https://doi.org/10.1017/jfm.2020.728 Published online by Cambridge University Press

FOCUS Oﬁ FI“ids journals.cambridge.org/focus

A basis for flow modelling
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Reduced-order models are often sought to efficiently represent key dynamical phenomena
present among the broad range of temporal and spatial scales associated with unsteady and
turbulent flow problems. Linear ‘input—output’ approaches and resolvent analyses reveal
that important information about the most dangerous (most amplified) disturbances and
the corresponding fluctuation response can be found with knowledge only of the base
flow, or the turbulent mean field. In the work by Padovan et al. (J. Fluid Mech., vol. 900,
2020, A14), an important advance is made with regards to flows which have a periodically
time-varying base flow, for example during unsteady vortex shedding from a body. By
forming a harmonic resolvent relative to this base flow, limitations associated with the
traditional linear resolvent are overcome to determine efficient bases for modelling of limit
cycle flows and reveal novel information about key triadic (resonant) interactions.
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1. Introduction

Unsteady and turbulent flows have long provided intellectual challenge to the scientist
and engineer alike. Physics-based models capable of replicating the key characteristics for
practical applications at reasonable cost remain few and far between. One may ask, why
is reduced-order flow modelling so hard? First, and most obviously, the Navier—Stokes
equations (NSE) are nonlinear and support a multiscale energy cascade. Another issue
is the non-normality of the Navier—Stokes operator when linearized relative to a base
flow (Trefethen et al. 1993). Analysis of the eigenvalue spectrum does not guarantee the
most efficient representation of the dynamics of a given flow because the eigenvectors
of a non-normal system do not form an orthogonal basis. This foundational concept
underlies transient disturbance growth in linearly stable systems, recognized as important
for non-laminar as well as laminar flows, (e.g. Farrell & Ioannou 1993).

While there is a long history of studying the impact of non-normality on disturbance
growth, the problem was reframed into a system-theoretic, ‘input—output’ or transfer
function form for laminar flows in the seminal contribution of Jovanovi¢ & Bamieh (2005).
This approach rewrites the NSE linearized relative to the laminar solution in terms of
a transfer function between input disturbances giving rise to an output state response,
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admitting the possibility of a response driven by harmonic or other time-dependent,
exogenous inputs. At the heart of the transfer function is the resolvent; its spectral
properties reflect the solution, or base flow, about which the linearization was performed.
Subsequently, McKeon & Sharma (2010) demonstrated that the resolvent formulated
relative to the turbulent mean flow holds important information about disturbance
amplification, an example where the base flow is not an equilibrium solution of the NSE.
In this case, the term nonlinear in the fluctuations appears naturally as an endogenous
forcing to the system, which may coexist relative to external disturbances or control
signals, and the (academic, at least) possibility to provide nonlinear closure to the system.
A pseudospectral analysis, or analysis of the linear operator perturbed by a nonlinear (or
other) forcing is then more appropriate than eigenanalysis. A recent extension by Rigas,
Sipp & Colonius (2020) considers a nonlinear input—output analysis, using the harmonic
balance model to directly include a subset of frequency interactions in the resolvent
operator. For broader reviews of resolvent and input—output analyses, especially as applied
to unsteady and turbulent flows, the reader is directed to McKeon (2017) and Jovanovic
(2020).

Remarkably, the resolvent typically displays low-rank characteristics preferentially at
scales where physical mechanisms are active for a given flow. A consequence is that
the resolvent can be efficiently approximated using a truncated expansion in terms of
bases obtained from a singular value decomposition (SVD); the singular vectors identify
efficient linear bases to represent the most amplified inputs and corresponding outputs,
with the gains given by the singular values. The cost of performing the SVD can be
dramatically less than that of a direct numerical simulation. However, the traditional
approach is significantly less effective in the presence of a significant/dominant time
scale, such as flows with vortex shedding or other limit cycle behaviours. The basis can
be improved by modelling the nonlinear forcing (rather than approximating the linear
resolvent), but at the cost of additional computation. In their recent paper, Padovan, Otto
& Rowley (2020) provide an elegant approach to overcome this limitation on the linear
analysis.

2. Overview: linear modelling in flows with dominant frequencies

The common (and most simple to obtain) choice for the base flow to enter the resolvent
formulation is a temporally averaged mean field, either under a locally parallel assumption
or reflecting, e.g., downstream spatial growth. Mean flows which reflect activity at a
dominant spanwise spatial frequency have also been investigated (e.g. Rosenberg &
McKeon 2019), while the resolvent can be modified to account for nonlinear interactions
associated with spatially varying wall geometry (e.g. Chavarin & Luhar 2020). Scenarios
with one or more dominant temporal frequencies in the base flow had remained relatively
unexplored until the recent work of Padovan et al. (2020).

The distribution of information between the linear and nonlinear terms in a state
space representation is dictated by the choice of base flow (e.g. Karban er al. 2020).
Specifically, it may not be appropriate to treat fluctuations as small across all scales if
the flow contains a natural, energetic, temporally periodic component. This has the effect
of reducing the efficiency of the linear analysis and placing more weight on the details
of the nonlinear forcing acting as input to the linear dynamics. This impacts the quality
of flow reconstruction using the linear resolvent basis, (e.g. Symon et al. 2020), although
further analysis of the nonlinear terms can improve the agreement between model and data
(Rosenberg, Symon & McKeon 2019).
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FIGURE 1. The harmonic resolvent (b,e) provides a much more accurate representation than
the traditional resolvent (c, f) of the response to small amplitude input forcing at the frequency
of unsteady vortex shedding for a two-dimensional NACA 0012 airfoil in incompressible flow
at 20° angle of attack and chord Reynolds number Re = 200 (a,d). Panels (a—c) and (d—f) show
responses at the input frequencies, w, and 2w, respectively. Compilation from figures 8—10 in
Padovan er al. (2020).

For a flow containing a set of natural energetic temporal frequencies, £2;, (perhaps a
filtered representation of large scale structure), a triple decomposition of the instantaneous
field into the sum of the (zero frequency) mean contribution, the dominant frequency (£25)
signal and the remaining fluctuations can be performed. Constructing an analysis using the
sum of the mean and periodic components as the base flow leads to the formulation of the
harmonic resolvent. Incorporating more information about the flow physics via this new,
periodic base flow means that the linear analysis machinery identifies perturbations that
are small relative to that base flow, and multi-frequency, since they can reflect scattering
off the frequencies present in the base flow. Information on cross-frequency coupling is an
integral part of this linear analysis; the forcing inputs corresponding to the most amplified
triadically consistent, or resonant, interaction with each component of the periodic signal,
§2p, can be identified. Padovan et al. (2020) consider only frequencies that are harmonics
of the periodic signal, but note that the analysis is not a priori restricted to integer values
of the frequencies contained within £2,,.

The evidence is convincing that the harmonic resolvent provides an effective basis
(figure 1) for the example of unsteady vortex shedding from a two-dimensional airfoil.
The agreement is improved at the fundamental vortex shedding frequency, w. However,
disturbance amplification at 2w is simply not captured by the resolvent based on the
temporal mean. These interactions are confined to the nonlinear portion of the traditional
analysis, but are encoded in the linear dynamics associated with the harmonic resolvent.

3. Future directions: modelling and control

Armed with the harmonic resolvent machinery, what can now be achieved? Clean
partitioning of linear and nonlinear dynamics in the presence of a strong signal with
non-zero frequency, such that effective input and (multi-frequency) output basis functions
are obtained from the linear analysis, has important implications for model reduction
techniques. Similarly, the sensitivity information revealed by the singular values, and
especially the integral identification of important cross-frequency interactions, can be
used to drive the design of effective control inputs, perhaps restricted in scale or variable
via a masking operation applied to the harmonic resolvent. It will be interesting to see
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whether the resonant interactions revealed by harmonic analysis can be used for mean
flow modification and suppression of the periodic behaviour itself.

An important next step will be an extension to consider the treatment of frequencies that
may not be harmonics of the base flow frequency content. Such a scenario arises naturally
with uncertainty in non-ideal flows and with real actuators. Related is the question of
an extension of the approach to fully turbulent flows, where a careful selection of the
appropriate frequencies to include in the base flow from the many energetic scales will be
required. The mean or base flow is a required input for resolvent analysis; the harmonic
resolvent also needs an a priori characterization of the dominant frequency activity.
Data-driven methods may enable a bootstrapping that weights the most amplified response
of the traditional resolvent analysis at £2;, to provide an estimate of the periodic component
of the harmonic resolvent analysis.

The work of Padovan ef al. (2020) provides important insight into linear amplification
mechanisms in periodically time-varying base flows, providing an exciting basis (or, rather,
the most efficient linear bases) for flow modelling.
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