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SUMMARY

For large population sizes, gene frequencies p and q at two linked over-
dominant loci and the linkage disequilibrium parameter D will remain
close to their equilibrium values. We can treat selection and recombination
as approximately linear forces on^J, q and D, and we can treat genetic drift
as a multivariate normal perturbation with constant variance-covariance
matrix. For the additive-multiplicative family of two-locus models, p,
q and D are shown to be (approximately) uncorrelated. Expressions for
their variances are obtained. When selection coefficients are small the
variances of p and q are those previously given by Robertson for a single
locus. For small recombination fractions the variance of D is that obtained
for neutral loci by Ohta & Kimura. For larger recombination fractions
the result differs from theirs, so that for unlinked loci r2~ 2/(3N) instead
of l/(2N). For the Lewontin-Kojima and Bodmer symmetric viability
models, and for a model symmetric at only one of the loci, a more exact
argument is possible. In the asymptotic conditional distribution in these
cases, various of p, q and D are uncorrelated, depending on the type of
symmetiy in the model.

1. INTRODUCTION

Much of the work on linked genes in the last few years has centred on the deter-
ministic theory of natural selection of linked polymorphisms. Of the papers which
treat genetic drift of linked genes, most assume no selection. The papers of Sved
(1968, 1972) and of Ohta & Kimura (1971; see also Kimura & Ohta, 1971) dealt
with the effect of a single locus under selection on a neighbouring neutral locus.
Sved (1968), Hill (1968, 1969), Levin (1969) and Hill & Robertson (1968) treated
the case of two or more linked polymorphic loci in a finite population. Of these,
Levin (1969) presented some computer simulations of the rate of fixation of linked
overdominant loci. Hill (1968, 1969) used exact matrix methods to find the rate of
fixation in very small populations with two linked overdominant loci. For larger
populations he used computer simulation. Hill & Robertson (1968) also examined
the rate of fixation of linked overdominant loci using computer simulation. In all of
these cases, associative overdominance was found to mutually retard the fixation
of tightly linked overdominant loci. Of these authors, only Sved (1968) and Hill
& Robertson (1968) examined the characteristics of the unfixed populations. Both
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found that the measure r2 of linkage disequilibrium would approach l/(42Vc), where
N is the population size and c the recombination fraction.

This paper is concerned with the properties of the doubly unfixed populations
when there are linked overdominant polymorphisms in a finite population. Atten-
tion is restricted to a few of the many possible models of selection. The variables of
interest are the deviations of the gene frequencies from their deterministic equi-
libria, and the linkage disequilibrium. For the additive-multiplicative family of
models, an approximation is constructed by linearizing the processes of selection
and recombination. For various symmetric selection models, an exact argument
is possible.

Table 1. Notation for genotype fitnesses

BB Bb bb

AA wu w12 wi2

aa w33 w3l wlt

2. THE MODEL

We consider a diploid population of constant number N with discrete generations.
Reproduction is according to a monoecious 'Wright model' with selfing allowed.
We consider two loci, each with two alleles (A and a, B and b). The fitnesses of the
nine genotypes, assuming no cis-trans effects, are given in Table 1. Technically,
we have a different stochastic process, depending on whether these fitnesses repre-
sent differences in viability, differences in fertility, or some mixture. The frequencies
of the gametes AB, Ab, aB and ab will be denoted by x1, x2, x3 and #4. The gene
frequency of A is p and of B is q (note that q does not stand for 1 — p). D is the linkage
disequilibrium (or gametic phase unbalance, or gametic phase imbalance, or gametic
phase disequilibrium) parameter.

We have the usual relationships between gamete frequencies, gene frequencies,
and linkage disequilibrium:

xi =P1 + D>

and
p = xx + x2, -\

\ (2)
D = xx-pq = xxXi-x%xz.

We have the usual marginal gamete fitnesses:

Wi = S XfWti (i = 1, 2,3,4), (3)
3 = 1

and the average fitness:
_ 4
w = £ xiwi = S S

i=1 i j
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We now make use of a quantity which is convenient for handling signs:

if < « 1 , 4
h=l if < « 1 , 4 J

= - 1 if t = 2,3.J

The deterministic equations for the change in the xi by natural selection are:

x\ = [XiWi-rkiiv^D^fw, (6)

where r is the recombination fraction, and the prime indicates the new value of xt.
Using equations (2) we readily obtain recurrence relations for p, q and D:

q' = [x1w1 + x3w3]/w,

= [x1xiw1wi — x2xsw2w3 — rwXiDw\lw2.,

The xit Wi and w in equations (7) are to be regarded as functions of p, q and D, as
given by equations (2) and implied by equations (3) and (4).

Genetic drift is introduced into the model by assuming that the infinite number
of survivors of the viability selection are to be reduced to a finite number of adults
by multinomial sampling of N individuals. The survivors of viability selection will
not in general be in Hardy-Weinberg proportions, in which genotype frequencies
are the products of the corresponding gamete frequencies. Therefore sampling N
adults is not equivalent to sampling 2N haploid genomes. (Of course, the difference
will be small if selection coefficients are not large, since then there will be little
departure from Hardy-Weinberg proportions after selection.)

All populations which initially have both loci segregating will ultimately drift to
fixation at both loci, except for the trivial case in which both homozygotes at a
locus are lethal. However, if selection coefficients s or population sizes are large
enough that Ns > 1, fixation will be long delayed. During this interim period we
assume that the populations will settle into a stable distribution of completely
unfixed populations in the variables p, q and D. It is some characteristics of this
distribution which will interest us, in particular the variances and covariances of
the variables 2>, q and D under genetic drift in the presence of overdominance at two
loci.

The length of the time until fixation makes the distribution of unfixed populations
relevant to equilibrium situations in natural populations. A small rate of mutation
to reintroduce the lost alleles into the fixed populations will create an equilibrium
distribution of p, q and D. For sufficiently small rates of mutation, the distribution
of unfixed populations should be nearly the same as the distribution of unfixed
populations without mutation.

3. APPROXIMATE LINEARIZATION OF THE STOCHASTIC PROCESS
For each set of fitnesses there will be various equilibrium values of p, q and D in

an infinite population. In a finite population of sufficient size, p, q and D will tend to
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remain close to these equilibrium values. Let us define a new set of variables, the
dt, which are the deviations of p, q and D from their deterministic equilibrium values.
Thus the row vector

We can represent the stochastic process as

(8)

where/() represents the deterministic change and e the stochastic change resulting
from sampling of N adults. Now we consider cases in which N is large. Then^?, q and
D will remain close to their equilibrium values. In that region we can approximate
/(d) by a linear transformation of d (the first terms in a multivariate Taylor series
expansion). So

= Ad<» + e. (9)

The matrix A is precisely the Jaeobian matrix of the transformation /(d). We
approximate the sampling process which provides e by assuming it follows a multi-
variate normal distribution with mean 0 and covariance matrix 0- In the actual
process the means are zero but the covariance matrix of e is a function of the current
position d. We have approximated it by its value at the equilibrium point.

We are thus approximating the stochastic process by a multivariate random walk
with linear return to the equilibrium. This approximation has been used in different
contexts by Bodmer (1960) and Smith (1969). Feller (1951) and Karlin & McGregor
(1964) found that the continuous-time diffusion process with linear pressure to
return to an equilibrium (the Ornstein-Uhlenbeck process well known in physics)
is a diffusion approximation to single-locus Wright models when they let iV->oo
while holding mutation constant and making an appropriate change in the scale of
gene frequency observations. Norman (1972) also presents conditions sufficient to
guarantee the normality of the distribution of gene frequency as N -> oo and
selection and mutation coefficients approach zero. May (1973) has used a multi-
variate Ornstein-Uhlenbeck approximation in an ecological context.

The random walk is normal and the return process linear, and this guarantees
us that the limiting distribution of d will be multivariate normal, with means zero
and some covariance matrix G. To characterize this distribution we need only find
G. We have

(10)

Making use of (9) and of the property that E(de') = E(e'd) = 0, we have

C<t+«= AC<«A' + 0 (11)

so that at equilibrium, C satisfies

C = ACA' + Q- (12)

This set of equations is linear in the cy, and it is possible to solve it on a computer if
the matrix C is small (in the present case, it is only 3 x 3).
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In the cases treated in this paper, we will usually find that matrix A is diagonal.
In such cases (12) becomes

ci3-= <%%•% + &,-, • ' (13)
whereby immediately

tii = <lii\^-a>iiaii). (14)

If 0 is itself diagonal, so will be C, with

^i = <?«/(!-<), : (15)

with all other ci} being zero. In these cases p, q and D are undergoing independent
random walks with linear return, and each is independently normally distributed
around its deterministic equilibrium value with a variance which can be readily
calculated.

4. ADDITIVE-MULTIPLICATIVE FAMILY

We consider the viability model given in Table 2. When k = 0 this is the standard
additive model, and when k = 1 it is the standard multiplicative model. When the
loci are individually symmetric (s = t, u = v) this model is the symmetric model of

Table 2. Fitness in the additive-multiplicative model

BB Bb bb

AA
Aa
aa

1 — 8 — u + ksu
1-u

l — t — u + ktu

1-8
1

1-t

1 — S — V + ksv
l-v

1-t-v + ktv

Lewontin & Kojima (1960). It is tedious but not difficult to show that for all k there
is an equilibrium with

the position of this equilibrium not depending on r. However, its stability does
depend on r, with this equilibrium being unstable if

s + tj\u + vjr<k

(Bodmer & Felsenstein, 1967). There are of course, other conditions which must be
satisfied for the equilibrium to be stable, but these will not be derived here.

We can define four epistasis parameters in the usual way (as departures from
additivity):

ij. (17)

These turn out to be
ex = ksu,
e, = — ksv, I
e3 = -ktJ

and e4 = ktv.
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Note that, at the equilibrium mentioned above,

= 0,

and pe2 + (1 — p) e4 = 0.)

Now we need to know some derivatives. We readily obtain, using (3) and (17),

j£ (20)

Bw,-
-^ = wi3-wii+pei, (21)

and m = €i- (22)

We want to get the derivatives of d'v d2 and d'z with respect to the dit so as to
compute the matrix A. To do this, we compute the derivatives of p', q' and D' with
respect to p, q and D in the vicinity of the equilibrium. We have from (2), using
(20)-(22),

,1 8w
p' = - (23)

dw, 8wJ ,1 8w= = \pWlpW2+I) — - p ^ -p - - (24)

dJJ w w dl)

There are similar equations for q' and D. These derivatives are to be evaluated at
the equilibrium point where p' — p, q' = q and D' = D. The equilibrium in which
we are interested has the same value of p, q and D whatever the value of r. In par-
ticular, it is an equilibrium when r = 0. This means that it is a point of maximum
or minimum w, so that since it is on the interior of the space of possible values of p,
q and D,

did dw dw
dp dq dD •

Using this and substituting into (23)-(25) first the expressions in (20)-(22), then
(18) and fitnesses in Table 2, we finally find that

•gT = 1 — i 7T7T\ ~ M T T ; 11 ; m I \lw> (27)

% = °' (28)

•d^ = °- <29>
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There are similar derivations for q' and D', resulting in

8q' _ 8D' _8D'_
^--^--eg--0' ( 3 0 )

(31)^ = 1
8q

and ^.1+ri(-)(j!L.)_ri/ i5. (32)
8D I \s + tj\u + vj \l

Since, for example,

equations (27) through (32) give us the values of the ai;- and the matrix A does indeed
turn out to be diagonal, so that we can apply equations (14) and (15). We now need
only calculate the qit.

As mentioned above, this is not quite as simple as it seems, since we are sampling
N adult survivors of selection rather than 2N gametes.

Let Py be the frequency of genotype ij (i.e. consisting of gametes i and j) after
selection. Then

Pi} = XiXjWylw. (33)

Since the sampling of survivors of selection consists of N multinomial trials, the
frequency of genotype ij being P^, the genotype frequencies P'y after sampling will
have

cov (P'ip P'tJ = -P^PfJN (vj * km) (34)

and var (PJ,) = P^( 1 - P^/N. (35)

If x\ are the gamete frequencies after selection and x'^ after selection and sampling,
it is not difficult to show from (34) and (35) that, for example,

^ , ^ - - 1 ^ + 2^4, (36)

^xD^-^P^, (37)

"i,x"j) = ±Pij-±x'ix'j (i*j) (38)

and var K) =±P..-^ (xj)2 + ̂ x't. (39)

The frequencies of the gametes after selection, sampling and recombination are

). (40)
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We are only interested in covariances at the equilibrium point. Making use of the
fact that D = 0 at that point, we have x\ = x% and P14 = P41 = P23 = P32, so that

ii--zizi + -^xi8ii-kikir{l-r)-ftPu, (41)

where <Ji3- is the Kronecker delta.
One can now show fairly simply that at the equilibrium point,

cov (S'p, 8q) = cov (8xx + 8xz, 8x1 + 8x3) = 0. (42)

To get covariances with D we approximate

8D ~ xx 8xi+a;4 8x1 — x2 8x3 — x3 8x2. (43)

This amounts to ignoring higher order terms in N, which we may safely do since
the entire approach of linearizing selection equations is valid only for sufficiently
large N. At the equilibrium point,

cov (8p, 8D) = cov (8x1+8x2, xx &c 4 +x i 8xx—x2 8x3 — x3 8x2) = 0, (44)

which can be proved, but only after a lot of tedious algebra, including use of the
specific fitnesses given in Table 2, as well as the fact that we are at the equilibrium
point and that D = 0. Clearly there must be an analogous proof that cov (8q, 8D) = 0.

We now have shown that both A and 0 are diagonal matrices, so that we can use
(15). I t is only necessary to compute the qti, which in this case will be the variances
of 8p, Sq and 8D.

These quantities can be found by further use of (41), of the viabilities in Table 2,
and of the fact that we are computing these variances at an equilibrium at which
D = 0. The proof is straightforward but too tedious to give here. We finally obtain

^ ] (45,

where
wAa- l-uv/(u + v),

and q3Z = ™(8D) = ̂ ^ ( i_^)( l -$) [ i + ^ - ^ J ^ ^ ] . (47)

We substitute (45)-(47) and (27), (31) and (32) into (15), and get the cu:

,„» ft(lff)[laW(2^)]
o11 = var (p) = N[i_(l_Yi)2] , (48)

cc22 - va r (?) _
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and

where

w = 1 - s</(s -M) - w/(« + v)

and wBb = l — st/(s + t).

Of course (48)-(50) could be expressed entirely in terms of 5, t, u, v, k and r, but
there seems no point in doing so.

We have seen that when the stochastic process is linearized around the equili-
brium p = t/(s + t), q = v/(u + v), D = 0, then p, q and D drift approximately in-
dependently of one another under the additive-multiplicative model. Their covari-
ances are zero and their standing variances may be computed from (48)-(50). It is
interesting to note that the formula (50) for the variance of D becomes infinite
as r is reduced to the threshold level given by (16) for instability of the equilibrium.

Interestingly enough, the formulas (48) and (49) for var (p) and var (q) do not
depend on the recombination fraction r. Thus there is no sign of associative over-
dominance, which would cause a closely linked neighbour under selection to in-
crease the stability of a polymorphism. However, this does not contradict the work
of Ohta & Kimura (19696, 1971; see also Kimura & Ohta, 1971) since the lack of
associative overdominance here is purely a result of the approximations used. As-
sociative overdominance, which would surely be present in a more accurate approxi-
mation, is an effect of order 1/N2, and disappears when we drop terms of order higher
than 1/JV. Its absence here thus reflects only the fact that it is of little importance
for large JV, compared to the selective effects of the loci themselves.

If we let s, t, u and v be small, we can obtain approximations to (48)-(50),

(51)

var (?) ~ l/[2N(u + v)] (52)

and var (D) ~ pq(l -f) (1 -£)/{2iV[l - (1 -r)2]}. (53)

The first two expressions are identical to the results of Robertson's (1970) lineari-
zation of the stochastic process of a single overdominant locus. Thus each locus
is varying as if the other were not present. Another comparison of interest involves
the quantity B2 (not to be confused with the square of the recombination fraction)

( 5 4 )
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In this case, the denominator is effectively constant (the linearization discards its
variation) so that

M(i-^)(i-s1 Mi-^)(i-«T ( '
and finally

R2 = l/{2iV[l - (1 - r)2]}. (56)

R2 is the quantity called rz by Hill & Robertson (1968) and in this approximation
is equal to the a2 defined by Ohta & Kimura (19696).

When the recombination fraction r is small, we obtain

R2 „ i/(4j\rr) (57)

in agreement with Hill & Robertson (1968) and Ohta & Kimura (1969 a), Kimura
& Ohta (1971). But for a larger value of r we must use (56) instead of (57). For
r = 0-5,

R2 ~ 2/(3JV) (58)

in agreement with Sved & Feldman (1973), and in contrast to Ohta & Kimura's
value of 1/(2N). It might be expected that (57) would not be accurate for large
values of r, since Ohta & Kimura derived it from a diffusion argument which is
asymptotically correct as N -> oo and r ->• 0 such that Nr remains constant. The pre-
sent argument should be valid asymptotically as N -*• oo, without restriction on r.

It seems a reasonable conjecture that the independence of the drift of gene fre-
quencies and of linkage disequilibrium parameters should hold for additive-multi-
plicative models with any number of loci and any number of alleles. Nothing in this
paper guarantees that this conjecture will be valid. A new elegant and powerful
matrix notation for multiple-locus additive and multiplicative models discovered
by C. Z. Roux (1974) and by S. Karlin & U. Lieberman (personal communication)
might make such a proof possible.

5. SYMMETRIC MODELS

When we consider special symmetric viability models, a stronger argument can
be made that some of these quantities are uncorrelated. The argument is exact,
without any approximations, and relies on the symmetry. It proves lack of correla-
tion but does not calculate variances of the quantities. This argument should be
readily generalizable to any number of loci and any number of alleles (providing
that appropriate symmetry is retained).

We make only one assumption: that for all initial states of a population (provided
they have both loci segregating initially) the asymptotic conditional distribution
of doubly unfixed populations'is the same. If this is true, which seems likely for all
cases in which the double heterozygote is not lethal, we can compute the covariances
cov (p,q), cov(p, D) and cov (q,D) in the asymptotic conditional distribution,
knowing only the fitnesses w^, the population size N, and the recombination fraction
r. From this point on, let us subscript the quantities p, q and D with the name of the
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allele. Thus pA is the frequency of A, and DAB is the linkage disequilibrium when
AB is denned as coupling.

Suppose that interchanging the identities of alleles A and a, A <->a, leaves the
fitness matrix unchanged. Then the fitnesses are symmetrical with respect to the
A locus. So

cov (pA, qB) = cov (pa, qB) and cov (DAB, qB) = cov (DaB, qB).

But by their basic definitions

PA=1~Pa a n d DAB = - DaB,
so that we must also have

cov (pA, qB) = - cov (pa, qB) and cov (DAB, qB) = - cov (DaB, qB).

It follows that all of these covariances must be zero. We have proved the folloAving
rule:

I. If the fitness of genotypes are unaffected by exchanging A <->a, then, in the
asymptotic conditional distribution of double unfixed populations,

c o v
 (PA' 9B) = ° a nd cov (DAB, qB) = 0.

Exactly the same argument applied to symmetry at the B locus shows that:
II. If the fitnesses of the genotype are unaffected by exchanging B<-*b, then in

the asymptotic conditional distribution of doubly unfixed populations,
cov (pA, qB) = 0 and cov {DAB,pA) = 0.

When we have symmetry with respect to the double interchange A*-+a and
B<->b, then since DAB = Dab,

cov (pa, DAB) = cov (pa, DAB) and cov (qB, DAB) = cov {qb, DAB).

It follows that:
III. If the fitnesses of the genotypes are unaffected by exchanging A <-» a and

B*-*b simultaneously, then in the asymptotic conditional distribution of doubly
unfixed populations,

cov (pA, DAB) = 0 and cov (qB, DAB) = 0.

Let us now apply rules I, II and III to the various symmetric viability models.

(i) Lewontin & Kojima's symmetric model
The model introduced by Lewontin & Kojima (1960) is shown in Table 3. The

array of fitnesses remains unchanged when we exchange A<-+a or S<->6 or both.
We can therefore conclude that

cov (p, q) = cov (p, D) = cov (q, D) = 0,

so that p, q and D are all uncorrelated. Lewontin & Kojima's model is really a
special case of the additive-multiplicative model given in Table 2. The lack of
correlation of p, q and D which holds approximately for the additive-multiplicative
model is exact for the Lewontin-Kojima case.

19 GRH 24
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(ii) Bodmer's general symmetric model

This model, shown in Table 4, was introduced in a less general form by Bodmer
& Parsons (1962) and in full in Bodmer & Felsenstein (1967). The Lewontin-
Kojima model as well as the earlier model of Kimura (1956) are special cases of this
model. Inequality of a and S implies that the fitnesses will not remain unchanged
under either of the exchanges A *-*a or B^>b. Thus, rules I and II do not apply.

Table 3. Lewontin do Kojima's symmetric viability model

BB Bb bb

AA
Aa
aa

Table 4.

AA
Aa
aa

1—s—u+e
l-u

1—s—u+e

Bodmer's general

BB

l-a
i - r
1-5

1-8
I

1-s

symmetric viability

Bb

1-fi
1

1-P

1—8—u+e
l-u

1—s—u+e

model

bb

1-8

l - a

Table 5. The half-symmetric model

BB Bb bb

AA
Aa
aa

1

1

— 8 — U +

1-U
— 8 — U +

e l

e.

1-8

1
1-8

1—8 — V

1-V
1 —8—V

However, the fitnesses do remain unchanged if we exchange both A*-*a and .B<->6
simultaneously. So rule III applies and

cov (p, D) = cov (q, D) = 0.

Therefore, under Bodmer's general symmetric model p and q may covary, but
D will be uncorrelated with either p or q.

(iii) The 'Half-Symmetric' model
One obvious sort of symmetric model is shown in Table 5. It is not a special case

of any of the models given so far. It is symmetric in one locus but not in the other,
so I refer to it as half-symmetric. Lewontin & Kojima's symmetric model is a
special case of the half-symmetric model. Since we can exchange A*-* a and leave
the fitness matrix unchanged, by rule I,

cov (p,q) = cov(g,Z>) = 0,

so q is not correlated with p or D, although they may be correlated with each other.
The half-symmetric model does not seem to have been introduced before. I t has

an equilibrium with

s-\e-L-\e^ and .6 = 0.
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This equilibrium is unstable if r < \q(\ — q) (ex + e2), by the instability criterion given
by Bodmer & Felsenstein (1967). Of course, other equilibria might also exist.

If the asymptotic conditional distribution of doubly unfixed populations is
independent of the initial position of the population (provided only that it is not
fixed already at either locus) then on any small perturbation in the distribution it
must return to the same distribution ultimately. For a finite N there are only a finite
number of points in this distribution, hence it can be characterized by a finite num-
ber of parameters. The method of small parameters introduced into population
genetics by Karlin & McGregor (1972) would seem to guarantee that a small change
in the fitness matrix will lead to only a small change in the asymptotic conditional
distribution, in particular, to only a small change in its second moments cov (p, q),
cov(p, D) and cov (q, D). So models whose fitnesses are near those of any of these
symmetric models will nearly share their properties. Thus if cov (p, q) = 0 in a
symmetric model, a nearly symmetric model is likely to have cov (p, q) ~ 0.

It will be interesting to see how much more we can prove using either the lineariza-
tion or the symmetry arguments used here. In particular, it should not be difficult
to investigate linked frequency-dependent polymorphisms. In the meantime, it
should be pointed out that it is not difficult to calculate approximate variances and
covariances of p, q and D numerically by solving the linear equations in the ctj

which are implicit in equation (12) above.
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