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Images of Additive Polynomials in Fq((t))
Have the Optimal Approximation Property
Lou van den Dries and Franz-Viktor Kuhlmann

Abstract. We show that the set of values of an additive polynomial in several variables with argu-
ments in a formal Laurent series field over a finite field has the optimal approximation property: every
element in the field has a (not necessarily unique) closest approximation in this set of values. The
approximation is with respect to the canonical valuation on the field. This property is elementary in
the language of valued rings.

1 Introduction

Let Fq denote the field with q elements, where q is a power of a prime p. The power
series field Fq((t)), also called “field of formal Laurent series over Fq”, carries a canon-
ical valuation vt , the t-adic valuation, with value group Z and vt (t) = 1. In studying
elementary properties of this valued field the following notion turns up, see [K].

Let (K, v) be a valued field, and S a nonempty subset of K. We say that S has the
optimal approximation property (OA) in (K, v) if for every point in K there is a (not
necessarily unique) closest point in S, that is, for every x ∈ K there exists y ∈ S such
that

v(x − y) = max{v(x − z) | z ∈ S}.

(We write valuations in the additive Krull style, that is, the ultrametric triangle law
reads as v(a + b) ≥ min{va, vb}. Thus elements a, b are close if v(a − b) is large.
We denote the value group of (K, v) by vK.) The following implications hold (see
Section 2):

S compact ⇒ S has OA ⇒ S is closed.

This approximation property relates to the model theory of valued fields since it
is elementary for (elementarily) definable S. The image

S := { f (a1, . . . , an) | a1, . . . , an ∈ K}(1)

of K under a polynomial f ∈ K[X1, . . . ,Xn] is definable, so the question arises when
this image has OA. In [K] the second author shows that the image of an algebraically
maximal field under a polynomial in one variable has OA. (A valued field is said to be
algebraically maximal if it has no proper algebraic valued field extension preserving
both value group and residue field.)
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We consider here the case of additive polynomials in several variables. Let K be a
field of characteristic p > 0. A polynomial f (X1, . . . ,Xn) ∈ K[X1, . . . ,Xn] is called
additive if

f (a1 + b1, . . . , an + bn) = f (a1, . . . , an) + f (b1, . . . , bn)

for all elements a1, . . . , an, b1, . . . , bn in any extension field of K. If f is additive, then

f (X1, . . . ,Xn) = f1(X1) + · · · + fn(Xn)(2)

where each fi(Xi) := f (0, . . . , 0,Xi, 0 . . . , 0) is an additive polynomial in one vari-
able. We refer to [L, VIII, Section 11] for the fact that the additive polynomials in one
variable X over K are precisely the polynomials of the form

m∑
i=0

ciX
pi

with ci ∈ K,m ∈ N.

A valued field is called maximal if it has no proper valued field extension preserv-
ing both value group and residue field. In [K] it is shown that if (K, v) is maximal,
then under a certain additional (elementary) condition on the additive polynomial f
in several variables, the image S has OA. It would be desirable to remove this addi-
tional condition. We do this here for

(
Fq((t)), vt

)
, using its local compactness:

Theorem 1 If f is an additive polynomial in several variables with coefficients in
Fq((t)), then the image of Fq((t)) under f has the optimal approximation property in(

Fq((t)), vt

)
.

It would be nice to generalize this to all maximal valued fields, in other words, to
replace the use of local compactness by some other argument.

The axiom scheme which by Theorem 1 holds in
(

Fq((t)), vt

)
consists of the sen-

tences

∀(ci, j)∀x ∃y1 · · · ∃yn ∀z1 · · · ∀zn : v
(

x −
n∑

i=1

n∑
j=0

ci, j y p j

i

)
≥ v
(

x −
n∑

i=1

n∑
j=0

ci, j z
p j

i

)

in the language of valued rings. In [K] this scheme is shown to be independent of
the following more familiar axioms satisfied by

(
Fq((t)), vt

)
: “henselian defectless

(= algebraically complete) valued field with value group a Z-group and residue field
Fq”. We suspect that the elementary theory of the valued field

(
Fq((t)), vt

)
is com-

pletely axiomatizable by augmenting these familiar axioms with sentences that ex-
press just properties of additive polynomials (like those provided by Theorem 1).

To be more explicit about this suspicion, let us briefly review a (well-known)
module-theoretic interpretation of additive polynomials. Suppose the field K is infi-
nite and of characteristic p > 0. Then the endomorphism ring of the additive group
of K has subring K[ϕ], where λ ∈ K ⊆ K[ϕ] acts on K as multiplication by λ,
and ϕ acts as the Frobenius map x �→ xp; so ϕλ = λpϕ in K[ϕ]. This makes K a
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left module over K[ϕ], and the images of K under the additive polynomials in sev-
eral variables over K are exactly the additive subgroups of the K[φ]-module K of the
form f1K +· · ·+ fnK, where f1, . . . , fn ∈ K[φ]. (Since K[φ] is not commutative, these
additive subgroups are not in general submodules of K.) For (K, v) =

(
Fq((t)), vt

)
,

its elementary theory as a valued module over K[ϕ] has yet to be determined in a
satisfactory way; our theorem is exactly about this valued module. A complete de-
scription of the elementary theory of this valued module seems essential in reaching
an understanding of the elementary theory of the valued field (K, v).

The second author would like to thank Hervé Perdry for discussions on Remark 1
at the end of this paper, and Trevor Green for proof-reading.

2 Compactness and OA

Let (K, v) be a non-trivially valued field, α ∈ vK and a ∈ K. The closed ball Bα(a)
and the open ball B◦α(a) are defined as follows:

Bα(a) = {b ∈ K | v(a− b) ≥ α} and B◦α(a) = {b ∈ K | v(a− b) > α}.

Both kinds of balls are open and closed in the topology induced by the valuation, and
are easily seen to have OA in (K, v). (But they are not compact if (K, v) is not locally
compact.) Note that if vK is dense, then K \ Bα(0) is closed but does not have OA in
(K, v) since it contains no closest point to 0.

Lemma 2 Suppose S is a nonempty compact subset of K. Then S has OA in (K, v).

Proof Let x ∈ K \ S. If z ∈ S, then z /∈ B◦v(x−z)(x), so the collection

{K \ B◦v(x−z)(x) | z ∈ S}

is an open covering of S, hence contains a finite subcovering. The collection of
balls B◦v(x−z)(x) is totally ordered by inclusion. It follows that the finite subcover-
ing contains a largest set, say, K \ B◦v(x−y)(x), which consequently contains S. That is,
S ∩ B◦v(x−y)(x) = ∅. Since y ∈ S, this means that v(x − y) = max{v(x − z) | z ∈ S}.

This proof actually provides a characterization of the optimal approximation
property: A nonempty set S ⊆ K has OA in (K, v) if and only if every covering of S
by the complements of a system of open balls with common center has a finite subcover-
ing.

From the continuity of polynomial maps and Lemma 2 we conclude the following:
If (K, v) is locally compact, then for every f ∈ K[X1, . . . ,Xn], α ∈ vK and a ∈ K, the
image { f (a1, . . . , an) | a1, . . . , an ∈ Bα(a)} of Bα(a) has OA in (K, v).

We also have the following easy implication for nonempty S ⊆ K:

S has OA in (K, v) =⇒ S is closed.
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As noted above, the converse fails if vK is dense. However, by a standard argument,
this converse does hold if (K, v) is locally compact. (The validity of this converse
for definable S amounts to a further set of elementary properties of the valued field(

Fq((t)), vt

)
.)

3 Valuation Independence

Let (K, v) be a valued field, L a subfield of K, and (bi)i∈I a system of non-zero el-
ements in K, with I �= ∅. We call this system L-valuation independent if for every
choice of elements ai ∈ L such that ai �= 0 for only finitely many i ∈ I, we have

v
(∑

i∈I

aibi

)
= min

i∈I
v(aibi).

If V is an L-subvector space of K, then this system is called a valuation basis of V if it
is a basis of V and L-valuation independent.

Let d = pν , ν ∈ N, (K, v) =
(

Fq((t)), vt

)
and L = Kd := {ad | a ∈ K} =

Fq((td)). Note that 1, t, t2, . . . , td−1 is a valuation basis of K as vector space over L.
Let V be an L-subvector space of K with basis b1, . . . , bm. We now indicate how to

modify this basis to a valuation basis of V . Write bi =
∑d−1

j=0 ci jt j with ci j ∈ L. Take

j1 to be the unique index such that vb1 = vc1 j1t
j1 . Replacing b1 by b1/c1 j1 we may

assume c1 j1 = 1. Next, for every i ≥ 2, replace bi by bi − ci j1 b1, so we reduce to the
case that ci j1 = 0 for i ≥ 2. Repeat this procedure with the new elements b2, . . . , bm.
By construction, the coefficients of t j1 in the representations of these elements are
zero. Thus, if vb2 = vc2 j2t

j2 (where c2 j2 denotes the new coefficient), then j2 �= j1.
Hence, applying the procedure a total of m times we obtain a new basis of V which
by an abuse of language we also call b1, . . . , bm, such that vb1, . . . , vbm are distinct
elements of {0, 1, . . . , d− 1}. In particular, this new basis is a valuation basis of V .

4 Proof of Theorem 1

Throughout this section, (K, v) =
(

Fq((t)), vt

)
. Let

S := { f (a1, . . . , an) | a1, . . . , an ∈ K},

be the image of K under some additive polynomial f ∈ K[X1, . . . ,Xn].
We choose a system of non-zero additive polynomials h1, . . . , hk ∈ K[X] in one

variable such that

h1(K) + · · · + hk(K) = S(3)

for which
∑k

i=1 deg hi is minimal. This is possible by (2). The idea is to modify this
system to one that makes it so to say “visible” that S has OA in (K, v).

Denote by ci the leading coefficient and by di the degree of hi , for 1 ≤ i ≤ k.
Then:
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Lemma 3 For every choice of a1, . . . , ak ∈ K, not all zero, we have

k∑
i=1

cia
di
i �= 0.

Proof Suppose there are a1, . . . , ak ∈ K, not all zero, such that
∑k

i=1 cia
di
i = 0. After

renumbering we may assume a1 �= 0 and d1 = max{di | 1 ≤ i ≤ k and ai �= 0}.

Replacing every ai by aia
−d1/di

1 , we may even assume that a1 = 1. Now we set

h̃1(X) :=
k∑

i=1

hi(aiX
d1/di ).

Since each polynomial hi(aiXd1/di ) has degree d1 and leading coefficient cia
di
i , and

since
∑k

i=1 cia
di
i = 0, we obtain deg h̃1 < d1 = deg h1. Therefore,

deg h̃1 +
k∑

i=2

deg hi <

k∑
i=1

deg hi.(4)

On the other hand, for every choice of bi ∈ K we have

h1(b1) + · · · + hk(bk) =
k∑

i=1

hi(aib
d1/di

1 ) +
k∑

i=2

(
hi(bi)− hi(aib

d1/di

1 )
)

= h̃1(b1) +
k∑

i=2

hi(bi − aib
d1/di

1 ).

Thus S ⊆ h̃1(K) + h2(K) + · · · + hk(K). The converse inclusion follows from the
definition of h̃1 and the fact that S is an additive subgroup of K which contains the
images hi(K) for all i. So

S = h̃1(K) + h2(K) + · · · + hk(K),

which in view of (4) contradicts the minimality of the system h1, . . . , hk.

Lemma 4 There are additive polynomials g1, . . . , gm ∈ K[X] in one variable such
that

a) S = g1(K) + · · · + gm(K),
b) all polynomials gi have the same degree d = pν , for some non-negative integer ν,
c) the leading coefficients b1, . . . , bm of g1, . . . , gm are such that vb1, . . . , vbm are dis-

tinct elements of {0, 1, . . . , d− 1}.
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Proof We set
d := max

i
di and δi := d/di.

Since the hi are additive polynomials, these numbers are powers of p. Hence

K = Kδi + tKδi + · · · + tδi−1Kδi .

Therefore,

hi(K) = hi(Kδi ) + hi(tKδi ) + · · · + hi(t
δi−1Kδi ) = hi,0(K) + · · · + hi,δi−1(K)

where
hi, j(X) := hi(t

jXδi ) ∈ K[X].

Consequently,

S =
k∑

i=1

δi−1∑
j=0

hi, j(K)

with all polynomials hi, j having degree d.
We claim that the leading coefficients ci j = cit jdi of the polynomials hi, j are Kd-

linearly independent. Suppose that for ai j ∈ K,

0 =
k∑

i=1

δi−1∑
j=0

ci ja
d
i j =

k∑
i=1

ci

δi−1∑
j=0

t jdi aδi di
i j =

k∑
i=1

ci

( δi−1∑
j=0

t jaδii j

) di

.

Lemma 3 then gives
δi−1∑
j=0

t jaδii j = 0 for 1 ≤ i ≤ k.

As 1, t, . . . , tδi−1 are Kδi -linearly independent, it follows that ai j = 0 for all i and j.
This proves our claim.

We have now found additive polynomials h̃1, . . . , h̃m in K[X] of degree d, with Kd-
linearly independent leading coefficients c̃1, . . . , c̃m and such that S = h̃1(K) + · · · +
h̃m(K). The previous section shows that the Kd-vector space generated by c̃1, . . . , c̃m

admits a valuation basis b1, . . . , bm, say, for which vb1, . . . , vbm are distinct elements
of {0, 1, . . . , d− 1}. Write bi =

∑m
j=1 rd

i j c̃ j with ri j ∈ K. Now we set

gi(X) :=
m∑

j=1

h̃ j(ri jX)

and observe that for each i the polynomial gi is of degree d with leading coefficient bi .
It only remains to show that condition a) is satisfied. Since S is an additive subgroup
of K and contains the images h̃ j(K) for all j it follows that g1(K) + · · · + gm(K) ⊆
h̃1(K) + · · · + h̃m(K) = S. On the other hand, both c̃1, . . . , c̃m and b1, . . . , bm

are bases, so the matrix (rd
i j) is invertible. Thus, also the matrix (ri j) is invertible.

Denote its inverse by (si j ), with si j ∈ K. A simple computation then shows that
h̃i =

∑m
j=1 g j(si jX). Hence S = h̃1(K) + · · · + h̃m(K) ⊆ g1(K) + · · · + gm(K), which

concludes the proof.
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Lemma 5 Suppose the additive polynomials g1, . . . , gm ∈ K[X] satisfy conditions b)
and c) of Lemma 4. Then there exists α ∈ vK = Z such that if B is the additive subgroup
Bα(0) of K and C a group complement of B in K, then for all b ∈ g1(B) + · · · + gm(B)
and all non-zero c ∈ g1(C) + · · · + gm(C),

vc < dα ≤ vb.

Proof Let f (X) = cnXn + · · · + c1X + c0 ∈ K[X] be any polynomial, cn �= 0. Take
α ∈ vK such that if a ∈ K and va ≤ α then

vcnan = vcn + nva < vc j + jva = vc ja
j for 0 ≤ j < n,

which implies

v f (a) = min
0≤ j≤n

vc ja
j = vcnan = vcn + nva.(5)

This in turn implies that for a ∈ K with va ≥ α we have

v f (a) ≥ min
0≤ j≤n

vc ja
j ≥ vcn + nα.(6)

Now choose α such that (5) holds simultaneously for all f = gi , 1 ≤ i ≤ m, and
all a ∈ K with va ≤ α. Hence (6) holds simultaneously for all f = gi and all a ∈ K
with va ≥ α. As before, denote by bi the leading coefficient of gi . Then every a ∈ K
with va ≤ α satisfies vgi(a) = vbi + dva. Since vb1, . . . , vbm are distinct elements of
{0, 1, . . . , d − 1}, we find that for all choices of ai ∈ K with vai < α for at least one
i, we have vbi + dvai < dα for this i, and

v
(

g1(a1) + · · · + gm(am)
)
= min

i
vgi(ai) = min

i
vbi + dvai < dα

by (5). But if vai ≥ α for all i, then by (6),

v
(

g1(a1) + · · · + gm(am)
)
≥ min

i
vgi(ai) ≥ min

i
vbi + dα ≥ dα.

Let B and C be as in the lemma. Then B∩C = {0}, so every non-zero c ∈ C satisfies
vc < α. Now the lemma follows from the inequalities above.

Lemma 6 Let (F, v) be a valued field with value group vF = Z. Suppose B and C are
non-trivial additive subgroups of F such that B has OA in (F, v) and vc < vb for all
b ∈ B and all non-zero c ∈ C. Then B + C has OA in (F, v).

Proof Take any x ∈ F. Since B �= {0}, the set {vc | 0 �= c ∈ C} is bounded from
above in vF = Z, so vC has a maximum γ.

Suppose first that v(x − z) ≤ γ for all z ∈ C. Then {v(x − z) | z ∈ C} has a
maximum in Z. Also, if b ∈ B and c ∈ C, then v(x − c) ≤ γ < vb, and therefore,

v
(

x − (b + c)
)
= min{v(x − c), vb} = v(x − c) ≤ max{v(x − z) | z ∈ C},
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showing that {v(x− z) | z ∈ B + C} has a maximum, namely max{v(x− z) | z ∈ C}.
Now assume that v(x − c0) > γ, with c0 ∈ C. Our assumption on B implies that

the set {v(x− c0− z) | z ∈ B} has a maximum, say, v(x− c0− b0) with b0 ∈ B. Note
that v(x − c0 − b0) > γ. Take any b ∈ B and c ∈ C. Then

v
(

x − (b + c)
)
≥ min{v(x − c0 − b0), v(c0 − c), v(b0 − b)}.

If c0 �= c, then v(c0− c) < v(b0− b) and v(c0− c) ≤ γ < v(x− c0− b0), showing that
v
(

x−(b+c)
)
= v(c0−c) < v(x−c0−b0). If c = c0, then v

(
x−(b+c)

)
≤ v(x−c0−b0)

holds by our choice of b0. Thus {v(x − z) | z ∈ B + C} has a maximum, namely
v(x − c0 − b0).

Proof of Theorem 1 Let f be an additive polynomial in several variables with coef-
ficients in K = Fq((t)). Write the image of K under f as S = g1(K)+ · · ·+gm(K) with
additive polynomials g1, . . . , gm ∈ K[X] in one variable which satisfy conditions b)
and c) of Lemma 4. We choose α, B and C as in Lemma 5. Since B and C are additive
subgroups of K, the additivity of the gi implies that B := g1(B) + · · · + gm(B) and
C := g1(C) + · · · + gm(C) are again additive subgroups of K. Moreover, as B is com-
pact, so is B, and thus B has OA. Lemma 5 implies that the hypothesis of Lemma 6
is satisfied, so B + C has OA. But by the additivity of the gi ,

B + C = g1(B + C) + · · · + gm(B + C) = g1(K) + · · · + gm(K) = S.

This concludes our proof.

Remark 1 Theorem 1 goes through when
(

Fq((t)), vt

)
is replaced by any henselian

valued subfield (L, vt |L) of
(

Fq((t)), vt

)
such that Fq(t) ⊂ L and [L : Lp] = p.

To see this, note that by Greenberg’s approximation theorem for discrete henselian
valuation rings [G], such a subfield (L, vt |L) is existentially closed in

(
Fq((t)), vt

)
(the

conditions Fq(t) ⊂ L and [L : Lp] = p imply that Fq((t))|L is separable). Let f be
an additive polynomial with coefficients in L, and let x ∈ L. By Theorem 1 there are
a1, . . . , am ∈ K such that vt

(
x− f (a1, . . . , am)

)
is maximal. Since vt L = vt Fq((t)) we

can choose c ∈ L such that vt c = vt

(
x − f (a1, . . . , am)

)
. So the existential sentence

∃ x1 · · · ∃ xmvt c = vt

(
x− f (x1, . . . , xm)

)
holds in

(
Fq((t)), vt

)
. But then it also holds

in (L, vt |L), that is, a1, . . . , am can be chosen to lie in L.
An example of such a valued subfield is the henselization of Fq(t) inside Fq((t)),

where both fields carry the t-adic valuation.

Remark 2 Theorem 1 does not hold for Fq(t) with its t-adic valuation: the addi-
tive polynomial X − Xp does not have t in its image on this field, but t can be
approximated arbitrarily closely by elements in this image, since t = x − xp for
x =
∑∞

n=0 t pn

∈ Fq((t)).

Remark 3 The proofs of Lemmas 3 and 4 do not use the local compactness of
(K, v) =

(
Fq((t)), vt

)
. Actually, we just need that 1, t, . . . , t p−1 is a basis for K|K p

and that vt is not divisible by p in vK. Hence, in every extension (L, v) of
(

Fq((t)), vt

)
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with these properties one can derive polynomials g1, . . . , gm over L as in Lemma 4
from any given additive polynomial f over L. The proof of Lemma 5 then shows that
there exists α0 ∈ vL such that for each α ≤ α0 in vL, any complement C of Bα(0) in
L, and all a1, . . . , am ∈ C we have

v
m∑

i=1

gi(ai) = min
i

vgi(ai)

(so the sum g1(C) + · · · + gm(C) is “valuation direct”). If (L, v) is maximal, one can
then prove along the lines of [K] that g1(C) + · · · + gm(C) has OA in (L, v).
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