
Annals of Glaciology 18 1993 

© International Glaciological Society 

A statistical m.odel for m.axim.um. avalanche run-out 
distances in southwest Montana 

L. R. McKITTRICK AND R. L. BROWN 

Department of Civil and Agricultural Engineering, Montana State University, Bozeman, MY 59715, U.S.A. 

ABSTRACT. An extreme value (Gumbel) distribution was evaluated as a model 
of maximum run-out distances of avalanches in southwest Montana defined in terms 
of dimensionless ratios. The run-out ratios are defined relative to an arbitrarily 
defined reference point. The development and analysis of the statistical model were 
based on data taken from surveys of 24 avalanche paths. The technique bears 
promise as a user-friendly tool; however, due to the small vertical drop of avalanches 
in southwest Montana, the model appears to be quite sensitive to measurement errors 
in the field . This sensitivity also seems to depend on the definition of the reference 
point. Comparison with models developed for other mountain ranges indicates that 
models developed for one range cannot be used to estimate accurately maximum 
avalanche run-out distances in other mountain ranges until influencing factors are 
better understood. 

INTRODUCTION 

To determine where structures can be built safely, it is 
desirable to estimate maximum avalanche run-out 
distances or "lOO-year" avalanche zones. Voellmy's fluid 
model and the unified center-of-mass model have often 
been considered the standards for determining run-out 
distances for avalanches, but the necessary parameters are 
often difficult to obtain without an intuitive feel. 

Recently more sophisticated methods of modeling 
avalanche dynamics, reviewed by Lang and Dent (1982) 
have been developed as a means of estimating avalanche 
run-out distances. These methods initially modeled a 
flowing avalanche as laminar flow of a Newtonian fluid 
(Lang and others, 1979; Lang and Brown, 1980). 
Numerous field evaluations (Martinelli and others, 
1980) verified that this computational model could be 
used to predict avalanche run-out distances accurately, 
but reasonable values for the material viscosity and 
friction coefficient had to be determined. This model still 
required user experience to estimate the required 
parameters. In addition, the assumption of laminar flow 
left questions regarding the ability of the model to 
duplicate accurately some details of the flow. 

Dent and Lang (1982) later improved on the earlier 
model by representing the fluid as a biviscous material. 
This model gave very good estimations of run-out 
distance, avalanche speed and debris-pile geometry 
when compared with actual data. Dent and Lang's 
computational model, again, required the user to estimate 
some material parameters. 

More recent studies on avalanche dynamics include 
those of Hutter (1989) and Lang (1991). These models 
employ very sophisticated theories of turbulent granular 

material flow. Their results look very promlSlng, and 
continued development of these formulations offers 
promise of powerful formulations for predicting many 
details of avalanche dynamics, including run-out dis­
tances. 

The purpose of this research is to develop a more user­
friendly tool for estimating maximum avalanche run-out 
distances in southwest Montana. The method of 
McClung and others (1989) offers an ideal means of 
achieving this goal. This method is essentially a statistical 
evaluation of historical avalanche activity in any given 
mountain range. Maximum run-out distances are 
estimated avalanche extremes that have occurred in the 
last lOO-year period. McClung has applied this approach 
to mountain ranges in Norway, the Sierras, the Colorado 
Rockies and the Canadian Rockies, and has noted 
substantial discrepancies in the results for these ranges. 
These discrepancies may be due to differences in terrain 
features and to weather conditions. The great majority of 
slide paths evaluated by McClung were large, over 350 m 
vertical drop. In this study we tested the applicability of 
McClung's approach to the mountains in southwest 
Montana where a large percentage of the slide paths is 
considerably smaller. 

Maximum avalanche run-out distances were meas­
ured on 24 avalanche paths in the Madison and Gallatin 
ranges of southwest Montana. Slope and distance 
measurements were taken with an inclinometer and tape 
measure. Maximum run-out distances were determined 
using records of past avalanches in terms of tree 
destruction or other types of vegetation damage. In 
several cases the relative frequency of different avalanche 
run-out distances was clearly displayed as a series of steps 
in tree ages. In these cases only younger trees grew in the 

295 
https://doi.org/10.3189/S0260305500011678 Published online by Cambridge University Press

https://doi.org/10.3189/S0260305500011678


McKittrick and Brown: Statistical model for avalanche run-out distances 

run-out zones of the more frequent avalanches, while 
slightly older trees grew in the extended run-out zones of 
the larger but less frequent avalanches. 

Since avalanche run-out distances are known to have 
a probabilistic nature, the data collected was used to 
construct a statistical model of maximum run-out 
distances. The model is based on the ratio of two 
distance parameters which can be easily determined 
from field measurements. 

The statistical approach taken by McClung and 
others (1989) is based on the definition of a dimension less 
run-out ratio, which is then used as the random variable 
of a probability distribution. Before defining the 
dimension less run-out ratio, a reference point must be 
selected along the avalanche path, as shown in Figure 1. 
McClung and others define their reference point, {3, as the 
first point along the avalanche path that diminishes to a 
specified local slope angle, Bp. This definition can be 
applied fairly consistently if the paths are sufficiently 
worn so as to be continuously concave; but if the path is 
interrupted by ledges or sloping benches, then the 
reference point may change position as a function of the 
averaging or smoothing technique used to define local 
slope angles. Some of these ledges are so small that they 
have an insignificant influence on the avalanche run-out 
distance and they can be modeled by smoothing out the 
discontinuity and choosing the next lower position which 
meets the definition of the reference point. If the slope is 
interrupted by a larger bench with a shallow slope and 
the reference point is positioned on this bench, the 
probabilistic model, developed using continuously con­
cave slopes, appears to lead to an underestimation of the 
expected maximum run-out distance (McClung and 
Lied, 1987) . 

The run-out ratio is defined as the horizontal distance, 
~x, between the {3 point and the extreme run-out 
position divided by the horizontal distance, xp, between 
the {3 point and the starting position of the avalanche. In 
symbolic terms, we have 

H 

. Llx 
run-out ratIO = - . 

xp 

starting point 

~ (reference point) 

e - local slope angle 

. . :-<:'---- xl3 ------•• ~,------- ~x 
. . 

-: 

Fig. 1. Parameters defined in terms of path geometry. 
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When we first began this study, we intended simply to 
extend or confirm the accuracy of the statistical model 
used by McClung and others (1989); however, we chose 
smaller avalanche paths and hence had to alter their 
model slightly. McClung and others defined their {3 point 
where the local slope angle, B, first diminished to 10°, but 
out of the 24 avalanche paths we surveyed, only 5 ran far 
enough to reach a local slope angle of 10°. In some cases, 
B did not diminish to 10° for 200 or 300 m beyond the end 
of the extreme run-out position; therefore, we felt that a 
10° reference point had no physical significance relative to 
our paths and decided to search for a new definition for 
the {3 point. 

To define the path profile, we surveyed the avalanche 
paths by taking slope and distance measurements every 
50 m in regions where the slope was relatively constant. 
We shortened our survey distance where the slope was 
highly variable. As mentioned previously, since local 
regions of the slope can display significant variability, the 
location of the (J point can be quite dependent on the 
averaging technique that is applied. To simplify the 
averaging process and keep it as consistent as possible, we 
decided to model each avalanche slope using the least­
squares fit second degree polynomial. This approach also 
allowed us easily to vary the definition of Bp and solve for 
new (J points on each avalanche path. 

McClung and Lied point out that an extreme value 
(Gumbel) distribution, 

provides a good model of maximum avalanche run-out 
distances where the dimensionless run-out ratio is the 
random variable and u and b are the location and scale 
parameters, respectively. In this case, p is the non­
exceedance probability divided by 100 (Le. 0 ~ p ~ 1). 

To obtain estimates for the parameters using our data, 
we rewrite the previous equation as 

(~:) j = u - bln(-ln(Pj)) 

= u+ bYp, 

where Yp = -In( -In(Pi)) is called the reduced variate. 
Once we have defined appropriate values of p for each 
run-out ratio, we can solve for the parameters u and b 
using linear regression. 

To define non-exceedance probabilities corresponding 
to each run-out ratio, we first rearrange the N run-out 
ratios in increasing order so that 

For the corresponding non-exceedance probabilities, we 
use the empirical form obtained by McClung and Mears 
(1991), 

(i - 0.4) 
pj= N ' 

where i 1,2, ... , N. 
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STATISTICAL RESULTS 

Second degree polynomials worked reasonably well as 
models of the 24 avalanche paths we surveyed. All but 
two yielded fits with standard deviations less than 6 m 
where the median was approximately 3.7 m. Based on our 
data, we defined our reference point for Bp = 18°. 
Though we did not develop a firm physical basis for 
this definition, when higher values are used for (Jp the 
model is much more sensitive to measurement errors. Our 
data and definition of (J{3 yield the statistics shown in 
Table 1. As shown in Figure 1, Bs and Bt represent the 
slopes of the starting and run-out zones, respectively. 

Using regression on the linearized form of our 
extreme-value distribution, we obtain the parameters 
and corresponding 95% confidence limits on the mean 
shown in Figure 2. Since we have less than 30 data points, 
we used the t distribution to calculate our confidence 
limits as discussed by Walpole and Myers (1972, section 
8.3). 

Though more than 24 avalanche paths were surveyed, 
some had to be eliminated because too few points were 
recorded to allow an accurate polynomial fit. One path, 
which had a large bench midway and was therefore 
inconsistent with the other paths, yielded a run-out ratio 
which far exceeded the run-out ratios of the other paths 
and was also eliminated. 

SOURCES OF UNCERTAINTY 

Since we expect a large range of weather patterns to occur 
over a 100 yr period, we expect patterns which produce 
extreme avalanches to occur somewhere in that time 
frame. By measuring maximum avalanche runout 
distances, based on vegetation damage in the last 
100 yr, we reduce the large variations in avalanche run­
out distances due to year-to-year weather patterns. At the 
same time, without completing a detailed tree-ring 
analysis at each path, we cannot be certain of the true 
time period that the vegetation damage has recorded, 
since the recovery rate for vegetation (trees) varies 
significantly between north and south aspects and also 
between higher and lower altitudes. 

Of the avalanches recorded by vegetation damage, if 
we assume we have the maximum run-out distances for 

Table 1. Descriptive statistics 

Variable 

H (m) 
Bs (deg) 
Br (deg) 

L1x(m) 
x{3(m) 

Mean 

248 
38 
14.5 
66 

432 

Standard 
deviation 

123 
4.0 
6.1 

102 
221 

Range 

68 - 553 
31-46 
1.5-25 

-87 -340 
140-982 

1 
95 % confidence limits on mean 

0.8 

0 0.6 • .-t 
oIJ 
1\1 
~ 0.4 
oIJ ::s 0.2 0 8~ = 18 deg. 
~ 
::l 0 ~ 

r2 = 0.931 
u = 0.0343 

-0.2 b = 0.173 

-0.4 
-2 -1 0 1 2 3 4 5 

Reduced Variate 

Fig. 2. Regression line for extreme-value distribution . 

the last 100 yr, then most probably we are actually 
working with avalanche run-out distances that have 
return periods greater than 100 yr. For example, if we 
consider avalanches that have a return period of 1000 yr, 
then at each avalanche path there is a 9.5% chance we 
are working with a run-out distance that has a return 
period of 1000 yr. Using the binomial distribution, we 
estimate that approximately 2 of the 24 surveyed have a 
return period of 1000 yr, as long as they have not been 
over run by more extreme avalanches. Similarly, we 
would expect approximately 7 of the 24 surveyed to have 
a return period of 300 yr. Though these occurrences may 
appear to be a problem at first, they are not, since we 
would also expect similar occurrences in the next 100 yr. 
Also, since these occurrences are included in our data, 
they are also factored into our model. 

Among the paths we survey, we have variations in 
flow resistance, path geometry, aspect, vertical drop, 
avalanche volume, etc. When we prepare to use the 
statistical model we must verify that the data set used to 
build the statistical model contained a sufficient number 
of avalanche paths with similar characteristics. Otherwise 
the model maybe biased and yield poor predictions. 
Obviously, to develop a more accurate model it is 
necessary to work from a database of similar avalanche 
paths. On the other hand, to build a very general though 
conservative model, the data set must include a sufficient 
number of avalanche paths which bear all of the 
significant characteristics. 

Unfortunately our data contain not only natural 
sources of variation but also errors and blunders 
introduced in the surveying or measuring process. The 
objective is to minimize the uncertainty in the model due 
to measurement errors and uncertainties. To do this we 
must obtain a feel for the effect each type of error might 
have on our model. To determine the model's sensitivity 
to these uncertainties we can use a Monte Carlo 
simulation as discussed in Press and others (1986). In 
essence, we superimpose normally distributed noise 
(errors) on our data and then record the resulting 
distribution of model parameters. From this distribution 
we can determine confidence limits relative to our 
measurement uncertainties . 

As mentioned earlier, to survey the avalanche paths 
we first estimate the extreme limit of the starting zone or 
run-out zone, whichever is more convenient. We then 
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record points along the avalanche path in terms of polar 
coordinates. If the slope appears to be relatively constant 
we take steps with distances (radii) as large as 50 m, and 
where there are large variations in slope we shorten the 
recording distance accordingly. We measure the distance 
with a 50 m tape and the slope with an inclinometer 
(Brunton compass). This process is continued until we 
reach our estimate of the opposite extreme end of the 
avalanche path. Most of the paths had rocky cliff bands at 
the top which provided fairly definite starting points, but 
others began in large meadows or on convex break-over 
points which left the starting points open to judgement. 
The extreme run-out positions were usually better 
defined, but there were still cases where there was a 
choice between following a small off-shoot or stopping at 
the end of what appeared to be the bulk flow. Thus, based 
on our measuring technique, we have the following 
sources of uncertainty in our measurements: 

(I) estimation of starting zone position; 
(2) measurement of distance; 
(3) measurement of slope; and 
(4) estimation of extreme run-out position. 

Rather than present an incomplete sensitivity analysis 
addressing these four sources of uncertainty, we will 
publish the complete sensitivity analysis in the proceed­
ings of the 1992 International Snow Science Workshop 
held at Breckenridge, Colorado. 

In addition to the previously mentioned sources of 
uncertainty, we also need to establish a quantitative 
measure of the quality of our model. In essence we should 
like to know if there is a good chance that we have chosen 

the right statistical model. To do this we have chosen to 
use the W test as discussed in Wadsworth (1990, section 
6.7). Based on the size of our data set, with a 5% level of 
significance we should have a value for W between 0.369 
and 0.979. Our data yields a W value of 0.939 which 
implies our model satisfies the requirements at a 5% level 
of significance. However, our model does not satisfy the 
requirements at a I % level of significance. 

As a quick note of interest, McClung and Mears 
(1991, fig. 6) demonstrated the existence of length-scale 
effects in their data set from the Colorado Rockies. 
However, as shown in Figure 3, we did not see any similar 
behavior in our data. Also, if we consider the trend 
displayed in the paper by McClung and others (1989, fig. 
2), we see that the expected values for run-out ratios 
increase as the mean size of the avalanches decreases. 
However, based on the fact that only five of our 
avalanches reached a local slope of 10°, our data 
indicates a reversal of this trend. The dominant factors 
may be hidden in the other natural sources of 
uncertainty. 

CONCLUSIONS 

Based on results obtained thus far, the extreme-value 
distribution model bears promise as a user-friendly tool 
for modeling even avalanches with small vertical drops; 
however, to be able to use this model more intelligently, 
natural sources of variation need to be further quantified. 
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Fig. 3. No obvious length-scale effects. 

With the small data set we have, no length-scale effects 
are apparent; therefore, length does not appear to be a 
significant source of variation for small avalanche paths. 

The model developed here is based on a small data set 
and therefore cannot be considered reliable for estimating 
extreme avalanche run-out distances in the general case; 
however, the resulting extreme-value distribution does 
help shed light on a few characteristics of the model. In 
particular, since most of our extreme run-out points never 
reached a local slope angle of 10°, our results indicate that 
the models constructed by McClung and others are quite 
conservative when applied to avalanche paths in south­
west Montana. To answer the questions that have been 
raised, more data must be collected on smaller avalanche 
paths (H ~ 350 m), then uncertainties should be further 
quantified statistically. 
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