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Estimating the Biomass of Waterhyacinth
(Eichhornia crassipes) Using the

Normalized Difference Vegetation Index
Derived from Simulated Landsat 5 TM

Waterhyacinth [Eichhornia crassipes (Mart.) Solms] is
a nuisance, free-floating aquatic weed that causes economic
losses and negatively impacts aquatic environments

Wilfredo Robles, John D. Madsen and Ryan M. Wersal*

Waterhyacinth is a free-floating aquatic weed that is considered a nuisance worldwide. Excessive growth of
waterhyacinth limits recreational use of water bodies as well as interferes with many ecological processes. Accurate
estimates of biomass are useful to assess the effectiveness of control methods to manage this aquatic weed. While
large water bodies require significant labor inputs with respect to ground-truth surveys, available technology like
remote sensing could be capable of providing temporal and spatial information from a target area at a much reduced
cost. Studies were conducted at Lakes Columbus and Aberdeen (Mississippi) during the growing seasons of 2005
and 2006 over established populations of waterhyacinth. The objective was to estimate biomass based on
nondestructive methods using the normalized difference vegetation index (NDVI) derived from Landsat 5 TM
simulated data. Biomass was collected monthly using a 0.10m? quadrat at 25 randomly-located locations at each site.
Morphometric plant parameters were also collected to enhance the use of NDVI for biomass estimation. Reflectance
measurements using a hyperspectral sensor were taken every month at each site during biomass collection. These
spectral signatures were then transformed into a Landsat 5 TM simulated data set using MatLab® software.
A positive linear relationship (r* = 0.28) was found between measured biomass of waterhyacinth and NDVI values
from the simulated dataset. While this relationship appears weak, the addition of morphological parameters such as
leaf area index (LAI) and leaf length enhanced the relationship yielding an 2 = 0.66. Empirically, NDVI saturates at
high LAI, which may limit its use to estimate the biomass in very dense vegetation. Further studies using NDVI
calculated from narrower spectral bands than those contained in Landsat 5 TM are recommended.
Nomenclature: Waterhyacinth, Eichhornia crassipes (Mart.) Solms EICCR.

Key words: Remote sensing, Landsat 5 TM, nondestructive sampling methods, hyperspectral reflectance.

worldwide (Holm et al. 1991). In south Alabama, excessive
growth of waterhyacinth is reported to limit the production
of phytoplankton through competition for light which
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consequently reduces fish production (McVea and Boyd
1975). Likewise, water use for recreation, power genera-
tion, and consumption are also limited due to the presence
of waterhyacinth (Rushing 1974). For these reasons
waterhyacinth is considered one of the “world’s worst
weeds” (Holm et al. 1991).

Typically, the biomass of waterhyacinth is estimated
using quadrats with a specific unit area placed over the
plant mat. Using this method, Center and Spencer (1981)
and Knipling et al. (1970) found that waterhyacinth
biomass ranged from 2.3 and 2.5 kg DW m 2. The problem
with this quantitative approach is that it is (1) it is labor and
time intensive to collect and process samples and (2) it is

https://doi.org/10.1614/IPSM-D-14-00033.1 Published online by Cambridge University Press

Robles et al.: Estimating biomass of waterhyacinth using NDVI « 203


https://doi.org/10.1614/IPSM-D-14-00033.1

Management Implications

Typically, the biomass of waterhyacinth is estimated using
quadrats with a specific unit area placed over the plant mat.
However, it is labor and time intensive to collect and process
samples. Moreover, this method is destructive because it removes
plant material from the system which affects long term studies of
plant growth. The normalized difference vegetation index (NDVI)
is a well-known vegetation index that can be used to monitor
aquatic plants. However, limitations due canopy complexity
during the growing season often limit its use. Based on the
results, NDVI alone is not sufficient to estimate the biomass of
waterhyacinth. The poor predictive performance of band 4, as well
as canopy complexity related to waterhyacinth phenology during
the growing season and vegetation cover/water background ratio
likely affected the performance of NDVI. According to this study,
measuring morphometric parameters such as leaf area index may
enhance the performance of NDVI derived from Landsat 5 TM or
other multispectral sensors with same spectral resolution.
Therefore, the sole use of NDVI from Landsat 5 TM is not
recommended to estimate the biomass of waterhyacinth. It is
suggested that large-scale waterhyacinth management would
consider NDVI derived from other multispectral sensors (e.g.
Landsat 8 OLI). Current results could be useful to test new
multispectral or hyperspectral sensors for aquatic vegetation
management.

a destructive method that removes plant material from the
system which may be problematic for longer term studies of
plant growth.

Alternately, nondestructive methods have been devel-
oped to estimate the biomass of emergent aquatic plants
based on morphometric parameters such as plant height
and leaf area (Daoust and Childers 1998; Gouraud et al.
2008; Spencer et al. 2006; Thursby et al. 2002).
Submersed, floating-leaved and free-floating aquatic plants
such as Eurasian watermilfoil (Myriophyllum spicatum L.),
American pondweed (Potamogeton nodosus Poir.), and
waterhyacinth have been studied using nondestructive
methods (Center and Spencer 1981; Pine et al. 1989).
Nondestructive approaches produce comparable data to
destructive methods and typically require less time and
effort while maintaining adequate accuracy (Daoust and
Childers 1998; Thursby et al. 2002). Likewise, species-
specific regression equations developed using nondestruc-
tive methods has the potential to be extended to other
locations where the species is growing and suggested to be
combined with remote sensing data to estimate its biomass
(Daoust and Childers 1998; Spencer et al. 20006).
Moreover, the combination of nondestructive methods
and remote sensing allows for spatial monitoring of aquatic
plants across larger geographic areas (Lehmann and
Lachavanne 1997).

Remote sensing collects information from vegetation by
measuring light reflectance at different wavelengths from
the target to produce imagery. Useful information may be
extracted from images with the creation of image products

based on vegetation indices. Many vegetation indices have
been developed, but the normalized difference vegetation
index (NDVI) has been one of the most extensively studied
and used (Jensen 2000). The NDVI is a dimensionless
index developed in the 1970s that estimates photosynthetic
active biomass (Rouse et al. 1973; Tucker 1979) based on
the difference and sum of reflectance in the spectral regions
(or hereafter spectral bands) of red and near-infrared
(NIR). The principle of NDVI is based on the reflectance
and absorption of these spectral bands by chlorophyll and
internal leaf cells (e. g. spongy mesophyll) depending on
plant health (Jensen 2000). It is reported that ground
collected biomass of the African savannas correlates
significantly to NDVI values from NOAA satellites
(Tucker et al. 1985). Similarly vegetation biomass of
shrublands, grasslands and salt water marshes in California,
US can be estimated using NDVTI collected from handheld
spectroradiometer (Gamon et al. 1995; Zhang et al. 1997).
Besides plant biomass estimation, NDVI has been used to
detect herbicide injury (Henry et al. 2004, Robles et al.
2010), estimate variations of photosynthetic activity with
respect to atmospheric CO, levels (Tucker et al. 1986;
Tucker and Sellers 1986), differentiate aquatic plant species
(Peniuelas et al. 1993; Underwood et al. 2006), and
estimate plant pigment concentrations and leaf area index
(Green et al. 1997; Penuelas et al. 1997). The majority of
published studies that have used NDVI to estimate biomass
have examined either terrestrial or emergent aquatic plants
suggesting further investigation of other aquatic plant
growth forms like free-floating aquatic plants. Often the
use of remote sensing is limited in aquatic habitats due to
high absorption by water, canopy exposure (Jensen 2000)
as well as water turbidity (Underwood et al. 2006). In fact,
recent studies documented that the use of remote sensing is
more accurate on emergent and floating aquatic vegetation
mapping than submersed aquatic vegetation (Underwood
et al. 2006; Vis et al. 2003).

Many studies have explored the use of NDVI at small
scales using handheld spectroradiometers (Gamon et al.
1995; Henry et al. 2004; Zhang et al. 1997). The present
study used a handheld hyperspectral sensor to collect
spectral data over waterhyacinth and simulate the NDVT of
Landsat 5 TM multspectral sensor data. The thematic
mapper (TM) sensor onboard Landsat 5 is the oldest
currently inoperable sensor that have provided multispec-
tral imagery since 1984 (USGS 2013b). Landsat 5 TM has
produced multispectral imagery in 7 spectral bands
including the visible and infrared regions. Such bands
have been useful in detecting herbicide phytotoxicity on
waterhyacinth (Robles et al. 2010). Many multispectral
images have been archived and are available for use to
monitor long-term vegetation changes (Xie et al. 2008).
The TM sensor has also been used to develop vegetation
indices and estimate the biomass of marsh aquatic
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Table 1.

Comparison of Thematic Mapper (TM) and Landsat 8 Operational Land Imager (OLI) spectral band ranges (nanometers)

(USGS 2013b). All spectral bands have a spatial resolution of 30 m. Bold type indicates spectral bands that are widely recommended
for vegetation monitoring. Note that Landsat 8 OLI has two more spectral bands than Landsat 5 TM.

Landsat 5 TM

Band number Spectral range

Landsat 8 OLI

Band number Spectral range

1 (blue) 450-520

2 (green) 520-600

3 (red) 630-690

4 (near-infrared) 760-900

5 (midinfrared) 1,550-1,750
6 (thermal) 10,400-12,500
7 (midinfrared) 2,080-2,350

1 (coastal aerosol) 430-450
2 (blue) 450-510
3 (green) 530-590
4 (red) 640-670
5 (near-infrared) 850-880
6 (shortwave IR) 1,570-1,650
7 (shortwave IR) 2,110-2,290
8 (panchromatic) 500-680
9 (cirrus) 1,360-1,380

vegetation (Zhang et al. 1997). Moreover Landsat 5 TM
imagery has been used to document the distribution and
extent of waterhyacinth in Lake Victoria, Africa over
a twelve-year period (Albright et al. 2004).

The objective is to evaluate remote sensing using NDVI
derived from simulated Landsat 5 TM sensor data alone
and in combination with morphometric parameters to
estimate waterhyacinth biomass. The goals are to document
the effective use of remote sensing as a management tool
for rapidly assessing production of waterhyacinth across
large areas, and to develop specific strategies to enhance the
use of NDVI estimations. This experiment used simulated
spectral data from Landsat 5 TM because the TM sensor
has provided continuous imagery (every 16 d) of the earth’s
surface since 1984 until 2011. Although Landsat 5 TM is
currently inoperable, its spectral and spatial resolution is
similar to current sensors like Landsat 7 ETM (USGS
2013b). Moreover, new sensors such as Landsat 8 OLI have
narrower spectral bands within the same spectral range of
Landsat 5 TM (Table 1). Knowing this information,
imagery comparison would be possible when considering
the aforementioned sensors (USGS 2013a). This study is
not intended to compare Landsat 5 TM with other sensors,
but to show that its utility persists even though it is
currently inoperable.

Materials and Methods

Study Site. Studies were conducted in Lake Columbus and
Lake Aberdeen, both located in northeastern Mississippi.
Lake Columbus, (1,208 ha in area [2,984 ac]) is located in
Lowndes and Clay Counties and Lake Aberdeen, (967 ha
in area [2,388 ac]) is located in Monroe County. Both lakes
are impounded sections of the Tennessee Tombigbee
Waterway and facilitate commercial transportation bet-
ween the Gulf of Mexico and the Tennessee River

(Auerbach et al. 1985, Green 1985), and also for recreation
(e.g., fishing) and wildlife habitat (Green 1985).

Biomass Sampling and Morphometric Parameters
Measurements. The biomass of established monospecific
populations of waterhyacinth were sampled from May 2005
to November 2006 at two sites in Lake Columbus (Site 1:
33°35'8"N, 88°28'58"W/; Site 2: 33°34'51"N, 88°29'3"W)
and one site in Lake Aberdeen (88°31'33"N, 33°50'43").
All three sites maintained water pH of 7.0 (% 0.3), and
a maximum specific conductance of 0.3 ms/cm. During
sampling months, water temperature ranged from 10 to
32 C (50 to 90 F). Between December 2005 and March
2006, biomass was not collected due to low air tempera-
tures (< 6 C) that caused above-water biomass of water-
hyacinth to die leaving just stembases and root tissues
(Owens and Madsen 1995). The two sites at Lake
Columbus were 530 m (1,166 ft) apart. All three sites were
a cove of vegetation off of the main river channel and
were 0.25 ha in size. The waterhyacinth mat was covering
the entire water surface. Within each site, only water-
hyacinth plants growing in full sunlight were sampled,
avoiding the ones growing along the shoreline or under
tree canopies. Biomass was sampled every month using
a polyvinyl chloride (PVC) quadrat of 0.10 m” in size,
randomly placed 25 times over plant canopy (Madsen
1993a). Morphometric parameters were obtained at each
sampling date.

The morphometric parameters measured were: leaf blade
area (length by width), leaf length from base of petiole to
leaf tip and number of leaves per plant. Each measurement
was made from one plant randomly selected from each
quadrat sample. Leaf length and blade area were measured
from the first unfolded leaf of the randomly selected plant.
Samples were then collected manually, placed in plastic
bags, transported to the laboratory, and sorted into
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different plant structures such as inflorescence, roots, stem
bases, stolons, and leaves. Plant samples were dried in
a forced-air oven at 70 C for 72 hr and weighed. For
analysis purposes, shoot biomass was composed of
everything above the water surface which included in-
florescence, leaves and stolons; whereas root biomass
included stem bases (rhizome) and roots. Total biomass
was the combination of all plant tissues.

Spectral Response Data Collection. Spectral data were
obtained monthly from each site using a handheld
hyperspectral sensor (ASD Spectroradiometer, Field Spec
Pro® model FR. Analytical Spectral Devices, Inc. 5335
Sterling Drive, Boulder, CO, USA). This sensor measured
reflectance in 2151 spectral bands ranging between 350 nm
and 2500 nm with a 1.4 nm bandwidth at a field of view
(FOV) of 25°. During each sampling event, a total of 25
hyperspectral signatures were collected randomly at 15 ¢cm
intervals across the mat using the bare fiber of the sensor.
The sensor was held at nadir at 0.3 m over the plant
canopy, obtaining hyperspectral signatures from an area of
137 cm? (21.2 in.?) for each interval. All hyperspectral data
was collected at noon (% 1h) on cloudless days using
sunlight as the energy source.

Landsat 5 TM Data Simulation. Monthly hyperspectral
signatures for each site were transformed to simulate the
Landsat 5 TM muldspectral sensor data set. The trans-
formation was performed using a mathematical model
developed in MatLab software (MatLab, version 7.4. The
Mathworks Inc. Natick, MA, USA). The model when
applied created a spectral filter to the hyperspectral data set
reducing the number of bands into bands number 1, 2, 3,
4,5, and 7 of Landsat 5 TM. A transformation matrix was
constructed with each column containing weights of the
spectral filters in an orthogonal manner to create a relative
spectral response for each spectral band (NASA 2008). The
thermal band (band 6) was not extracted because its use is
more related to temperature emitted by a surface area. The
shorter wavelengths band 1 and 2 were also not considered
in the analysis due to atmospheric attenuation which may
affect their use in plant applications. Therefore, only
spectral bands 3, 4, 5, and 7 were considered in the
analysis. The simulated multispectral data set of those
spectral bands contained pixel intensity values for each
band in a range of 0 to 255, corresponding to the
radiometric resolution (8-bit) of Landsat 5 TM.

Data Analysis. Leaf blade area was used to calculate leaf area
index (LAI) of waterhyacinth. The LAI was calculated as it
can be directly correlated to spectral response changes of
a plant canopy (Curran and Milton 1983; Gamon etal. 1995;
Hunt et al. 2007; Law and Waring 1994). Hence, LAI was
calculated as (Adapted from Center and Spencer 1981):

LAI = (LBA x LPP x NP) 1]

where LBA = leaf blade area (m?); PP = leaves per plant,

and NP = number of plants per m”.

All statistical analyses were performed in SAS (SAS,
version 9.1. SAS Institute Inc. Cary, NC, USA) at
a significance level of 0.05. Data from each site was
combined into one dataset according to each response
variable measured. Additionally, the vegetation index
NDVI was added to the dataset and calculated from the
simulated spectral bands 3 and 4 of Landsat 5 TM using
the following ratio:

NDVI = (B4—B3)/(B4 + B3) 2]

where B3 = simulated pixel value of band 3 (630 to 690
nm), and B4 = simulated pixel value of band 4 (760 to
900 nm).

Monthly mean biomass, NDVI and each spectral band
response (pixel value) were obtained for each site using
PROC MEANS. Biomass and calculated NDVI means for
each site were plotted against time to assess temporal
changes. A correlation procedure (PROC CORR) was used
to determine if a relationship exists between spectral bands
3, 4, 5, 7, NDVI and shoot, root and total biomass.
Yielded Spearman’s correlation coefficients (7) obtained
were used to explore further the potential use of individual
bands to develop new indices and if the relationship
between NDVI and biomass could be affected by spectral
band 3 or 4 individually.

Means of each site were pooled across year to determine
the relationship between biomass and NDVI. A linear and
polynomial regression analysis was performed using PROC
GLM and only the highest and consistent coefficients of
determination (%) with their corresponding regression
equations were used. Similarly, regression analysis was used
to determine relationships between LAl and NDVI. Data
of plant morphology measured in the plant canopy like leaf
length, blade area, and number of leaves were added into
a nonlinear regression model to find the most appropriate
model that best described the relationship between biomass
and NDVI. Models were compared based on their
respective adjusted #, and the best fitting model was the
statistically significant model with the highest adjusted 7.

Results and Discussion

Relationship Between Spectral Band Response, NDVI
and Biomass. Harvested biomass in both sites on Lake
Columbus was generally lower in comparison to Lake
Aberdeen. However, all three sites follow the same trend
where values of both biomass and NDVI were low during
spring months (April and May), and rapidly increased after
June (Figure 1). Between the months of July and
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Figure 1. Temporal changes of biomass and NDVI for each
sampling site. Values represent means = 1 SE for each

sampling date.

September, both variables reached their maximum and
eventually declined after October. Monthly changes of
biomass obtained in this study follow the seasonality of
waterhyacinth (Center and Spencer 1981).

The band 3 was the only spectral band significantly
correlated to total and shoot biomass of waterhyacinth
yielding a correlation coefficient (7) of —0.38 and —0.45
respectively (Table 2). The relationship is linear and

Table 2. Correlation between simulated spectral bands and
NDVI from Landsat 5 TM and the biomass of waterhyacinth.
Values are presented as Pearson’s correlation coefficient (r) for
each variables relationship. Biomass is represented as total (shoot
and root combined), shoot, and root.

Spectral bands of Landsat 5 TM

Biomass Band 3 Band4 Band5 Band7 NDVI
Total —0.38* 0.17 —0.03 —0.22 0.53*
Shoot —0.45* 0.10 —0.07 —0.20 0.52*
Root —-0.16 0.25 0.05 —0.20 0.42*

*significant correlation at p < 0.05. Band 3 (630-690 nm);
Band 4 (760-900 nm); Band 5 (1,550-1,750); Band 7 (2,080—
2,350 nm).

negative which means that as biomass increased, values of
band 3 decreased. The same trend was reported by Todd
et al. (1998) and Tucker (1979) with the red band of
Landsat on terrestrial plants. Such relationships are based
on the amount of photosynthetic tissue in the plant mat
which relates directly to biomass (Jensen 2000; Tucker and
Sellers 1986). Specifically, as the amount of chlorophyll
molecules increases, reflectance or pixel values will decrease
(Carter 1993; Carter and Knapp 2001). Band 4 alone was
not significantly correlated to biomass. In contrast, other
studies reported that near-infrared values increased with
increases in biomass (Tucker 1979; Valta-Hulkkonen et al.
2004). Although it is not clear why band 4 was not
significantly correlated to biomass in our study, the
relationship between NDVI and biomass (including total,
shoots, and roots) is significant regardless of band 4
(Table 2). Regression analysis showed that the relationship
between NDVI and biomass is linear and positive, where as
NDVI increased, the biomass of waterhyacinth also
increased (Figure 2). Both total and shoot biomass
yielded the highest # in comparison with root biomass
indicating that NDVI is a poor estimator of root biomass.
The poor performance of NDVI in estimating root
biomass is due to the fact that the spectral response is
influenced by plant canopy or photosynthetic tissue
exposed from the water (Pefiuelas et al. 1993). That means
that only shoot biomass which is the photosynthetic active
tissue can be monitored with NDVI.

Although all three relationships between biomass (shoot,
root, and total) of waterhyacinth and NDVI appear to
be significant, only 28% of the total variation can be
explained depending on plant structure (Figure 2), suggest-
ing that the use of NDVTI alone is insufficient in estimating
waterhyacinth total biomass. It is suggested that the use
of NDVI to estimate the biomass of floating aquatic
species like waterhyacinth may be limited to the lack of
performance of band 4 (Table 2), canopy complexity
(Tucker and Sellers 1986) which varies during the growing
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Figure 2. Linear relationship between NDVI values and
waterhyacinth biomass. Values represent means * 1 SE for each

site and sampling date.

season (Madsen 1993b; Rouse et al. 1973), as well as
vegetation cover/water background ratio (Best et al. 1981;
Penuelas et al. 1993). In fact, recent studies suggest that
natural populations of waterhyacinth are better monitored
when biomass have peaked during the season (Hestir et al.
2008). Canopy complexity in terms of leaf orientation
changes from a predominantly horizontal position to one
that is vertical due to intraspecific competition as the

1.00

2
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r =051
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0.95 {n=38
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>
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=
0.85 4
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Figure 3. Relationship between NDVI values and leaf area

index (LAI) of waterhyacinth. Values represent means = 1 SE for
each site and sampling date.

growing season progresses (Madsen 1993b). Similarly,
waterhyacinth growth is less dense early in the growing
season, and the associated gaps in the plant canopy result in
increased absorption in band 4. If the plant canopy is not
covering the water surface, estimation of plant biomass

using NDVI may be poor (Penuelas et al. 1993).

NDVI and Morphometric Parameters as Biomass
Estimators. The relationship between LAI and NDVI
was quadratic (Figure 3), indicating that NDVI tended to
saturate at higher values of LAI from waterhyacinth. This
means that NDVI values will not continue to increase at
LAI values higher than 2. Other studies conducted in
mangroves showed that the relationship between LAI and
NDVI was linear, yielding an 2 of 0.74 (Green et al. 1997).
However, published studies report that NDVI is not
sensitive to dense canopies of terrestrial plants (Mutanga
and Skidmore 2004), specifically those with LAI of more
than 2 (Gamon et al. 1995; Law and Waring 1994).
Therefore, it may be necessary to use other parameters
to improve biomass estimation in combination with the
use of NDVI for floating aquatic plants like water-
hyacinth. Morphometric parameters such as leaf length,
leaves per plant, and LAI were added to the regression
model to improve biomass estimation (Tables 3 and 4).
The estimation of total and aboveground biomass of
waterhyacinth was improved (¥ = 0.70, 0.66 respec-
tively) when LAI was combined with either NDVI or leaf
length. Similarly, the combination of leaf length with
number of leaves per plant also yielded #° values higher
than those obtained with the use of NDVI alone.
Previously, the combination of leaf length and number
of leaves has been used to estimate biomass of individual
plants of waterhyacinth in the state of Florida, USA
(Center and Spencer 1981). Similarly, a high correlation
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Table 3. The three highest coefficients of determination (%) for each combination of response variables used to estimate the total
biomass of waterhyacinth. I = NDVI, LL = leaf length (m), LPP = leaves per plant, LAl = leaf area index, B = biomass of

waterhyacinth (g DW m 2.

Variables Adj. # » P value Equation™

LL*LAI 0.64 0.66 < 0.01 B = 145.2 + 6.0 LL + 78.0 LAI

I*LL*LAI 0.63 0.66 < 0.01 B = 236.0 —107.3 I+ 6.1 LL + 80.0 LAI
LL*LPP 0.62 0.64 < 0.01 B = —424.2 + 14.1 LL + 79.3 LPP

* Linear regression equation is based on mean monthly values from all three sites, N = 39.

was also obtained when leaf length was included in the
model to estimate the biomass of emergent aquatic
plants like arrowhead (Sagittaria lancifolia L.) (Daoust

and Childers 1998).

Based on these results, NDVI derived from Landsat
5 TM alone is not adequate to estimate biomass of
waterhyacinth, and should be combined with measure-
ments of LAI and/or leaf length. Although the literature
suggests that NDVI is a good estimator of plant biomass,
particularly in terrestrial habitats, the reality is that its use
may not apply to all species, or in aquatic habitats as was
shown in this study and other parameters are needed to

increase the accuracy of biomass estimations.

Further Research

Besides observed limitations of NDVI derived from
Landsat 5 TM to estimate waterhyacinth biomass, it is
suggested that results may also be limited to its spectral band
range. Typically, studies derive NDVI from many available
muldspectral sensors on-board satellites with different
spectral band ranges. For instance, studies conducted by
Penuelas et al. (1993) report that NDVI is adequate to
estimate the biomass of aquatic plant species. However,
those studies used NDVI derived from the weather satellite,
NOAA-AVHRR, which has a wider NIR band than Landsat
5 TM ranging from 725 to 1100 nm. Others have reported
that NDVI derived from Landsat 5 TM is not the best
vegetation index to estimate salt marsh vegetation biomass
but suggest other vegetation indices derived from the same

sensor to achieve this goal (Zhang et al. 1997).

Further improvements could be obtained by using or
including other spectral ranges when developing the index.
For instance, Tucker (1977) suggested that the spectral region
from 740 to 1,000 nm was feasible to estimate biomass.
Specifically, waterhyacinth can be better distinguished from
other aquatic vegetation within 700 and 1,200 nm
(Underwood et al. 2006). Others have suggested that the
red edge (706 to 755 nm) contains most of the information to
estimate biomass when plant canopy density is high
(Mutanga and Skidmore 2004). Therefore, there are other
spectral regions that should be considered. Following this
concept, monthly averaged hyperspectral signatures of
waterhyacinth are shown in Figure 4 (A-C), in which
spectral band ranges used in this study are shown along with
potential spectral areas that can be used to derive NDVIL.
Notice that the red edge (Figure 4 B) and longer wavelengths
on the infrared region (Figure 4C) were not studied because
they were not contained in the spectral bands of Landsat
5 TM. The spectral response of these bands changes
temporally, suggesting they may be useful for biomass
estimation. Based on the results of this study, the exploration
of the performance of NDVI using narrower bands (e.g., 30
nm increments or less) to estimate the biomass of water-
hyacinth could potentially be used to improve the perfor-
mance of NDVI. Newly launched multispectral sensors like
Landsat 8 OLI have narrower red and infrared bands
(Table 1) that could extend the use of archived images from
Landsat 5 TM. On the other hand, narrower spectral bands
explored with the current dataset (Figure 4) may help to
interpret hyperspectral sensor data used on plant applications
(Hestir et al. 2008; Underwood et al. 20006).

Table 4. The three highest coefficients of determination () for each combination of response variables used to estimate the
aboveground biomass of waterhyacinth. I = NDVI, LL = leaf length (m), LPP = leaves per plant, LAl = leaf area index, B = biomass

of waterhyacinth (g DW m™?).

Variables Adj. ¥ 72 P value Equation*

LL*LAI 0.68 0.70 < 0.01 B = —45+ 6.6 LL + 30.0 LAI
I*LL*LAI 0.67 0.70 < 0.01 B =88.0-109.31+ 6.6 LL + 31.6 LAI
LL*LPP 0.67 0.69 < 0.01 B = —210.1 +9.6 LL + 28.7 LPP

* Linear regression equation is based on mean monthly values from all three sites, N = 39.
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Figure 4. Monthly average hyperspectral signatures of water-
hyacinth. (A) Represents spectral band range of band 3 (B3) and
band 4 (B4) of Landsat 5 TM. (B and C) is the suggested spectral
range for consideration which includes the red edge (RE) and
near-infrared (NIR).
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