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THE MAXIMAL IDEAL SPACE OF SUBALGEBRAS 
OF THE DISK ALGEBRA 

BY 

BRUCE LUND 

1. Introduction. Let X be a compact Hausdorff space and C(X) the complex-
valued continuous functions on X. We say A is a function algebra on X if A is a 
point separating, uniformly closed subalgebra of C(X) containing the constant 
functions. Equipped with the sup-norm \\f\\=sup{\f(x)\:x e X} for feA, A is 
a Banach algebra. Let MA denote the maximal ideal space. 

Let D be the closed unit disk in C and let U be the open unit disk. We call 
A(D)={fe C(D):f is analytic on U} the disk algebra. Let T be the unit circle 
and set C\T)={fe C(T):f'(t) e C(T)}. 

In this paper we discuss conditions on a function algebra A on D contained in 
A(D) which imply that MA=D. Our main result is the following. 

THEOREM 1. Let A be a function algebra on D such that A^A(D). Suppose there 
isfe A such thatf(f) e C\T) and Qf={t e T:f'(t)=Q} is countable. Then MA = D. 

The following closely related result is due to Bjork ([2], Theorem 2.1). 

THEOREM (Bjork). Let A be a function algebra on D such that A^A(D). Suppose 
there is a set A^A such that AQ {T^&ÇT) and A0 is uniformly dense in A. Then 
MA=D. 

The hypothesis in Bjork's result that A0 is uniformly dense in A can be replaced 
by the hypothesis that A0 separates points on D. To see this, let [AQ] be the smallest 
function algebra on D containing A0 where we suppose now that A0 separates 
points on D. By a result of Bjork ([2], Lemma 2.3) [AQ] has a regular peak point 
a G T. (We say that a e T i s a regular peak point for [A0] if there i s / e [A0] with 

fe C\T) such tha t / ' ( a )^0 , {oi}={t e T:/(0 ==/(<*)}, and/(a) belongs to the boun
dary of the unbounded component of C\f(T). But then a is also a regular peak 
point for A. This is precisely Bjork's condition for showing that MA=D. (See 
[2]; p. 47.) 

Hence, we may state the following more general result which is useful in appli
cations. (See example 1.) 

THEOREM 2. Let A be a function algebra on D such that A^A(D). Suppose there 
is a set A0<^A such that A0 separates points on D and A01 T<= C 1 ^ ) . Then MA=D. 
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In §3 we give an example which shows that Theorem 1 does not contain Theorem 
2. Also, we give an example which shows that the countability of Qf in Theorem 1 
can not be replaced by the condition that Qf have measure zero in T. In §4 we 
give an application of Theorem 1. 

In proving Theorem 1 we apply results of Gamelin [3] in the theory of function 
algebras on an arc. See Stout [9] for an exposition of this theory. We also use 
results of Bjork [2] on the structure of the maximal ideal space of a function algebra. 

2. Main result. If A is a function algebra, let SA be the Shilov boundary. Let 
/ s t a n d for the Gelfand transform offeA and give MA the Gelfand (weak-star) 
topology. If feA and z e C , let TTJ1(Z)={^ e MA:f(®)=z) and let #^{z) 
denote the cardinality of ^(z). 

LEMMA 1 ([1] p. 240). Let A be a function algebra on X and letfe A. Let V be a 
closed Jordan curve in C with interior V. Suppose T contains an open subarc J such 
that #7rJ1(z)<n for all zeJ and that v^^^M^S^ Then #rfj1{z)<n for all 
zeV. 

Let A be a function algebra on X and suppose K is a compact subset of MA. 
We set Uu\\A(K)={® G MA:\f(<S))\<\\f\\K for a l l / G A} and let A \ K denote the 
function algebra on K which is generated by the restriction to K of functions in 
A. Then MAlK=Uul\A(K). If Ve C, we let dVbt the topological boundary of V. 

Proof of Theorem 1. Let F^ T be compact. Let / be a proper closed subinterval 
of T containing F. Since there i s /G A with/G CX(T) and Qf countable, it follows 
by [3], Theorem 5 that A \ I=C(I). Hence, A \ F=C(F). In particular, SA=T. 

Let k=MA\D and assume A 5^0. We show this leads to a contradiction. Let 
Z>A be the topological boundary of A in MA. By [2], Theorem 1.2 we have A c 
H u l l ^ A n T). If 6A n TyeT, then A \ (èA n T)=C(6A n T). This implies that 
A + Hull^ôA n T)=bk n T. Hence, 6A n T=T. 

By [9], Lemma 30.29 there is a compact, totally disconnected set J^f{T) such 
that the following conditions hold. 

(i) At each point oîf(T)\J,f(T) has the structure of an open arc. 
(ii) If K<^f(T)\J is compact, then/maps/_ 1( iC) in a finite to one way onto K. 

Let the bounded components of C\f(T) be denoted by Vk for fc=0, 1 , 2 , . . . 
and let V^ be the unbounded component. Then dVœ is not simply connected since 

f(U) is contained in the polynomial hull of dV^. Consequently, dV^ is not totally 
disconnected ([7], Theorem 14.3, p. 123), and so dV^ 4=/. 

Suppose a0 e dV^J. By (ii) there are tl9. . . , tneT satisfying/(^)=a0. Using 
(i) and (iii) we can find an open arc Ll passing through a0 which is contained in 

f(T) and a subarc L <= L' with the following properties : L contains a0 and the closure 
of L in C is contained in Z/, L is relatively open i n / T ) (that is, there is a connected 
open set Q in C such that O C\f(T)=L), and there are pairwise disjoint open 
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intervals I{ about tt for / = 1 , . . . , n such that / ( / J =/(/,) for all / and j and 

{teT:f(t)eL}=\jLi^ 
Next we show that L^dV^, Let Û be a connected open set in C such that 

Ci nf(T)=L. Then (O n dVJ^L. Since a0eL n dV^, it follows that Q\L 
meets both K^ and some bounded component V0 of C\f(T). From this we may con
clude that Q\L is not connected. As a result, Q\L has exactly two open components 
which we will call Ex and Ez and L is contained in the boundaries of both E± and 
E2 ([7], Theorem 11.7, p. 118 and Theorem 16.3, p. 127). Moreover, we have 
E^V^andE^Vo. 

If O n dV^T^L, then there is b e L and an open disk B about b with i?<=Q 
and B n 3 ) ^ = 0 . In this case we can find an arc from a point in V^ to a point 
in F0 which does not pass through dV^ and this gives a contradiction. 

We have just seen that 777 x(w) n T contains w elements for each w eL. Since L 
is also in the boundary of the unbounded component of C\f(T), it follows that 
Trf'iw)^ T. An elementary proof of this may be given, but the result also follows 
from a more general theorem of Bjôrk ([1], theorem 1.7). 

Let/(Z>) be the polynomial hull of/(D). The components of the interior of 

f(D) are simply connected. Let G be the component which contains/(C/). Then 
f(D)<^G and L is an open arc contained in dG. Moreover, dG^f(T). 

Furthermore, since L is open in/(T) , there is no w0 e L with the property that 
a sequence {wJ^SG^L converges to wQ. Let c/>(z) be a conformai map of G onto 
U. From the previous remark it follows that </>(z) extends continuously to L and 
maps L homeomorphically into T ([5], p. 44). Consequently, F(z)=<f) °/(z) maps 
It into T. By the Schwartz reflection principle F{z) extends analytically across 
It for / = 1, . . . , n. 

Let N be an open disk about c/)(a0) where N is chosen to be so small that N n 
T^cf>(L) ana (fr^N n U) nf(T)=0. Since tfr^N n £/) is connected, we must 
have ^-1(JV n £/) contained in the single component F0 of C\f(T). Since/(t/) 
meets F0, it follows that K/T^N n [/)<= V0^f(U). By reducing the radius of N, 
we can also find pairwise disjoint open sets W{ in C for / = 1 , . . . , n such that 
f, G Wi and N<=F(W4). It follows t h a t / ( ^ n D^tfr^N n D) for each /. 

The domain ^_1(iV n £/) is bounded by the closed Jordan curve V where T is 
the image under <£-1 of 3(iV n £/). Also, a subarc of L lies in T. Lemma 1 implies 
that #if?(z)<ji for z G ^ ( i V n U). We have just noted that Trf{z)>n for 
z G (fr^N n £/), and so 7rJ1(z)=n for z G ^ ( N n D). 

Since 6 A n T = T , there is a net {YJcz A which converges to tv Then we have 
limit fÇ$t

a)=a0 and consequently there is some a0 so t ha t / (T a )GO for a>a 0 . 
Since/(Ta) ^ L U F œ , w e have/(Ta) G F0 for a^a 0 . Now <£(/(Ya)) converges to 
(f)(a0). Hence, there is some T 0 G {Ta} so that <£(/(%)) G TV n J7. In this case 

/ ( Y Q ) G ^ ( J V n £/). This contradicts the equation # T T 7 1 ( / C F 0 ) ) = « and we must 
conclude that A = 0 . 

5 

https://doi.org/10.4153/CMB-1975-012-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1975-012-x


64 B. LUND [April 

3. Examples. Example 1 shows that Theorem 1 does not contain Theorem 2. 

EXAMPLE 1. There is a function algebra A on D with A <^A(D) with the following 
properties: 

(i) I f / e A satisfies/1T e C^T), then Qf is uncountable, 
(ii) There is A0^A such that A0 separates points on D and A0 \T<^C1(T). 

Proof. Let {zk} be a Blaschke sequence in U which accumulates to a closed 
uncountable set K of T of measure zero. Define A={fe A(D):f'(zk)=0 for all k}. 
Let B{z) be a Blaschke product with zeros at the zk and let g(z) e A(D) be equal 
to zero precisely on K. If we set A0={F(z):F(z)=$z

0f(Qg(QB(0 dl for feA(D)}, 
then A0<^A and ^40 l ^ c ^ r ) . We show that A0 separates points on D. 

Given a and è in D with a ^ è , consider /(z)=(z—0)(z—Z>)g(z)i?(z). Define 
Fn(z)eA0 by Fn(z)=JJ[/|[0exp(27ma-fl)/(6-fl))« for n = 0 , ± 1 , ± 2 , . . . . 
Since f(a)=f(b), we can regard/as a continuous periodic function on the interval 
from a to b. If 0=Fn(i)-Fn(û)=J^0exp(27i7i(î-fl)/(ô--fl))rf£ for all /i, then 
all the Fourier coefficients o f / a r e zero. This implies that / is zero on a line 
segment in D which is a contradiction. 

Finally, iîfeA satisfies f\T e C^T), then / ' ( z ) e ,4(2)) and hence/ ' (z ) is 
equal to zero on K. q.e.d. 

EXAMPLE 2. We use an example of Glicksberg [4] to show that the countability 
of Qf in Theorem 1 cannot be replaced by the condition that Qf have measure 
zero in T. 

Proof. Let is <= T be a Cantor set of measure zero with the following property. 
If T\E=\Jn=1In where the In

9s are disjoint open intervals and £n=the length of 
In9 then — co<2n=i en l°g £w Let I b e a Cantor set in C having positive planar 
measure and let </> be a homeomorphism of £ onto j£. Let S2 be the Riemann 
sphere. If AK={fe C(K):fe C(S2) and/ i s analytic on S2\K}, then A = {fe A(D): 
/ o c/r1 G ^JÇ-} is a function algebra on D with maximal ideal space properly con
taining D ([4]). However, there are functions /(z) e 4̂ such t h a t / e C 1 ( r ) and 
flf)=f(f)=Q precisely on E ([8], p. 85). 

4. Application. Let A be a function algebra on 2) with ^4<=^4(D). In [6] it 
is shown that if A contains an ideal J of A{D) such that {z e D:/(z)=0 for all 

/ G / } is a countable set, then MA=D. The converse is not true. That is, there is a 
function algebra A on D with A^A{D) and MA=D but such that 4̂ contains no 
nonzero ideal of A(D). To see this let/x(z)=(z—l)exp((z+l)/(z—1)) and/2(z) = 
(z~l)2exp((z+l)/(z—1)). T h e n / a n d / 2 generate a function algebra A on D 
and 4̂ <=^4(.D). By applying Theorem 1 (or the proof of Theorem 2), we see MA—D. 
It is straightforward but lengthy calculation to show that A contains no nonzero 
deal of A(D). 
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