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ABSTRACT. The present status of galact ic dynamo theory i s discussed. A 
new concept which allows the determination of marginal dynamo numbers 
for axisymmetric as well as non-axisymmetric large-scale magnetic f i e l d 
modes in axisymmetric disks i s applied to a simple galaxy model. The 
results obtained so far show that a preference of non-axisymmetric 
f i e lds can only be expected i f the α-effect i s highly anisotropic and 
the di f ferent ia l rotation i s not too strong. Mostly axisymmetric-spiral 
f i e lds have to be expected. 

1. INTRODUCTION 

By the discovery of large-scale magnetic structures in a number of 
nearby galaxies the dynamo theory of f l a t objects became a f i e ld of high 
actual i ty . Beyond that i t i s of special interest since galaxies appa-
rently have to be divided into two groups with basical ly different 
magnetic f ie lds: One observes some with axisymmetric-spiral (ASS) f i e lds 
(M 31 , IC 342) and some with non-axisymmetric, the so-cal led bisymme-
t r i c - spiral (BSS) f ie lds (M31). Hie physical reason for this difference 
i s at present the most stimulating question for investigations in frame 
of dynamo theory. 

Dynamo theory of today i s mainly based on the investigation of the 
kinematic problem, i . e . the induction equation 

dB 1 
— - curl(uxB) + curIE - curl—curIB (1) 
d t μσ 

i s considered and conditions providing for non-trivial solutions are 
determined. Β denotes here the (mean) magnetic f i e ld , u the (mean) 
veloci ty f i e ld , Ε the turbulent electromotive force due to the corre-
lated magnetic and veloci ty fluctuations and μ, σ the permeability and 
the conductivity. 

Separating an exponential time dependence one obtains a denumerable 
set of eigenmodes. Some of them may grow. In this case the system 
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represents a dynamo. Fig. 1 i l lus trates the situation. The induction 
action of the motion i s characterised by the dynamo number C. There i s a 
f i r s t ( in the sense of growing C) eigenvalue C- where a non-decaying 
eigenmode B- appears. Beyond C. the system represents a dynamo and for 
larger C adaitional modes wi l l grow. Since these modes are derived from 
the l inear equation (1) they are only val id for a description of small 
magnetic f i e lds . 

Β 

No field I Symmetric f ield ! Asymmetric field 
j I Irregular field 
j [Strange behaviour 

Figure 1. Excited magnetic f ie lds in dependence on the dynamo number. 

Nature i s c learly nonlinear: The excited magnetic f i e ld reacts back to 
the motion and the f inal state - i . e . the observed state - w i l l te 
determined in some way by equipartition of energy, indicated in Fig, 1 
by the nonlinear extensions of the linear modes. 

Because of the high mathematical complexity nonlinear dynamo theory 
i s t i l l now weakly developed only. However, simple models provide for 
some insight and we identify here ourselves with the standpoint (Krause 
and Meine 1 (1938 a ,b) ) that only that mode, which i s most eas i ly ex-
c i ted, i s of physical interest . The nonlinear extensions of a l l higher 
modes, i . e . of the modes which need stronger induction action for beco-
ming excited than the marginal mode, are f i r s t ( in the neighbourhood of 
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the bifurcation) unstable arid so of less physical significance. Invest i -
gations show also rather complicated (cf. Brandenbarg et a l . (1989) , 
Rädler et a l . (1989)) behaviour in the far nonlinear regime, however, 
that cannot be explored by considering the solutions of the kinematic 
( l inear) equation. 

Fig. 1 demonstrates our view: Hie nonlinear extension of the f i r s t 
eigenmode i s the attractor in a certain interval C>C. . This attractor i s 
generally of simple structure, i . e . steady or osc i l la tory and showing a 
certain spatial symmetry. More far in the nonlinear region symmetry 
breaking w i l l appear and an attractor of complicated structure has to be 
expected.. 

What we stress here i s that this behaviour can hardly be described 
by considering the higher ( l inear) modes. In this way we do not accept 
explanations of observational facts based on higher modes! 

Real ist ic models of disk dynamos depend at least on two parameters: 
G describes the induction action of the turbulent motions undergoing 

influence of Coriol is forces. These motions provide for a mean 
electromotive force Ε which i s - in the simplest case - paral le l to 
the mean magnetic f i e ld , i . e . E=oB. The other parameter i s a measure 
of the induction action of the di f ferent ia l rotation. In "addition, we 
introduce a third parameter by which we take into account an anisotropy 
of the α-effect due to the big differences between the horizontal and 
the vert ica l scales in a disk. 

We model the galaxy by an axisymmetric disk, i . e . we assume that 
the e l ec tr i ca l conductivity <j, the angular velocity Q and the ο-parame-
ter do not defend on the azimuth. In addition, we assume σ and Ω to 
show symmetry and α antisymmetry with respect to the galact ic plane, 

The eigensolutions of Eq. (1) - the eigenmodes - in a system with 
the above symmetries are either symmetric (3) or antisymmetric (A) with 
respect to the^central plane of the disk and depend on the azimuth Φ 
according to e . Correspondingly the magnetic f i e ld modes are denoted 
by Sm or Am. 

A dipole in the centre of the disk and aligned to the axis of the 
rotation i s typical for an AO-field. The axisymmetric quadrupole paral-
l e l to the axis of rotation i s of type SO. Combined with a toroidal 
f i e ld encircling the axis of rotation and arranged symmetric atout the 
galact ic plane i t represents the symmetry type of the ASS-fields ob-
served in M 31 and IC 342. 

Furthermore, a dipole in the centre but aligned to the galact ic 
plane represents a magnetic f i e ld of type SI. Deformed by the shear of a 
d i f ferent ia l rotation i t takes the shape of a BSS-field as observed in M 
81. 

2. FROM SPHERES TO DISKS 

Physical theories of a certain phenomenon may have imperfections for two 
reasons: Either i s the modellation imperfect or the available mathemati-
ca l tools are insuff icient . To mention this truism seems useful i f 
considering the dynamo models for galaxies presented so far (Krause, 
1990). 

Clearly, the mathematical description of the physics in thin and 
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f i n i t e disks i s highly complicated. The only clean models are probably 
those of oblate spheroids embedded in insulating space which were consi-
dered by Stix (1975) and White (1978) . Concerning the excitation condi-
t ions , Soward (1978) was able to show that the eigenvalues asymptotical-
ly approximate those which were derived by Parker (1971) for a plane 
layer model. Thus with respect to the eigenvalues the plane layer seems 
to provide for a suff ic ient description. Trie f i e l d structure, however, 
i s quite different for e l l ipso ids and^s^abs. In the former case the 
magnetic f i e lds decrease with (r"+s ) ; whereas in the la t ter with 
e 1 Γ and behave periodically in the galact ic plane. For this reason, 
in case of slabs there i s not a discrete set of eigenvalues. I t becomes 
discrete i f a rather a r t i f i c i a l assumption concerning the r-direction i s 
introduced. Here, the case of the s lab, allows not for a correct de-
scription of the edge of the disk. 

These above mentioned models are two-dimensional, in case of Stix 
and White by the assumption of axisymmetric solutions, in case of Parker 
the solutions are considered to be independent of the direction simula-
ting the direction of rotation. Consequently, i t cannot, in the frame of 
these considerations, be decided whether there are competing non-axisym-
metric modes. According to our s t r i c t view —only the marginal mode i s 
of physical interest — this imperfection of these models l e f t an impor-
tant question open. 

The mathematical tools used do not simply, for different reasons, 
allow for a generalisation to three-dimensional models. Therefore, the 
way of Stix and of White has not been further followed; beside of this 
the convergence becomes more and more bad i f more f l a t e l l ipso ids are 
considered. In case of the slabs the d i f ferent ia l rotation i s repre-
sented by a shear flow. So the equations allow a representation by 
Fourier modes for those magnetic f i e lds , which do not depend on the 
coordinate in the direction of the flow, bat in the three-dimensional 
case complications appear. 

The main shortcoming of these models l i e s in the consideration of a 
restricted set of competing modes; namely of two-dimensional ones. This 
restr ict ion i s s t i l l stronger in the modellation of Fujimoto (e .g . 
Fujimoto (1987)) who considered a special ansats of a bisymmetric f i e ld . 
The question of competing (e .g . axisymmetric) modes i s not analysed, 
although a l l other investigation indicate an easier excitation of ax i -
symmetric modes. Besides of that the f ie lds are singular for r = 0 and r 
= ra. So the solutions of Fujimoto, although practical for f i t t ing to 
observations, seem physically and mathematically not well founded. 

A well-elaborated concept for the investigation of axisymmetric as 
well as non-axisymmetric f i e lds in thin and f in i t e disks was presented 
by the Moscow group (cf. Rusmaikin e t a l . , 1988). Taking into account 
the big difference in the vert ical s-direction and the radial r-direc-
tion they used an asymptotic method for integrating the dynamo equation 
in two steps, f i r s t in the s-direction, then in the r-direction with an 
r-dependent thickness of the disk. In this way they arive at a denume-
rable set of eigenmodes with their growth rates. 

Some simplification leaves the question unanswered whether the cor-
rect problem i s real ly approximated. In the f i r s t step, the integration 
with respect tos, a boundary condition i s used which assumes a vani-
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shing radial wave number. I t has to be suspected that in this way the 
marginal mode wi l l not be found (Rädler and Bräuer, 1987). Further i t i s 
unclear whether the central region of the disk, where the r-dependence 
of the solutions i s much stronger, i s correctly taken into account. We 
think that future results w i l l c lar i fy the situation. 

As i t concerns the central problem - the excitation of non-axisymme-
t r i c magnetic f ie lds in axisymmetric disks - in these investigations the 
non-axisymmetric mode i s never the marginal mode (Baryshnikova et a l . , 
1987). 

In order to overcome these d i f f i c u l t i e s we w i l l use in the following 
a concept (Elstner e t a l . , 1990) which allows for an imambique determi-
nation of the marginal mode. 

As a f i r s t step towards f l a t objects we calculated within this 
concept the marginal dynamo numbers for an oblate spheroid with α = 
const, embedded in (a) space of the same conductivity as the spheroid 
and (b) insulating space. We choosed a=2b with a, b being the semi-major 
and semi-minor axes. The results for the modes m=0 and m=l are given in 
Tab. 1. 

TABLE 1. Marginal dynamo numbers Ĉ  = uaab 
for an a=const. - e l l ipso id a 

m=0 m=l 

Compared with the analyt ical ly known résulte for α-spheres (Krause and 
Steenbeck, 1967, see also Krause and Rädler, 1980) where the results do 
not depend on m we find here a preference of m=0 which i s due to only 
the f l a t geometry. This e f fect i s the stronger the lower the conductivi-
ty of the surroundings. 

In section 4 we wi l l discuss a more rea l i s t i c model including d i f f e -
rential rotation and inhomogeniety and anisotropy of the α-effect . 

3 . DYNAMO-RELEVANT PROPERTIES OF GALAXIES 

Galaxies are the only known ce l e s t ia l bodies with observable inner 
ZOtatian law. In particular this fact favours them as subjects of the 
dynamo theory because of the inducting action of d i f ferent ia l rotation. 
Compared with stars the galact ic rotation exhibits essential differen-
ces. In oposition to stars galaxies cannot be imagined as non-rotating 
as their over-al l structure emanates from the equilibrium of gravitation 
and centrifugal force. The resulting angular velocity i s generally non-
uniform — in good accordance with the (Doppler-) observations. What i s 
observed i s a nearly rigid-body rotation only in the core region (cor-
responding to the regularity condition at r = 0) up to a fewkpc while 
for greater distancies the characterist ic rotation law Ω ~ r appears. 

2 .3 2 .35 

3 .1 2 .9 
insulating 
surroundings 

conducting 
surroundings 
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Kepler rotation tos never been found in v i s ib l e disk regions normally 
extending up to a few tens of kpc. Dark coronal masses must be respon-
s ib le for this phenomenon. We are, however, confronted with the s i tua-
tion that d is t inct non-axisymmetric configurations such as (inner) bar« 
and (outer) spirals often rotate "almost rigidly". The global spiral 
patterns of galaxies having neither bar nor companion end where the 
rotation curves become f l a t (Kormendy and Norman, 1979). 

The vert ica l prof i le Q(z) behaves rather uniform throughout the 
whole disk. But also the above situated layers up to 2-3 kpc are corota-
ting while only beyond this distancy the angular velocity slowly tends 
to sero. 

Also the turbulence as the second inpat parameter of the dynamo 
equation can be observed in s i tu . Detailed descriptions of the current 
knowledge of the spectral properties of the interste l lar turbulence are 
given by Rusmaikin et a l . (1983) and Henning (1990) . We must be s a t i s -
fied here with a brief discussion of those characteristic scales val id 
for giant molecular clouds. I f only orders of magnitudes are concerned 
we find the numbers 

u ä 10 km/s, 1 - 100 pc, τ « 1 0 7 yrs (2) 

for velocity dispersion, correlation length and correlation time . From 
these values the turbulent magnetic diffusivi^y magnetic Reynolds 
number R ί 3 η < ^ "^ n e Coriol is number Ω = 2 τ / τ . can eas i ly be 
estimated? r o 

\ „ ~ 1 0 2 6 cm 2 / s , R. « Ι Ο 5 , Ω* ~ 0 .1 (3) v i m 

These quantities reveal the inters te l lar turbulence (molecular clouds) 
as a perfectly conducting material — despite the low temperatures of 
only few tens of Kelvin — under the action of a slow rotation. Then 
and i f a density gradient exis ts there i s as a second induction mecha-
nism in the dynamo the α-effect of the general form 

α « - l 2 Ω d logj /dr . (4) 

As in any f l a t disk the gradients in vert ical direction (s ) dominate 
those in the radial direction, the a s implif ies to 

α s ± 1 2Ω/Η ä ± 1Ω < ± 5 km/s, (5) 

with H as the vert ica l density scale height and the upper (lower) sign 
for the northern (southern) hemisphere. The given estima.tes yie ld for 
the normalised alpha number 

C a = a E/j " ( E R A T ) H/R * 1 0 2 H./R. ~ 1 - 1 0 (6) 

(H disk half-thickness, R. disk radius), i . e . just the same order of 
magnitude as for planets and stars . 

There i s , however, an important objection. Due to the disk geometry 
the α-effect must be expected as different for different f i e ld compo-
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nents. For subsonic externally driven (e .g . by explosions) random mo-
tions the calculations lead indeed to a highly anisotropic α-tensor 
(Rüdiger, these proceedings). The α-effect in vert ica l direction d i f fers 
markedly from that in the radial direction. I t w i l l be a main topic of 
our dynamo calculations to find out the consequences of th is sort of 
anisotropy for the functions of the dynamo. 

A similar consideration as in ( 6 ) leads to 

CQ = Η 2 Δ Ω ^ Τ * 1 - 1 0 ( 7 ) 

as well where Δ Ω denotes the variation of Ω across the disk. 
Kulsrud ( 1 9 8 9 ) suggested the inters te l lar material having a magnetic 

Prandtl number much larger than unity because of the re lat ive ly high 
molecular viscosi ty for very thin gases. Either a detailed discussion of 
the microscopic d i f fus iv i t i e s for the various modes as well as the 
concerted influence on the dynamo mechanism are not yet worked out so 
far . 

4. NON-AXISYMMETRIC FIELDS IN AXISYMMETRIC DISKS? 

Hie observation of large-scale non-axisymmetric magnetic f i e ld configu-
rations in galaxies stimulates the search for an answer to an inte-
resting question within the frame of kinematic mean-field dynamo theory: 
Is i t possible that non-axisymmetric magnetic f ie lds are excited prefer-
rably in axisymmetrically structured disks? 

If , imder r e a l i s t i c conditions, the answer i s "no", and the dynamo 
explanation i s not doubted at a l l , the magnetic non-axisymmetry wi l l 
probably be a consequence of some basic deviation from axisyrcanetry 
related to the spiral structure of galaxies. 

Our results for a simple galaxy model (defined in Meinel e t a l . , 
th is volume) as well as a l l previously obtained results (see e.g. Rus-
maikin e t a l . , 1 9 8 8 ) support the answer "no". 

Tab. 2 gives the obtained sequence of marginal dynamo numbers C for 
the f i r s t three modes AO, SO and SI for our model ( i i ) with and without 
d i f ferent ia l rotation (C^ = 1 0 , = 0 ) , and with and without anisotropy 
of the α-effect (a^ - 1 0 a ± , a^ = a ± ) . 

TABLE 2 . Magnetic f i e l d modes 
ordered according to the values 
of their marginal dynamo numbers 

mode sequence 

0 1 AO < SI « SO 
0 1 0 AO ~ SI < SO 

1 0 1 SO < SI < AO 
1 0 1 0 SO < SI < AO 
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These results show that only an extremely weak di f ferent ia l rotation 
combined with a high degree of anisotropy of the α-effect may possibly 
lead to a preference of BSS f i e lds , under more rea l i s t i c conditions i t 
i s always a f i e l d of SO type which i s preferred in axisymmetric disks. 
This symmetry type corresponds to the observed ASS f i e lds . 

Oar calculations revealed, a further important point. In order to 
obtain the desired marginal dynamo numbers and f i e ld modes we used a 
direct method incorporating some a r t i f i c i a l nonlinearity (Elstner e t 
a l . , 1990). In this way we got some insight into relevant time-scales. 
The typical time-scale foy 9reaching the stationary lai&e-scale s tate i s 
of an order of μσΒώ ~ 10 yrs which i s large compared to the world's 
age, cf. section 3. Therefore i t seems to be questionable wether there 
was enough evolution time leading to a complete formation of the prefer-
red large-scale f i e ld structure. However, in nature dynamical processes 
provide for a much more rapid propagation of magnetic f ie lds in gala-
xies than that described by the diffusive time-scale. 

Fig. 2 shows examples of calculated SO- and S1- , i . e . ASS- and BSS-
f i e lds . Note that the large-scale f i e ld structure (in particular i t s r-
dependence) i s s t i l l not completely stationary, although the correspon-
ding marginal dynamo numbers are already approached with suff ic ient 
accuracy. 

Figure 2 . Field vectors in the galact ic plane 3=0 for the model with 
C o =10, α Μ =10α ± , cf. Tab. 2 . Left: The preferred ASS-mode (SO), 

» Right: The BSS-mode (SI) 
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K A H N : T h e i n t e r s t e l l a r medium is r e a l l y v e r y c o m p l e x . T h e c louds 
i n t e r a c t w i t h t h e h o t i n t e r c l o u d medium and a r e ( r e l a t i v e l y ) f r e q u e n t l y 
o v e r t a k e n b y s t e l l a r w i n d s and s u p e r n o v a b l a s t w a v e s . How w i l l a 
r e a l i s t i c dynamo t h e o r y c o p e w i t h such d i f f i c u l t i e s ? 

F. KRAUSE: I f u l l y a g r e e w i t h y o u t h a t my mode l h e r e is a c rude o n e . 
Wha t I w i s h t o m a k e c l e a r i s t h a t t h e α - e f f e c t i s a v e r y e l e m e n t a r y 
e f f e c t a p p e a r i n g in t u r b u l e n c e s u n d e r g o i n g t h e i n f l u e n c e o f C o r i o l i s 
f o r c e s . I t i s as e l e m e n t a r y as t h e c i r c u l a t i o n s ( c l o c k w i s e or c o u n t e r -
c l o c k w i s e ) a round t h e l o w s or h i g h s in t h e Ea r th ' s a t m o s p h e r e . 

SHUKUROV: What i s t h e s p a t i a l s t r u c t u r e o f t h e " f o r g o t t e n modes" 
m e n t i o n e d b y y o u ? A r e t h e y c o n c e n t r a t e d n e a r t h e d i sk c e n t e r or in t h e 
o u t e r p a r t s o f t h e d i sk? 

F. KRAUSE: T h e r e i s p r o b a b l y a m i s u n d e r s t a n d i n g : A s " f o r g o t t e n modes" I 
u n d e r s t a n d t o be t h o s e modes w h i c h h a v e b e e n o v e r l o o k e d due t o t h e i m -
p e r f e c t i o n s o f a mode l or t h e a p p l i e d m e t h o d s . T h e r e a r i s e s a s e r i o u s 
p r o b l e m i f t h e m a r g i n a l mode , i . e . t h e mode w h i c h i s e x c i t e d most e a s i l y , 
w a s n o t found and t h e f o l l o w i n g p h i l o s o p h y w a s b a s e d on a h i g h e r mode . 
Our mode l e x c l u d e s a p r i o r i t h i s p o s s i b i l i t y . P r o b a b l y y o u w i s h t o know 
t h e s t r u c t u r e o f t h e m a r g i n a l modes wh ich w e d e t e r m i n e d . Our p i c t u r e s 
show t h a t , d e p e n d e n t on t h e assumed s t r u c t u r e , f i e l d s m a y c o n c e n t r a t e 
n e a r t h e c e n t r e bu t a l so in more d i s t a n t p a r t s . 

S T I X : Which o f t h e a 's i s l a r g e r a c c o r d i n g t o t h e w o r k o f Rüd ige r , t h e 

h o r i z o n t a l or t h e v e r t i c a l ? 

F. KRAUSE: T h e a n a l y s i s b y R ü d i g e r r e s u l t s in a v a l u e o f t h e v e r t i c a l a, 

i . e . a v , w h i c h is t e n t imes t h e h o r i z o n t a l a. 
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