) \\
& \leq\left(1+\frac{1}{c}\right) \sigma(x)-\frac{1}{c} \sigma\left(x^{2}\right) \frac{p\left(x^{2}\right)}{p(x)}+\frac{1-x}{c(1-c) p(x)} \sum_{k=0}^{\infty} k p_{k} \gamma_{k} x^{k} .
\end{aligned}
$$

Therefore, by (2), (6), and (9), there is a constant M such that

$$
\limsup _{x \rightarrow 1-} \psi(x) \leq\left(1+\frac{1}{c}\right) s-\frac{s}{c}+M=s+M<\infty .
$$

Similarly

$$
\liminf _{x \rightarrow 1-} \psi(x)>-\infty ;
$$

and hence $\psi(x)=O(1)$ for $0<x<1$. It follows that

$$
\psi\left(c^{1 / n}\right)=\frac{1}{p\left(c^{1 / n}\right)} \sum_{k=0}^{n} p_{k} s_{k}=O(1),
$$

and hence, since (8) is a consequence of (9), that

$$
\begin{equation*}
t_{n}=O(1) \tag{10}
\end{equation*}
$$

Since

$$
(1-x) \sum_{k=0}^{\infty} P_{k} t_{k} x^{k}=\sum_{k=0}^{\infty} p_{k} s_{k} x^{k} \quad \text { for } \quad 0<x<1,
$$

we have, by (2), that

$$
\begin{equation*}
\sigma(s)=\frac{1}{P(x)} \sum_{k=0}^{\infty} P_{k} t_{k} x^{k} \rightarrow s \quad \text { as } \quad x \rightarrow 1- \tag{11}
\end{equation*}
$$

Next, by (2) and (9),

$$
\begin{equation*}
\lim _{x \rightarrow 1-} \frac{P\left(x^{m+1}\right)}{P(x)}=\lim _{x \rightarrow 1-} \frac{p\left(x^{m+1}\right)}{p(x)} \frac{1-x}{1-x^{m+1}}=\frac{1}{m+1} \quad \text { for } m=0,1, \ldots \tag{12}
\end{equation*}
$$

It follows from (10), (11) and (12), by Case 2 of Theorem 1, that

$$
\begin{equation*}
u_{n}=\frac{1}{Q_{n}} \sum_{k=0}^{n} P_{k} t_{k} \rightarrow s, \quad \text { where } \quad Q_{n}=\sum_{k=0}^{n} P_{k} . \tag{13}
\end{equation*}
$$

Further, by (5), (6) and (10), we have that, for $n \geq 1$,

$$
t_{n}-t_{n-1}=s_{n} \frac{p_{n}}{P_{n}}-t_{n-1} \frac{p_{n}}{P_{n}}>-\frac{\gamma_{n} p_{n}}{P_{n}}-t_{n-1} \frac{p_{n}}{P_{n}}>-\frac{\gamma}{n}
$$

for some positive constant γ. Thus, for $m>n>1$,

$$
t_{m}-t_{n} \geq-\gamma \sum_{k=n+1}^{m} \frac{1}{k} \geq-\gamma \log \frac{m}{n},
$$

and so

$$
\begin{equation*}
\lim \inf \left(t_{m}-t_{n}\right) \geq 0 \text { when } \quad m>n \rightarrow \infty \quad \text { and } \frac{m}{n} \rightarrow 1 \tag{14}
\end{equation*}
$$

Now, by (5),

$$
n P_{n}-(n-1) P_{n-1}=P_{n}+(n-1) p_{n} \sim P_{n}
$$

and therefore $n P_{n} \sim Q_{n}$.

It follows that, for $m>n(1+\delta), \delta>0$,
(15) $\frac{Q_{m}}{Q_{n}}=\frac{1}{Q_{n}} \sum_{k=n+1}^{m} P_{k}+1 \geq \frac{P_{n}}{Q_{n}}(m-n)+1 \geq \frac{\delta n P_{n}}{Q_{n}}+1 \rightarrow 1+\delta \quad$ as $\quad n \rightarrow \infty$.

Suppose without loss in generality that $s=0$, i.e., $u_{n} \rightarrow 0$. It follows from (14) that, given $\varepsilon>0$, there are positive numbers n_{0}, δ such that $t_{m}-t_{n}>-\varepsilon$ when $m>n>n_{0}$ and $(m / n)<1+2 \delta$. Consequently if m, n satisfy these conditions we have, by (13), that

$$
\left(t_{n}-\varepsilon\right) \sum_{k=n+1}^{m} P_{k} \leq \sum_{k=n+1}^{m} P_{k} t_{k}=u_{m} Q_{m}-u_{n} Q_{n} \leq\left(t_{m}+\varepsilon\right) \sum_{k=n+1}^{m} P_{k}
$$

and hence that

$$
\begin{equation*}
t_{n}-\varepsilon \leq \frac{u_{m} Q_{m}-u_{n} Q_{n}}{Q_{m}-Q_{n}}=u_{m}+\frac{u_{m}-u_{n}}{\left(Q_{m} / Q_{n}\right)-1} \leq t_{m}+\varepsilon \tag{16}
\end{equation*}
$$

Letting $m, n \rightarrow \infty$ subject to $1+\delta<(m / n)<1+2 \delta$, it follows from (15) that

$$
\frac{1}{\left(Q_{m} / Q_{n}\right)-1}=O(1),
$$

and hence from (16) that

$$
\limsup t_{n} \leq \varepsilon \quad \text { and } \quad \liminf t_{m} \geq-\varepsilon .
$$

Therefore $t_{n} \rightarrow 0$.
This completes the proof of Theorem 2.
Remark. A trivial modification of the proof of Theorem 1, and of the part of the proof of Theorem 2 up to and including (10), shows that the theorems remain valid if in each the hypothesis " $s_{n} \rightarrow s\left(J_{p}\right)$ " is replaced by " $\sigma(x)=O(1)$ for $0<x<1$ " and the conclusion " $s_{n} \rightarrow s\left(M_{p}\right)$ " by " $t_{n}=O(1)$ ".
3. Other theorems. The following two theorems give simple conditions sufficient for (3) or (4) to hold.

Theorem 3. Let

$$
\begin{equation*}
P_{n} \sim P_{n+1} . \tag{17}
\end{equation*}
$$

(i) If

$$
\begin{equation*}
P_{n} \sim P_{2 n} \tag{18}
\end{equation*}
$$

then (3) holds.
(ii) If
(19) $\lim _{n \rightarrow \infty} \frac{P_{n}}{P_{n m}}=\mu_{m-1}>0 \quad$ for $m=1,2, \ldots$, where $\left\{\mu_{m}\right\}$ is totally montone, then (4) holds.

Theorem 4. Let $p_{n}>0$ for $n=0,1, \ldots$, and let

$$
\begin{equation*}
p_{n} \sim p_{n+1} . \tag{20}
\end{equation*}
$$

(i) If

$$
\begin{equation*}
p_{n} \sim 2 p_{2 n}, \tag{21}
\end{equation*}
$$

then (3) holds.
(ii) If
(22) $\lim _{n \rightarrow \infty} \frac{p_{n}}{p_{n m}}=m \mu_{m-1}>0$ for $m=1,2, \ldots$, where $\left\{\mu_{m}\right\}$ is totally monotone, then (4) holds.

Proof of Theorem 3. We shall prove Part (ii). By (17) and (19), we have that, when $x \rightarrow 1$-,

$$
\begin{aligned}
P\left(x^{m}\right)= & \sum_{n=0}^{\infty} \frac{P_{n}}{P_{n m}} P_{n m} x^{n m} \sim \mu_{m-1} \sum_{n=0}^{\infty} P_{n m} x^{n m} \\
& \sim \frac{\mu_{m-1}}{m} \sum_{k=0}^{m-1} \sum_{n=0}^{\infty} P_{n m+k} x^{n m+k}=\frac{\mu_{m-1}}{m} P(x) .
\end{aligned}
$$

Hence, by (2),

$$
\lim _{x \rightarrow 1-} \frac{p\left(x^{m}\right)}{p(x)}=\lim _{x \rightarrow 1-} \frac{P\left(x^{m}\right)}{P(x)} \cdot \frac{1-x^{m}}{1-x}=\mu_{m-1} .
$$

This establishes Part (ii). The proof of Part (i) is similar but simpler.
Theorem 4 can be proved in the same way, or by first establishing the following simple implications: $(20) \Rightarrow(17) ;(20)$ and (21) $\Rightarrow(18) ;(20)$ and (22) \Rightarrow (19).

Added December 15, 1980. It has been brought to the author's attention that Case 1 of Theorem 1 appears as Theorem 6 in a paper by B. Kwee, "On generalized logarithmic methods of summation", J. Math. Anal. Appl. 35 (1971), 83-89. His proof is somewhat more complicated than the one herein and should be corrected by the replacement of certain instances of "lim" by "lim sup" or "lim inf".

References

[^1]5. A. P. Kochanovski, A condition for the equivalence of logarithmic methods of summability, Ukrainian Math. J., 27 (1975), 229-234.
6. C. T. Rajagopal, On Tauberian theorems for some standard methods of summability, J. Indian Math. Soc. 39 (1975), 69-82.

Department of Mathematics
The University of Western Ontario
London, Ontario, Canada N6A 5B7

[^0]: Received by the editors June 29, 1979 and, in revised form, June 11, 1980.
 Supported in part by the Natural Sciences and Engineering Research Council Canada Grant A-2983.

[^1]: 1. A. Amir (Jakimovski), Some relations between the methods of summability of Abel, Borel, Cesàro, Hölder and Hausdorff, J. d'Analyse Math., 3 (1954), 346-381.
 2. D. Borwein, On a scale of Abel-type summmability methods, Proc. Cambridge Phil. Soc., 53 (1957), 318-322.
 3. G. H. Hardy, Divergent Series, Oxford (1949).
 4. K. Ishiguro, A Tauberian theorem for (J, p_{n}) summability, Proc. Japan Acad., 40 (1964), 807-812.
