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Abstract

The inequality of strong summability for the Marcinkiewicz means of multiply Fourier series is proved.
The inequalities of strong summability with gaps for the different classes of integrable functions are
established. The Bernstein inequality for the fractional derivative of analytic polynomials is proved.
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1. Marcinkiewicz means in L' (Qd)

Let fix) be a periodic function of d variables defined on the unit cube Qd = [—n, Tc]d.

Every function / e V (Qd) can be expanded in the Fourier series

where k = ikt, ..., kd) is a multi-index, and x = (x\, ..., xd) is a vector. Let

||*||,c = sup;=1 d \kj\. L e t

S,,,if\x)= J2 /(*)*"*•"

denote the cubic partial sums.

For every / e L^(Qd) the following inequality of strong summability for the

Marcinkiewicz means is well known [12]: (the classical one-dimensional result can
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be found, for example, in [17, Chapter 13]):

m=0

In this paper we consider strong summability for the Marcinkiewicz means in the
integral metric. The first one-dimensional result was proved by Smith [15] for / e
/ / ' ( (?) . Its generalization for / e H''(Q), 0 < p < 1. for the Riesz means of
'critical' order together with an estimate of the approximation rate, were given in [7].
A new proof was proposed in [4] where the exact order of approximation was found.
The two-dimensional result for the rectangular partial sums with bounded ratio of
sides was obtained in [16], but it is still unclear how to generalize this result to the
multidimensional case. We use here the idea of 'harmonic" proof of [4] to obtain the
multidimensional result for the cubic partial sums.

We need some additional notation. If a = (at a(l) is a vector then we write
ma(u) = sign(w, a) , and denote by Ha the operator of the Hilbert transform

Let {ejYl be the basis vectors. We introduce two operators

THEOREM 1.1. There exists an absolute constant C > 0 such that

PROOF. It is based on the Hardy inequality (see for example [17])

Ê '"" dt.
m=0

Before applying the Hardy inequality to the sum Yl,n=\ m I S», (/;-*) I we will trans-
form it slightly. The de La Vallee-Poussin means VR(f\x) = f{x)* VR{x) are the
convolution of f(x) with the kernel VR{x) = l~Iy=i VR(XJ) where

cos kxj.
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and v(t) is any infinitely differentiable even function such that

[ l , if |f| < 1
v(t) = \

[0, if |/| > 2.

Because m < N we can replace Sm(f\x) by Sm(VN(f);x). Then

305

.V

E m

V i

T< > -\Sm(VN(f;x))\ <C
m=\ m £

2N

Yelm'Sm(VN(f;x))
n=0

dt.

Integrating both sides with respect to x we obtain

m

m=0 v=l ||*|k = ! j=\

dx

E E
, t = l

dx

The first integral can be easily estimated by O(log A |̂| V J V ( / ; * ) I I I ) - The well known

result for the de La Vallee-Poussin means (see for example [17])

\\VN(f\x)h <C| | / | | ,

completes the estimate of the first integral.
For the second integral, we transform the interior sum to the form

1 ''

if d is even, and to the form

- Hj)VN(f;x - tej) - 2H)VN(f;x),

H'j)VN(f:x j - H))VN{f;x - tej) - 2HjVN(f;x),
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if d is odd. Therefore the second integral is estimated by

v r dt
L J o \\VN( j , x + tej)-VN{ j , x - t e j ) h T

+ J2 f \\VN(H'jf;x + tej) - 2VN(H]f;x) + VN{H]f;x - r ^ ) | | , —
.; = ! ^ o '

in the case of an even dimension, and by the symmetrical expression in the case of an
odd dimension.

By the Bernstein inequality in the space V,

\\VN(Hjf\x + tej) — VN{Hjf;x — fe;-)| |i < min( /Vr ,

Hence

f
Jo

i)- VN(Hjf;x - te^h— < C logN\\VN(//,/;.v)

The regularity of the de La Vallee-Poussin means completes the proof. •

2. Strong summability with gaps

In this section we consider several examples of strong summability of the lacunary
sequence of partial sums using the same idea of harmonic proof and the Paley inequality
or its variations.

Let / e H\Q), and [nk] be a lacunary sequence (nk+s/nk > q > 1). Then the
classical Paley inequality (see for example [17]) is

It forms the basis for our next result.

THEOREM 2.1. There exists an absolute constant C > 0 such that

c ( N \l/2

/ E l 5 , ( / ; i ) | 2 dx<CN\\f\\H>.
JQ V = I /

PROOF. The proof of the result follows in exactly the same way as the proof of
Theorem 1.1, and we omit it. El
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REMARK 2.2. This inequality is exact in order. Indeed, leaving only the last item
in the left-hand part we obtain the Lebesgue inequality:

I \S2s(f\x)\dx<CN\\f\\Hi.
JQ

REMARK 2.3. For the continuous functions / e C(Q) the analogous result was
obtained in [1] ( See also [3], where the general problem was considered).

COROLLARY 2.4.

PROOF.

\ L 1

There exists an

\i
2 \ dx

JQ II

> sup

absolute

,1'

N

sup y^

A'

constant C > 0

<C/V| | / | | W , .

Theorem 2.1 completes the proof. D

REMARK 2.5. Let d(N) be the cardinality of the set {A: : 1 < k < N, | | 5 2 i ( /u ) | | i
>C* | | / | | w l } .Then

d(N) < ClogN.

Indeed, Corollary 2.4 shows that each interval [N, IN] can contain only a finite
number (independent of A0 of partial sums with the prescribed property. This implies
the estimate of cardinality.

This situation is completely different from the space L30 where according to [6]
there exists a bounded function / such that, for every k, | |S*(/;*)||,c > C log/t.

THEOREM 2.6. LetO < p < 1. Then there exists a constant Cp > § which depends
only on p such that
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PROOF. The proof of this result follows by the same method but it is based on the
following inequality [8]

f(2k) 2*"'-" <C| | / | | W , . . D

For 0 < p < 1 let Hp-x denote the class of functions / e H''/2 such that

11/11,,^ = s u p A m { x : \ f ( x ) \ > AY"' < OO

(see for example [1]).

THEOREM 2.7. There exists an absolute constant C > 0 such that

IN \ 1/2

We need the following lemmas.

LEMMA 2.8. Let Pn(e'x) — Yll=oc^e'kx ^e an analytic polynomial. Then for r =
1 - \/n

II W ) II i <

This lemma is an easy corollary of the Bernstein inequality (see for example [17]).

LEMMA 2.9 ([1]). Let f e / / ' o c , 0 < r < 1. Then

f \f(re'x)\dx < CH/lltfi.^log—^—.
JQ 1 - '•

PROOF OF THEOREM 2.7. Applying Lemma 2.8 to each item of the sum

using Corollary 2.4, and Lemma 2.9 with r = 1 — 1/2A, we obtain the result. •

The well-known Zygmund inequality (see for example [17])

E /(«*)
nk

formally resembles the Paley inequality but it brings nothing new, and the best result
can be obtained by the direct estimates of the partial sums. It shows that the Paley and
Zygmund inequalities are of different natures. We formulate the corresponding result
in general form.
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PROPOSITION 2.10. For every a, 0 < a < 1, there exists an absolute constant
C > 0 such that

*=•

PROOF. Because the partial sum operator is bounded from L Log L to V (see [17])
we have

Using the different metric inequality

[10], and the boundedness of the de La Vallee-Poussin operator in the space
L Log" L, we obtain the estimate

C\ogl-ak\\V2k(f;x)\\LLofL < C l o g 1 - " / : I l / H L ^ L .

It remains to apply it to each term of the left-hand side. •

REMARK 2.11. The exactness of the inequality can be checked on the de La Vallee-
Poussin kernel V2*(x) of order 2N+i if we take into account that || VN(x)\\LLog° L ~
log" N.

3. The Bernstein inequality

Let us consider a trigonometric polynomial Tn{6) = YH=-n
 cke'ke and its fractional

derivative

n

T^(e) = ^(ik)acke
ike (0 < a < oo)

k=-n

in the Weyl sense (see for example [17]). The classical Bernstein inequality

IIT{
n
a)\\L, <c(a)na ||Tn \\u

is well known for 1 < p < oo. The detailed history can be found in [14]. Some
anomalies were discovered for the metric Lp when 0 < p < 1 [5]. We prove here
that in classical Hardy spaces Hp (0 < p < 1) the Bernstein inequality looks regular.
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THEOREM 3.1. Let a > 0, andO < p < 1. Then, far every polynomial Tn(9) =

PROOF. The polynomial T^a){0) can be represented by convolution Tn(9) * Kn{0)
with the kernel

where the g,,(r) is any infinitely differentiable function satisfying

0 k < 0

fc" 0 < A: < n •

0 2« < it

The function gn(t) is the multiplier from HP(K) to HP(R), with norm less than or
equal to c(a, p)na by the following result.

THEOREM 3.2 ([11, Section III.7, Theorem 7.30]). Lets be a positive integer. Sup-
pose m is a function on Rd satisfying

( 1 C
— \ dx

2

AR ~m

far every multi-index fi such that 0 < \fi\ < s and every R > 0, with A independent
of R and p. Then, for every p such that (s/d + 1 /2)~' < p < 1, m is a multiplier on
Hp(Rd), and there is a constant C independent ofm and f such that

(mf) < CA

Moving to the estimation of the multiplier norm HP(Q) -> HP(Q) we follow [13,
p. 159]. To prove that gn(k) is the multiplier HP(Q) -> HP(Q) it is sufficient to show
this for every p-atom a on the unit circle. (Consult [11] for characterization of W
spaces in terms of atoms.) Now using the Poisson summation formula, we can write

4jT2\\a * Kn(9)\\p
Lr < a{u)gn(t — u + 2nl)du dt

-L\l a(u)gn(t -u)du dt.

If we extend a by 0 to the complement of [—n, n] we obtain a p-atom for the real line

and the last expression is nothing but \\a *gn \\P
LP(R). This is bounded by c(p, a)na \\a \\LP

by the quoted theorem. •
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REMARK 3.3. The question about the exact constant in the Bernstein inequality for
the fractional derivative is much more difficult. For integer a the equality c(a, p) = 1
was proved in the nice work by Arestov [2].

REMARK 3.4. The analogous Bernstein inequality holds also in the space HP(K)
for entire functions of exponential type.

Fix any testing function <j>(t) such that fu<p(t)dt = 1. The function / is said to
be a tempered distribution of the class e HP(U) if

u+ = sup |0, * / | e L"

(see [9]). This definition is independent of cj> and is equivalent to several others (see
[9]). Let a > 0 be a real number. We define the derivative / ( a ) of order a as a
convolution f * g,,, where

8n(0 =

0 t <0

ta 0 < t < n

0 n < t

In the space HP(R) we consider entire functions of exponential type less than or equal
to n, that is their spectrum is contained in the interval [0, n].

THEOREM 3.5. Let 0 < p < 1. Then, for every entire function f of exponential
type less than or equal to n,

II/<O)I|W,(R) <c(a)na\\f\\Hrm-

The proof is analogous. •
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