THE MAXIMAL IDEAL SPACE OF SUBALGEBRAS OF THE DISK ALGEBRA

BY
BRUCE LUND

1. Introduction. Let X be a compact Hausdorff space and $C(X)$ the complexvalued continuous functions on X. We say A is a function algebra on X if A is a point separating, uniformly closed subalgebra of $C(X)$ containing the constant functions. Equipped with the sup-norm $\|f\|=\sup \{|f(x)|: x \in X\}$ for $f \in A, A$ is a Banach algebra. Let M_{A} denote the maximal ideal space.

Let D be the closed unit disk in \mathbf{C} and let U be the open unit disk. We call $A(D)=\{f \in C(D): f$ is analytic on $U\}$ the disk algebra. Let T be the unit circle and set $C^{1}(T)=\left\{f \in C(T): f^{\prime}(t) \in C(T)\right\}$.

In this paper we discuss conditions on a function algebra A on D contained in $A(D)$ which imply that $M_{A}=D$. Our main result is the following.

Theorem 1. Let A be a function algebra on D such that $A \subset A(D)$. Suppose there is $f \in A$ such that $f(t) \in C^{1}(T)$ and $Q_{f}=\left\{t \in T: f^{\prime}(t)=0\right\}$ is countable. Then $M_{A}=D$.

The following closely related result is due to Bjork ([2], Theorem 2.1).
Theorem (Bjork). Let A be a function algebra on D such that $A \subset A(D)$. Suppose there is a set $A_{0} \subset A$ such that $\left.A_{0}\right|_{T} \subset C^{1}(T)$ and A_{0} is uniformly dense in A. Then $M_{A}=D$.

The hypothesis in Bjork's result that A_{0} is uniformly dense in A can be replaced by the hypothesis that A_{0} separates points on D. To see this, let $\left[A_{0}\right]$ be the smallest function algebra on D containing A_{0} where we suppose now that A_{0} separates points on D. By a result of Bjork ([2], Lemma 2.3) $\left[A_{0}\right]$ has a regular peak point $\alpha \in T$. (We say that $\alpha \in T$ is a regular peak point for $\left[A_{0}\right]$ if there is $f \in\left[A_{0}\right]$ with $f \in C^{1}(T)$ such that $f^{\prime}(\alpha) \neq 0,\{\alpha\}=\{t \in T: f(t)=f(\alpha)\}$, and $f(\alpha)$ belongs to the boundary of the unbounded component of $\mathbf{C} \backslash f(T)$. But then α is also a regular peak point for A. This is precisely Bjork's condition for showing that $M_{A}=D$. (See [2]; p. 47.)

Hence, we may state the following more general result which is useful in applications. (See example 1.)

Theorem 2. Let A be a function algebra on D such that $A \subset A(D)$. Suppose there is a set $A_{0} \subset A$ such that A_{0} separates points on D and $\left.A_{0}\right|_{T} \subset C^{1}(T)$. Then $M_{A}=D$.

[^0]In $\S 3$ we give an example which shows that Theorem 1 does not contain Theorem 2. Also, we give an example which shows that the countability of Q_{f} in Theorem 1 can not be replaced by the condition that Q_{f} have measure zero in T. In $\S 4$ we give an application of Theorem 1.

In proving Theorem 1 we apply results of Gamelin [3] in the theory of function algebras on an arc. See Stout [9] for an exposition of this theory. We also use results of Bjork [2] on the structure of the maximal ideal space of a function algebra.
2. Main result. If A is a function algebra, let S_{A} be the Shilov boundary. Let \hat{f} stand for the Gelfand transform of $f \in A$ and give M_{A} the Gelfand (weak-star) topology. If $f \in A$ and $z \in \mathbf{C}$, let $\pi_{f}^{-1}(z)=\left\{\Phi \in M_{A}: \hat{f}(\Phi)=z\right\}$ and let $\# \pi_{f}^{-1}(z)$ denote the cardinality of $\pi_{f}^{-1}(z)$.

Lemma 1 ([1] p. 240). Let A be a function algebra on X and let $f \in A$. Let Γ be a closed Jordan curve in \mathbf{C} with interior V. Suppose Γ contains an open subarc J such that $\# \pi_{f}^{-1}(z) \leq n$ for all $z \in J$ and that $\pi_{f}^{-1}(V) \subset M_{A} \mid S_{A}$. Then $\# \pi_{f}^{-1}(z) \leq n$ for all $z \in V$.

Let A be a function algebra on X and suppose K is a compact subset of $M_{\boldsymbol{A}}$. We set $\operatorname{Hull}_{\boldsymbol{A}}(K)=\left\{\Phi \in M_{\boldsymbol{A}}:|f(\Phi)| \leq\|f\|_{K_{K}}\right.$ for all $\left.f \in A\right\}$ and let $A \mid K$ denote the function algebra on K which is generated by the restriction to K of functions in A. Then $M_{A \mid K}=\operatorname{Hull}_{A}(K)$. If $V \in \mathbf{C}$, we let ∂V be the topological boundary of V.

Proof of Theorem 1. Let $F \subset T$ be compact. Let I be a proper closed subinterval of T containing F. Since there is $f \in A$ with $f \in C^{1}(T)$ and Q_{f} countable, it follows by [3], Theorem 5 that $A \mid I=C(I)$. Hence, $A \mid F=C(F)$. In particular, $S_{A}=T$.

Let $\Delta=M_{A} \backslash D$ and assume $\Delta \neq \varnothing$. We show this leads to a contradiction. Let $b \Delta$ be the topological boundary of Δ in M_{A}. By [2], Theorem 1.2 we have $\Delta \subset$ $\operatorname{Hull}_{A}(b \Delta \cap T)$. If $b \Delta \cap T \neq T$, then $A \mid(b \Delta \cap T)=C(b \Delta \cap T)$. This implies that $\Delta \notin \operatorname{Hull}_{A}(b \Delta \cap T)=b \Delta \cap T$. Hence, $b \Delta \cap T=T$.

By [9], Lemma 30.29 there is a compact, totally disconnected set $J \subset f(T)$ such that the following conditions hold.
(i) At each point of $f(T) \backslash J, f(T)$ has the structure of an open arc.
(ii) If $K \subset f(T) \backslash J$ is compact, then f maps $f^{-1}(K)$ in a finite to one way onto K.

Let the bounded components of $\mathbf{C} \backslash f(T)$ be denoted by V_{k} for $k=0,1,2, \ldots$ and let V_{∞} be the unbounded component. Then ∂V_{∞} is not simply connected since $f(U)$ is contained in the polynomial hull of ∂V_{∞}. Consequently, ∂V_{∞} is not totally disconnected ([7], Theorem 14.3, p. 123), and so $\partial V_{\infty} \not \ddagger J$.

Suppose $a_{0} \in \partial V_{\infty} \backslash J$. By (ii) there are $t_{1}, \ldots, t_{n} \in T$ satisfying $f\left(t_{i}\right)=a_{0}$. Using (i) and (iii) we can find an open arc L^{\prime} passing through a_{0} which is contained in $f(T)$ and a subarc $L \subset L^{\prime}$ with the following properties: L contains a_{0} and the closure of L in \mathbf{C} is contained in L^{\prime}, L is relatively open in $f(T)$ (that is, there is a connected open set Ω in \mathbf{C} such that $\Omega \cap f(T)=L$), and there are pairwise disjoint open
intervals I_{i} about t_{i} for $i=1, \ldots, n$ such that $f\left(I_{i}\right)=f\left(I_{j}\right)$ for all i and j and $\{t \in T: f(t) \in L\}=\bigcup_{i=1}^{n} I_{i}$.
Next we show that $L \subset \partial V_{\infty}$. Let Ω be a connected open set in \mathbf{C} such that $\Omega \cap f(T)=L$. Then $\left(\Omega \cap \partial V_{\infty}\right) \subset L$. Since $a_{0} \in L \cap \partial V_{\infty}$, it follows that $\Omega \backslash L$ meets both V_{∞} and some bounded component V_{0} of $\mathbf{C} \backslash f(T)$. From this we may conclude that $\Omega \backslash L$ is not connected. As a result, $\Omega \backslash L$ has exactly two open components which we will call E_{1} and E_{2} and L is contained in the boundaries of both E_{1} and E_{2} ([7], Theorem 11.7, p. 118 and Theorem 16.3, p. 127). Moreover, we have $E_{1} \subset V_{\infty}$ and $E_{2} \subset V_{0}$.

If $\Omega \cap \partial V_{\infty} \neq L$, then there is $b \in L$ and an open disk B about b with $B \subset \Omega$ and $B \cap \partial V_{\infty}=\varnothing$. In this case we can find an arc from a point in V_{∞} to a point in V_{0} which does not pass through ∂V_{∞} and this gives a contradiction.

We have just seen that $\pi_{f}^{-1}(w) \cap T$ contains n elements for each $w \in L$. Since L is also in the boundary of the unbounded component of $\mathbf{C} \backslash f(T)$, it follows that $\pi_{f}^{-1}(w) \subset T$. An elementary proof of this may be given, but the result also follows from a more general theorem of Björk ([1], theorem 1.7).

Let $\widehat{f(D)}$ be the polynomial hull of $f(D)$. The components of the interior of $\widehat{f(D)}$ are simply connected. Let G be the component which contains $f(U)$. Then $f(D) \subset \bar{G}$ and L is an open arc contained in ∂G. Moreover, $\partial G \subset f(T)$.

Furthermore, since L is open in $f(T)$, there is no $w_{0} \in L$ with the property that a sequence $\left\{w_{k}\right\} \subset \partial G \backslash L$ converges to w_{0}. Let $\phi(z)$ be a conformal map of G onto U. From the previous remark it follows that $\phi(z)$ extends continuously to L and maps L homeomorphically into T ([5], p. 44). Consequently, $F(z)=\phi \circ f(z)$ maps I_{i} into T. By the Schwartz reflection principle $F(z)$ extends analytically across I_{i} for $i=1, \ldots, n$.

Let N be an open disk about $\phi\left(a_{0}\right)$ where N is chosen to be so small that $N \cap$ $T \subset \phi(L)$ and $\phi^{-1}(N \cap U) \cap f(T)=\varnothing$. Since $\phi^{-1}(N \cap U)$ is connected, we must have $\phi^{-1}(N \cap U)$ contained in the single component V_{0} of $\mathbf{C} \backslash f(T)$. Since $f(U)$ meets V_{0}, it follows that $\phi^{-1}(N \cap U) \subset V_{0} \subset f(U)$. By reducing the radius of N, we can also find pairwise disjoint open sets W_{i} in \mathbf{C} for $i=1, \ldots, n$ such that $t_{i} \in W_{i}$ and $N \subset F\left(W_{i}\right)$. It follows that $f\left(W_{i} \cap D\right) \supset \phi^{-1}(N \cap D)$ for each i.
The domain $\phi^{-1}(N \cap U)$ is bounded by the closed Jordan curve Γ where Γ is the image under ϕ^{-1} of $\partial(N \cap U)$. Also, a subarc of L lies in Γ. Lemma 1 implies that $\# \pi_{f}^{-1}(z) \leq n$ for $z \in \phi^{-1}(N \cap U)$. We have just noted that $\pi_{f}^{-1}(z) \geq n$ for $z \in \phi^{-1}(N \cap U)$, and so $\pi_{f}^{-1}(z)=n$ for $z \in \phi^{-1}(N \cap D)$.

Since $b \Delta \cap T=T$, there is a net $\left\{\Psi_{\alpha}\right\} \subset \Delta$ which converges to t_{1}. Then we have limit $\hat{f}\left(\Psi_{\alpha}\right)=a_{0}$ and consequently there is some a_{0} so that $\hat{f}\left(\Psi_{\alpha}\right) \in \Omega$ for $\alpha \geq \alpha_{0}$. Since $f\left(\Psi_{\alpha}^{\prime}\right) \notin L \cup V_{\infty}$, we have $\hat{f}\left(\Psi_{\alpha}\right) \in V_{0}$ for $\alpha \geq \alpha_{0}$. Now $\phi\left(\hat{f}\left(\Psi_{\alpha}^{\prime}\right)\right)$ converges to $\phi\left(a_{0}\right)$. Hence, there is some $\Psi_{0} \in\left\{\Psi_{\alpha}\right\}$ so that $\phi\left(\hat{f}\left(\Psi_{0}\right)\right) \in N \cap U$. In this case $\hat{f}\left(\Psi_{0}\right) \in \phi^{-1}(N \cap U)$. This contradicts the equation $\# \pi_{f}^{-1}\left(\hat{f}\left(\Psi_{0}\right)\right)=n$ and we must conclude that $\Delta=\varnothing$.
3. Examples. Example 1 shows that Theorem 1 does not contain Theorem 2.

Example 1. There is a function algebra A on D with $A \subset A(D)$ with the following properties:
(i) If $f \in A$ satisfies $\left.f\right|_{T} \in C^{1}(T)$, then Q_{f} is uncountable.
(ii) There is $A_{0} \subset A$ such that A_{0} separates points on D and $\left.A_{0}\right|_{T} \subset C^{1}(T)$.

Proof. Let $\left\{z_{k}\right\}$ be a Blaschke sequence in U which accumulates to a closed uncountable set K of T of measure zero. Define $A=\left\{f \in A(D): f^{\prime}\left(z_{k}\right)=0\right.$ for all $\left.k\right\}$. Let $B(z)$ be a Blaschke product with zeros at the z_{k} and let $g(z) \in A(D)$ be equal to zero precisely on K. If we set $A_{0}=\left\{F(z): F(z)=\int_{0}^{z} f(\zeta) g(\zeta) B(\zeta) d \zeta\right.$ for $\left.f \in A(D)\right\}$, then $A_{0} \subset A$ and $\left.A_{0}\right|_{T} \subset C^{1}(T)$. We show that A_{0} separates points on D.

Given a and b in D with $a \neq b$, consider $f(z)=(z-a)(z-b) g(z) B(z)$. Define $F_{n}(z) \in A_{0}$ by $F_{n}(z)=\int_{0}^{z} f(\zeta) \exp (2 \pi n(\zeta-a) /(b-a)) d \zeta$ for $n=0, \pm 1, \pm 2, \ldots$ Since $f(a)=f(b)$, we can regard f as a continuous periodic function on the interval from a to b. If $0=F_{n}(b)-F_{n}(a)=\int_{a}^{b} f(\zeta) \exp (2 \pi n(\zeta-a) /(b-a)) d \zeta$ for all n, then all the Fourier coefficients of f are zero. This implies that f is zero on a line segment in D which is a contradiction.

Finally, if $f \in A$ satisfies $\left.f\right|_{T} \in C^{1}(T)$, then $f^{\prime}(z) \in A(D)$ and hence $f^{\prime}(z)$ is equal to zero on K. q.e.d.

Example 2. We use an example of Glicksberg [4] to show that the countability of Q_{f} in Theorem 1 cannot be replaced by the condition that Q_{f} have measure zero in T.

Proof. Let $E \subset T$ be a Cantor set of measure zero with the following property. If $T \backslash E=\bigcup_{n=1}^{\infty} I_{n}$ where the I_{n} 's are disjoint open intervals and $\varepsilon_{n}=$ the length of I_{n}, then $-\infty<\sum_{n=1}^{\infty} \varepsilon_{n} \log \varepsilon_{n}$. Let K be a Cantor set in \mathbf{C} having positive planar measure and let ϕ be a homeomorphism of E onto K. Let S^{2} be the Riemann sphere. If $A_{K}=\left\{f \in C(K): f \in C\left(S^{2}\right)\right.$ and f is analytic on $\left.S^{2} \backslash K\right\}$, then $A=\{f \in A(D)$: $\left.f \circ \phi^{-1} \in A_{K}\right\}$ is a function algebra on D with maximal ideal space properly containing D ([4]). However, there are functions $f(z) \in A$ such that $f \in C^{1}(T)$ and $f(t)=f^{\prime}(t)=0$ precisely on $E([8]$, p. 85).
4. Application. Let A be a function algebra on D with $A \subset A(D)$. In [6] it is shown that if A contains an ideal J of $A(D)$ such that $\{z \in D: f(z)=0$ for all $f \in J\}$ is a countable set, then $M_{A}=D$. The converse is not true. That is, there is a function algebra A on D with $A \subset A(D)$ and $M_{A}=D$ but such that A contains no nonzero ideal of $A(D)$. To see this let $f_{1}(z)=(z-1) \exp ((z+1) /(z-1))$ and $f_{2}(z)=$ $(z-1)^{2} \exp ((z+1) /(z-1))$. Then f_{1} and f_{2} generate a function algebra A on D and $A \subset A(D)$. By applying Theorem 1 (or the proof of Theorem 2), we see $M_{A}=D$. It is straightforward but lengthy calculation to show that A contains no nonzero deal of $A(D)$.

References

1. J.-E. Bjork, Analytic structures in the maximal ideal space of a uniform algebra, Ark. Mat. 8 (1970), 239-244.
2. J.-E. Bjork, Holomorphic convexity and analytic structures in Banach algebras, Ark. Mat. 9 (1971), 39-54.
3. T. W. Gamelin, Polynomial approximation on thin sets, Symposium on Several Complex Variables, Park City, Utah, 1970. Springer-Verlag, Heidelberg (1971), 50-78.
4. I. Glicksberg, A remark on analyticity of function algebras, Pacific J. Math. 13 (1963), 1181-1185.
5. G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, 26, Translations of Mathematical Monographs. American Math Society, Providence, R.I., 1969.
6. B. Lund, Ideals and subalgebras of a function algebra, Canad. J. Math., 26, (1974), 405-411.
7. M. H. A. Newman, Topology of Plane Sets. Cambridge University Press, Cambridge, U.K., 1954.
8. W. P. Novinger, Holomorphic functions with infinitely differentiable boundary values, Ill. J. Math. 15 (1971), 80-90.
9. E. Stout, The Theory of Uniform Algebras. Bogden and Quigley, Tarrytown-on-Hudson, 1971.

Mathematics Department
University of New Brunswick
Fredericton, N.B., Canada

[^0]: This research was supported by NRC grant A8763.
 Received by the editors July 25, 1973 and, in revised form, July 22, 1974.

