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Abstract  

Machine learning methods have been used in identifying omics markers for a variety of 

phenotypes. We aimed to examine whether a supervised machine learning algorithm can 

improve identification of alcohol-associated transcriptomic markers. In this study, we analyzed 

array-based, whole-blood derived expression data for 17,873 gene transcripts in 5,508 

Framingham Heart Study participants. By using the Boruta algorithm, a supervised Random 

Forest (RF)-based feature selection method, we selected 25 alcohol-associated transcripts. In a 

testing set (30% of entire study participants), AUCs (area under the receiver operating 

characteristics curve) of these 25 transcripts were 0.73, 0.69, and 0.66 for nondrinkers vs. 

moderate drinkers, nondrinkers vs. heavy drinkers, and moderate drinkers vs. heavy drinkers, 

respectively. The AUCs of the selected transcripts by the Boruta method were comparable to 

those identified using conventional linear regression models, e.g., AUCs of 1,985 transcripts 

identified by conventional linear regression models (false discovery rate < 0.05) were 0.72, 0.68, 

and 0.68, respectively. With Bonferroni correction for the 25 Boruta method selected transcripts 

and three CVD risk factors (i.e., at P < 6.7e-4), we observed 13 transcripts were associated with 

obesity, 3 transcripts with type 2 diabetes, and 1 transcript with hypertension. For example, we 

observed that alcohol consumption was inversely associated with the expression of DOCK4, 

IL4R, and SORT1, and DOCK4 and SORT1 were positively associated with obesity and IL4R 

was inversely associated with hypertension. In conclusion, using a supervised machine learning 

method, the RF-based Boruta algorithm, we identified novel alcohol-associated gene transcripts. 

Keywords: Alcohol consumption, gene expression, Cardiovascular disease, Machine learning, 

RandomForest, Boruta  
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Introduction 

Alcohol consumption is an important lifestyle factor that has been associated with cardiovascular 

health. Excessive alcohol consumption leads to hypertension, dyslipidemia, and type 2 

diabetes.(1, 2) Whereas moderate alcohol consumption may improve cardiovascular health 

despite that several recent studies suggest no beneficial relationship with reduction of 

cardiovascular disease (CVD).(3-5) The use of high-throughput transcriptomic analysis has been 

playing a significant role in investigating the pathogenesis of CVD.(6-8) In our previous study, 

using conventional linear regression models, we examined associations between alcohol 

consumption and transcriptomic markers in the community-based Framingham Heart Study 

(FHS).(9)  

“Big Data” applications such as machine learning approaches provide new tools to 

discover novel biomarkers for better understanding of molecular mechanisms underlying 

diseases and to increase accuracy of disease predictions.(10) Random Forest (RF) is a supervised 

machine learning method that scores the  importance of the features  in a dataset.(11, 12) RF is a 

promising approach in prediction and classification for bias reduction.(11, 12) RF has been 

successfully applied in analyzing different types of omics biomarkers.(13-15) Boruta is an 

extension method based on RF to evaluate the importance of original features by comparing 

them with their randomized copies.(16) In essence, the Boruta method is an automatic feature 

selection method. The Boruta method has been used in over 100 studies in selecting  omics 

biomarkers related to diseases or traits.(13) A recent study showed that, using simulated and 

published datasets, the Boruta method was a stable RF-based feature selection approach.(17)  

  Analysis using conventional linear regression may experience issues with multiple 

testing and cannot effectively handle high-order interactions among tested biomarkers.(18) 

Compared to conventional linear regression, RF method offers alternative analytical models that 

may have several advantages such as model flexibility.(19) RF-based approaches may improve 

the handling of high dimensional data by decorrelating the classifiers and minimizing the 

influence of over-fitting.(20) However, it is unclear whether using RF with automatic feature 

selection algorithms such as the Boruta method can identify additional alcohol-associated 

transcriptomic markers. To address this research question, we aimed to use the RF with the 

Boruta method to improve the identification of alcohol-associated gene transcripts and examine 

the associations of these gene transcripts with CVD risk factors in the FHS.  
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Methods  

Study Participants. The FHS participants included in the present study are those who attended 

the eighth examination (2005 to 2008) of the Offspring cohort or the second examination (2008 

to 2011) of the Third Generation cohort.(21, 22) The study sample of the present study was the 

same as that was used in our previous alcohol-gene transcripts analysis using conventional linear 

regression.(9) Briefly, after excluding participants with missing data on alcohol consumption and 

gene expression, we included 5,508 participants, 2,381 from the Offspring cohorts and 3,127 

from the Third Generation cohort. The FHS protocols and procedures were approved by the 

Institutional Review Board for Human Research at Boston University Medical Center and all 

participants provided written informed consent. This study was conducted according to the 

guidelines laid down in the Declaration of Helsinki and all procedures involving human subjects 

were approved by the Institutional Review Board for Human Research at Boston University 

Medical Center (IRB number: H-41461). Written informed consent was obtained from all 

participants. 

 

Alcohol consumption. Participants’ alcohol consumption was measured by a technician 

administered questionnaire during the physical examination in the FHS clinic. Frequency of 

standard servings of beer, wine, and spirit consumed in a typical week or month were 

documented. We calculated the grams (g) of ethanol consumed each day using the following 

conversion factors: one 12 oz. beer has 14 g ethanol, one 4-5 oz. wine has 14 g ethanol, and one 

1.5 oz. of 80 proof liquor has 14 g ethanol.(23) Based on the estimated daily alcohol 

consumption, we categorized our study participants into three groups, nondrinkers (n=1,729), 

moderate drinkers (0.1 to 28 g/day in women and 0.1 to 42 g/day in men; n=3,427), and heavy 

drinkers (> 28 g/day in women and > 42 g/day in men; n=352). We also split the moderate 

drinkers to light drinkers (0.1 to 14 g/day in women and 0.1 to 28 g/day in men; n=2806 and at-

risk drinkers (14.1 to 28 g/day in women and 28.1 to 42 g/day in men; n=621) and conducted 

sensitivity analyses separately for the two groups. 

 

Gene expression profiling. We analyzed gene expression levels that were measured using the 

GeneChip Human Exon 1.0 ST Array as described previously.(24) Briefly, fasting peripheral 

whole blood samples, from the same examinations that alcohol consumption was assessed, were 
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collected in PAXgene
TM

 tubes. Standard operating procedures were followed to isolate RNA 

using a KingFisher
®
 96 robot, and 50 ng RNA was amplified to create the cDNA library. The 

Affymetrix 7G GCS3000 scanner was used to measure gene expression levels, and the Human 

Exon 1.0 ST Array probeset was used to annotate gene transcripts. The final gene expression 

profiles were residuals of 17,873 transcripts of autosomal genes generated using linear mixed 

models with adjustment for technical covariates and other factors as fixed effects as well as batch 

as a random effect.(24)  

 

CVD risk factors. Obesity, hypertension, and type 2 diabetes status at the same time for alcohol 

consumption and gene expression measurements were analyzed in the present study.(25) Obesity 

was defined as body mass index (BMI) ≥ 30 kg/m
2
. Hypertension was defined as systolic blood 

pressure (SBP) ≥ 140 mm Hg or diastolic blood pressure (DBP) ≥ 90 mm Hg or taking 

antihypertensive drugs for high blood pressure. We also defined hypertension as SBP > 130 mm 

Hg or DBP > 80mm Hg or taking antihypertension drugs.(26) Type 2 diabetes was defined as 

fasting blood glucose level ≥ 126 mg/dL or taking antidiabetic drugs.  

 

Statistical Analysis. We performed three main statistical analyses (Figure 1), including 1) using 

the Boruta method to select alcohol-associated gene transcripts, 2) using RF to examine the 

prediction capability of Boruta-selected transcripts for alcohol consumption categories, and 3) 

examining the cross-sectional associations of Boruta-selected transcripts with three CVD risk 

factors (obesity, hypertension, and type 2 diabetes). These analyses were performed by R studio 

(version 4.1.2). 

 

Use Boruta algorithm for gene selection. RF method evaluates the importance of variables in 

the models by mean accuracy and Gini index.(11) However, the regular RF method does not 

provide cut-off values for these parameters for the purpose of variable selection. The Boruta 

algorithm extends the regular RF method by reporting the level of the predictors as “Confirmed”, 

“Tentative” and “Rejected”.(16, 27) We therefore used the Boruta method, implemented with the 

R Boruta package,(27) to facilitate automatic selection of alcohol-associated gene transcripts. In 

this analysis, alcohol consumption (g/day) was treated as outcome variable and gene transcripts 

were the main predictors, with sex and age as covariates. We used parameter doTrace = 2 to 
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obtain “confirmed” attributes, i.e., alcohol-associated gene transcripts. To achieve biological and 

statistical relevance of the transcripts determined by the Boruta algorithm, we applied two 

filtering methods, data-driven and pathway-based approaches, to choose transcripts to be tested. 

The first two sets were selected using the data-driven approach. The first set included 15,146 

gene transcripts with absolute pair-wise Pearson r < 0.6 and the second set included 1,958 gene 

transcripts with false discovery rate (FDR) < 0.2 in the meta-analysis from our previous alcohol-

gene transcript association analysis using conventional linear regression models.(9) The third to 

the fifth sets of gene transcripts were determined based on well-established gene pathway 

databases, including Wikipathways (n=6,890), Molecular Signatures Database (MSigDB) 

hallmark gene sets (H; 4,003 genes), and MSigDB immunologic signature gene sets (C7; 14,580 

genes).(28-30) One at a time, we run Boruta models for these five sets of transcripts. 

 

Gene ontology (GO) analysis. A web-based GO analysis (http://geneontology.org/) was 

performed to evaluate the biological process relevant to the Boruta method selected 

transcripts.(31) Fisher’s exact tests were conducted using the default reference gene list. 

Similarly, GO term with FDR < 0.05 was considered statistically significant. 

 

Exam prediction capability of selected gene transcripts. We used the RF models to examine 

whether the Boruta method-selected gene transcripts can distinguish different levels of alcohol 

consumption. Three comparisons were performed, including nondrinkers vs. moderate drinkers, 

nondrinkers vs. heavy drinkers, and moderate drinkers vs. heavy drinkers. The R randomForest 

package was used to perform these comparisons.(32) We randomly divided our study 

participants into a training set, which included 70% of the entire participants, and a testing set, 

which included 30% of the entire participants. The training data was used to train the RF model 

by default parameters: ntree (number of trees to grow) = 500 and mtry (number of variables 

randomly sampled as candidates at each split) = square root of number of attributes tested. The 

out-of-bag (OOB) error rate in the training set was used to determine the performance of the RF 

model, and the area under the receiver operating characteristic (ROC) curve (AUC) derived from 

the testing set was used to evaluate the prediction capability of the selected predictors.  

Four sets of predictors were analyzed, including 1,958 transcripts with FDR < 0.2 in 

meta-analysis (set 1) and 25 alcohol-associated genes with significant Bonferroni-corrected P 
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values (set 2) in our previous alcohol-gene transcript association analysis,(9) Boruta method-

selected gene transcripts (set 3), and 144 alcohol consumption-associated CpGs (DNA 

methylation sites) identified from a previous epigenome-wide association analyses and meta-

analysis (set 4).(23) We examined these four sets of predictors one at a time. In addition to these 

omics predictors, sex and age were covariates in all models. To determine the optimal threshold 

value for AUC calculation and avoid over- or under-sampling misclassification, we iterated each 

model ten times. The first iteration used default values. In the second iteration, using the coords 

function in R pROC package,(33)
 
we calculated the maximum value of the sum of specificity and 

sensitivity using the Youden method based on the initial AUC calculation.
 
This maximum value 

was used to derive the threshold for AUC calculation in this iteration. This process was repeated 

in the rest of iterations. We reported the AUC corresponding to the lowest OOB error rate after 

the initial iteration. Also, we compared the AUC calculated for the four different sets of 

predictors using the DeLong algorithm, implemented using the R pROC package. Code for 

Boruta method and AUC calculation using RF are in Supplemental materials. 

 

Association analysis between the expression level of selected genes with CVD risk factors. We 

performed cross-sectional analyses between the Boruta method selected transcripts and obesity, 

hypertension, and type 2 diabetes. Covariates included age, sex, current smoking status, cohort 

(Offspring or Third Generation cohort), estimated blood cell compositions,(24) and BMI (only in 

analyses for hypertension and type 2 diabetes). Generalized estimation equations (GEE) were 

used to account for familial relationships. Bonferroni correction (i.e., 0.05 divided by the number 

of transcripts selected times three CVD risk factors) was applied to determine statistical 

significance.  

 

Interaction analyses and stratification analyses. We examined potential interaction between 

alcohol consumption and sex and age (in continuous scale) in relation to gene expression for 

transcripts identified by the Boruta method. Linear mixed regression was performed accounting 

for family structure in FHS. A product term of alcohol consumption and sex or alcohol 

consumption and age were added in models. Covariates included sex, age, current smoking 

status, the FHS cohort index (Offspring versus Third Generation) and blood cell counts (counts 

of white cell, red cell, and platelet and proportion of neutrophils, lymphocytes, monocytes, 
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basophils and eosinophils).(9) We also performed interaction  analysis between transcripts 

selected by the Boruta method and sex and age in relation to the three CVD risk factors. In these 

analyses, we used the same GEE modelling described above in the main effect analysis to test 

the statistical significance of the product term of transcripts and sex or age. Further, we stratified 

our study participants by sex and age (below or above median age 55 years) and reran the 

association analysis between transcripts and CVD risk factors in each stratum.    

 

Results  

Study Participants.  About 54.3% participants were women and the average age of the 

participants was 55.4 (Table 1), We classified the participants into three categories based on 

alcohol consumption levels: nondrinkers, moderate drinkers, and heavy drinkers. Nondrinkers 

tended to be older in age, followed by heavy drinkers and moderate drinkers. Men tended to 

drink more alcohol compared to women. More heavy drinkers were current smokers (19%) 

compared to nondrinkers (9%) and moderate drinkers (7%). The proportion of participants with 

obesity and type 2 diabetes was higher in nondrinkers (38% and 16%, respectively), while the 

proportion of participants with hypertension was higher in heavy drinkers (54%).  

 

Use Boruta algorithm for gene selection. The Boruta method selected 6 gene transcripts 

(SORT1, ODC1, CTSG, IL4R, MPO, and CYTH1) from the Wikipathways set, 10 transcripts  

(IFI44L, P2RY14, PLAGL1, DOCK4, GAPVD1, IFITM1, UTP20, MPO, ATP5F1D, and RBM38) 

from the MSigDB hallmark pathway set, and 11 transcripts (FCGR1A, IFI6, ABCA13, DOCK4, 

LCN2, DDX58, OLFM4, CTSG, MPO, CEACAM8, and BPI) from the MSigDB immunologic 

signature sets (Table 2). Among transcripts that were associated with alcohol consumption at 

FDR < 0.2 in our previous analysis using linear regression models,(23) the Boruta method 

selected 4 transcripts (OLFM4, CTSG, MPO, and CEACAM8). From those with absolute 

pairwise r < 0.6, the Boruta method selected 3 transcripts (SORT1, DOCK4, and TNFSF13B). 

After removing duplicated transcripts (Table 2), we found 25 alcohol-associated transcripts 

using the Boruta method. We compared the differences of gene expression levels in moderate 

and heavy drinkers relative to nondrinkers (Supplemental Figure 1). We found no substantial 

evidence supporting nonlinear relationships between alcohol consumption and these 25 
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transcripts. Also, we found no significant statistical interaction between the 25 transcripts and 

sex and age at P < 0.002 (Bonferroni correction for 25 transcripts; Supplemental Table 7).  

Among these 25 Boruta method selected transcripts, 12 transcripts, (MEIS1, ODC1, 

ABCA13, OLFM4, CTSG, CEACAM8, LCN2, UTP20, DOCK4, IL4R, MPO, and BPI) had P < 

2.9e-6 (Bonferroni correction for 17,176 genes) in our previous meta-analysis based on linear 

regression models.(9) In these 12 transcripts, six (MEIS1, ODC1, ABCA13, OLFM4, CTSG, and 

CEACAM8; Table 2) were also among those (n=25) significant using discovery and replication 

strategy (P < 8e-4 in the discovery analysis and P < 1.9e-4 in the replication analysis).(9) The 

correlation between the 13 unique transcripts identified by the Boruta method and those 

identified by the conventional linear models (either using discovery and replication or meta-

analysis; n=101) was largely modest, 97% pairs with Pearson |r| < 0.3 (Supplemental Figure 3). 

The pairwise correlation of the 25 Boruta method selected transcripts ranged from 0 to 0.84 

(Pearson |r|) (Supplemental Figure 2). There were 240 pairs of transcripts with |r| < 0.3, 38 

pairs of with |r| between 0.3 and 0.6, and 22 pairs with |r| > 0.6. In these 22 pairs with |r| > 0.6, 

there were three clusters of transcripts (Supplemental Figure 2), including (1) IFI6, DDX58, 

and IFITM1, (2) MPO, CTSG; LCN2, BPI, CEACAM8, ABCA13, and OLFM4, and (3) ODC1 

and RBM38.  

 

Gene ontology (GO) analysis. We found that the 25 Boruta method selected transcripts were 

enriched in 10 GO biological processes (Supplemental Table 1). The ancestor charts of these 

significant GO terms were shown in Supplemental Figure 4. These significant GO terms are 

primarily for defense response to bacterium (GO:0042742; P = 2.9e-5; FDR = 0.04) and immune 

response (GO:0006955; P = 4.4e-6; FDR = 0.009). We observed that several transcripts with |r| 

> 0.6 were among the enriched genes, e.g., IFI6 and DDX58 from the first cluster 

(Supplemental Figure 2).  

  

Exam prediction capability of selected gene transcripts. In Figure 2, we showed the ROC 

curves for the four sets of predictors derived from the present analysis and our previous studies, 

including 1,985 transcripts with FDR < 0.2 based on conventional regression,(9) 25 transcripts 

using discovery and replication strategy based on conventional regression,(9) the 25 Boruta 

method selected transcripts, and 144 alcohol associated CpGs.(23) In addition, we integrated 

https://doi.org/10.1017/S0007114524000795 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114524000795


Accepted manuscript 
 

predictors from the latter three sets to test whether additively combining transcripts and CpGs 

might improve prediction. We calculated the AUC based on the lowest OOB error rate and the 

largest AUC from the 10 iterations (Supplemental Table 2). For all predictors, the AUC based 

on the lowest OOB error rate was slightly better in the analyses for nondrinkers vs. heavy 

drinkers (0.72 to 0.77) compared to that for nondrinkers vs. moderate drinkers (0.66 to 0.70) and 

moderate drinkers vs. heavy drinkers (0.65 to 0.70). In analysis to compare nondrinkers and 

heavy drinkers, the AUC of the 25 Boruta method selected transcripts was comparable (0.73) to 

that based on the conventional linear regression (0.74 for the 1,985 transcripts and 0.72 for the 

25 transcripts) and lower than that using the 144 CpGs (0.77). We found the combining-

predictors approach had a slightly better AUC than transcripts-based approaches and similar as 

that for CpGs. However, no significant statistical difference was detected between the 25 Boruta 

method selected transcripts and other sets of predictors using Delong tests in the above 

comparisons (Supplemental Table 3). The AUC from analyses based on light and as-risk 

drinkers was not substantially different from that in the primary analyses combining light and at-

risk drinkers (Supplemental Table 4).   

 

Cross-sectional association with CVD risk factors. With Bonferroni correction for the 25 Boruta 

selected transcripts and three CVD risk factors (i.e., at P < 6.7e-4), we observed that 13 

transcripts were associated with obesity, 1 transcript with hypertension, and 3 transcripts with 

type 2 diabetes (Table 3). In analysis for hypertension defined as SBP > 130 mm Hg or DBP > 

80mm Hg, the association was largely consistent. Nonetheless, two transcripts, RBM38 (P=1.7-

4) and DOCK4 (P=1.7e-4), remained significant at P < 6.7e-4. Thus, taken together, 19 

transcript-CVD risk factor pairs were observed. Among these 19 pairs, 5 pairs have been 

reported in our previous study,(9) and the other 14 pairs were unique in the present study (Table 

3; Supplemental Table 5). In the FHS, we have observed that alcohol consumption was 

inversely associated with the risk of obesity and type 2 diabetes and positively associated with 

the risk of hypertension.(25) Therefore, if a transcript is positively associated with alcohol 

consumption, we expect that this transcript is inversely associated with obesity and diabetes and 

positively associated with hypertension, or vice versa. For the 14 novel pairs, the direction of the 

associations for four transcript-obesity pairs and one transcript-hypertension pair were consistent 

with our hypothesis. The association between alcohol consumption and these five transcripts 
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were shown in Supplemental Table 6. For example, alcohol consumption was inversely 

associated with the expression of DOCK4, IL4R, and SORT1, regression coefficients were -0.017 

(95% CI: -0.024, -0.011; P = 1.8e-7), -0.016 (95% CI: -0.021, -0.011; P = 1.3e-10) and -0.007 

(95% CI: -0.011, -0.003; P =0.0003) per 10 g/day higher alcohol consumption, respectively. 

Consistently, DOCK4 and SORT1 were positively associated with obesity and IL4R was 

inversely associated with hypertension (Table 3).  

We found no significant interaction between the 25 transcripts and age (Supplemental 

Table 8). We observed significant interaction between sex and three transcripts, including 

DOCK4 (P=5.5e-5), RBM38 (P=2.9e-4) and MPO (P=2.9e-5), in relation to obesity. Stratified 

analyses by sex and age are presented in Supplemental Table 9-12. For all the three transcripts, 

their association with obesity was in the same direction in both sex; however, the association 

strength varied in male and female participants. In male participants, the odds ratio (OR) for 

obesity was 1.30 (95%CI=1.03, 1.64; P=0.03) for DOCK4, 1.66 (95%CI=1.38, 2.00; P=7.9e-8) 

for RBM38, and 1.46 (95%CI=1.09, 1.96; P=0.01) for MPO. Whereas, in female participants, the 

OR was 2.48 (95%CI=1.98, 3.11; P=2.0e-15) for DOCK4, 2.65 (95%CI=2.17, 3.23; P=7.9e-22) 

for RBM38, 0.65 (95%CI=0.42, 1.00; P=0.05) for MPO.  

 

Discussion 

In the present analysis, we used the Boruta method and demonstrated that 25 gene transcripts 

were associated with alcohol consumption in FHS participants. Compared to our previous study 

based on conventional linear regression analysis, the present study identified 13 additional 

alcohol-associated transcripts. Several of the 13 transcripts such as FCGR1A and SORT1 were 

further linked to CVD risk factors. We also showed that the Boruta method selected transcripts 

have comparable prediction capabilities as the transcripts identified by conventional linear 

regression analysis in the testing set (30% of entire study participants). Taken together, the 

present analysis suggests that the Boruta method can contribute to a better understanding of 

alcohol-associated transcriptomic changes. Taken together, the present analysis expanded the 

candidate list of gene transcripts for future validation studies, suggesting that the Boruta method 

can contribute to a better understanding of alcohol-associated transcriptomic changes. 

RF is a commonly performed supervised machine learning method for transcriptomic 

data.(34) The RF-based Boruta method has been used in studies analyzing both array- and RNA-
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sequencing-based transcriptomic data.(34-36) We used the Boruta method because of its stable 

feature selection capability relative to other approaches, e.g., a study reported that the Boruta 

method could identify important genes and achieved the highest ratio of self-consistent 

selections.(17) However, a recent study compared three feature selection algorithms, Boruta, 

Vita, and AUC-RF, and showed that the three approaches had a comparable performance 

regarding identification of transcriptomic signatures predicting colorectal cancer.(37) A recent 

study also compared several machine learning methods and showed the LASSO method 

identified more transcripts predicting asthma than the Boruta method.(38)
 
It is difficult to 

directly compare these studies because of different study designs, data distribution, and 

phenotypes. Future studies to compare multiple machine learning methods are needed to explore 

at what conditions a certain method can perform better.  

Because of the high dimensionality of the transcriptomic data, we applied two filtering 

methods, data-driven and pathway-based approaches before running the Boruta algorithm. 

Overall, the pathway-based approach performed better than the data-driven approach because the 

former identified more transcripts. This suggests that embedding biological knowledge may lead 

to a better performance of the Boruta method. To the best of our knowledge, machine learning 

approaches (such as RF with Boruta method) have not been extensively examined to study 

alcohol consumption related transcriptomic changes. The present study contributes novel 

information to the current literature; however, future studies are needed to establish a critical 

process for using machine learning methods in this research area, such as performing data 

harmonization and transformation, selecting appropriate machine learning methods, and 

conducting external validation.  

In our previous study using conventional linear regression models,(9) we reported 

significant associations between 22 alcohol-associated transcripts and three CVD risk factors. 

The present study also showed several additional transcript-CVD risk factor pairs, particularly 

five pairs (for five transcripts; Supplemental Table 6) were in line with our previous 

observations on alcohol consumption and CVD risk factors.(25) Three of the five transcripts 

(FCGR1A, IFITM1, and SORT1) are among the 13 unique transcripts identified by the Boruta 

method. The three transcripts had low to moderate correlation with those identified by our 

previous study using conventional regression models.(9) GO analysis showed that FCGR1A (Fc 

gamma receptor Ia) and IFITM1 (interferon induced transmembrane protein 1) were enriched in 
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nine GO terms related to defense or immune response (Supplemental Table 1), suggesting that 

alcohol consumption may trigger chronic inflammation and then affect CVD risk. A genetic 

variant (rs4970843-C) at intron of SORT1 (sortilin 1) was associated with height,(39) which is 

consistent with the present observation on the SORT1 and obesity (i.e., increased BMI). 

However, a study in the Danish PRISME study showed that heavy alcohol drinking was 

associated with an increased sortilin, which is opposite to the present observation on a negative 

association of alcohol consumption with SORT1 expression levels (Supplemental Table 6). This 

may be due to most of our study participants (93%) are nondrinkers and moderate drinkers. 

Nonetheless, because of the cross-sectional and observational nature of the present analysis, we 

cannot infer causality. Future studies with large sample size and in diverse populations are 

warranted to validate the present findings.  

In approximately 30% of our study participants (i.e., the testing set), we tested the 

prediction capabilities of the 25 Boruta method selected transcripts. Compared to the transcripts 

identified by conventional regression models, the 25 Boruta method selected transcripts had a 

comparable prediction capability. Although no statistical significance was detected, the overall 

prediction capabilities of selected gene transcripts were relatively weaker than DNA methylation 

markers (AUC 0.72 vs. 0.77). These DNA methylation markers were selected based on a large 

meta-analysis in 13 population-based cohorts;(23) therefore, this set of DNA methylation 

markers may be less noisy than the gene transcripts. The analysis combining gene transcripts and 

DNA methylation markers did not substantially increase the AUC, which also suggests that DNA 

methylation markers may have better prediction capabilities. However, the additive approach 

that was used to combine selected gene transcripts and CpGs may be biased because the potential 

interaction between different types of omics markers is not considered.(40) Thus, novel 

analytical approaches to integrating multiple omics markers are needed to comprehensively 

identify alcohol-associated markers. In addition, compared to array-based transcriptomic data, 

RNA sequencing (RNA-seq) has a better resolution and enables the identification of non-coding 

RNAs. Future studies utilizing RNA-seq data are needed to examine the alcohol-associated 

transcriptomic changes. 

The advantages of the present study include using a well-established machine learning 

method and comprehensive data (alcohol consumption, transcriptomics, and clinical risk factors) 

collected from the well-characterized community based FHS. However, in addition to several 
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weaknesses described above, other limitations warrant discussion. First, all study participants 

were Europeans, and most study participants were nondrinkers or moderate drinkers. This limits 

the generalizability of the present study to other more diverse populations. Second, interpretation 

of the transcripts selected by machine learning approaches is challenging. We explored their 

cross-sectional association with CVD risk factors. However, transcriptomic profiles may change 

over time. Prospective association analyses are therefore needed to provide more robust data 

regarding the relationship between alcohol, gene expression, and CVD risk factors. Third, 

different types of alcoholic beverages may have different responses in gene expression levels. 

Future studies with larger sample size are needed to examine specific transcriptomic 

characteristics associated with consumption of each type of alcoholic beverage. Fourth, 

questionnaires were used to collect self-reported alcohol consumption. Measurement errors may 

exist and affect transcript selection and prediction accuracy. Nonetheless, this also highlights the 

needs for future studies to comprehensively investigate surrogate markers for alcohol 

consumption.  

The association of alcohol consumption and cardiovascular health is complex, mainly due 

to the uncertainty related to the potential impact of moderate alcohol drinking on cardiovascular 

health.(3-5) Majority of study participants are nondrinkers or moderate drinkers. Our previous 

study using conventional regression models did not find a clear protective effect of alcohol 

consumption on CVD risk factors through transcriptomic biomarkers. In the present study, we 

used a different analytical approach, yet the findings echo those from our previous study.(9) It 

should be noted that the present analysis only examined one commonly used machine learning 

algorithm. Other machine learning and deep learning algorithms,(41) together with profound 

bioinformatic knowledge, may facilitate the identification of true causal transcriptomic markers 

and improve the discrimination capacities of alcohol-associated transcriptomic biomarkers. 

In conclusion, we applied a supervised machine learning approach, the RF-based Boruta 

method, and identified additional alcohol-associated gene transcripts, compared to analysis using 

the conventional linear regression models. These additional transcripts expand the candidate list 

for future validation studies; thus, our findings support the notion that machine learning 

approaches can contribute useful information to unravel the complex relationship between 

alcohol consumption and CVD risk. Our findings support the notion that machine learning 

approaches can contribute useful information to unraveling the complex relationship between 
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alcohol consumption and CVD risk. The present study also highlights that future studies in large 

and diverse samples are needed to comprehensively investigate the impact of alcohol 

consumption on transcriptomic changes and subsequent disease burden.  

 

Acknowledgements: The Framingham Heart Study was supported by NIH contracts N01-HC-

25195, HHSN268201500001I, and 75N92019D00031. Funding for SABRe gene expression was 

provided by Division of Intramural Research, NHLBI, and Center for Population Studies, 

NHLBI.  

 

Financial Support: JM and CLiu are supported by NIH grant R01AA028263.  

 

Conflict of Interest: The authors declare no conflicts of interest. 

 

Authorship: The authors’ contributions were as follows— JM and CLiu designed research and 

had primary responsibility for final content; CLyu conducted the analyses; JM, CLyu and CLiu 

interpreted the result; RJ conducted quality control and residual calculation for gene expression 

data; CLyu and JM wrote the manuscript; RJ, TH, DL, and CLiu critically reviewed the 

manuscript; and all authors read and approved the final manuscript.  

 

Disclaimer: The views and opinions expressed in this manuscript are those of the authors and do 

not necessarily represent the views of the National Heart, Lung, and Blood Institute, the National 

Institutes of Health, or the U.S. Department of Health and Human Services. 

 

Data availability: The datasets analyzed in the present study are available at the dbGAP 

repository phs000007.v32.p13 (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000007.v30.p11). 

 

Abbreviations: ABCA13: ATP binding cassette subfamily A member 13; ATP5F1D: ATP 

synthase F1 subunit delta; AUC: area under the receiver operating characteristics curve; BMI: 

body mass index; BPI: bactericidal permeability increasing protein; CEACAM8: CEA cell 

adhesion molecule 8; CpG: DNA methylation sites; CTSG: cathepsin G; CVD: cardiovascular 

https://doi.org/10.1017/S0007114524000795 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114524000795


Accepted manuscript 
 

disease; CYTH1: cytohesin 1; DBP: diastolic blood pressure; DOCK4: dedicator of cytokinesis 
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Table 1. Participant characteristics 

 

Total (n=5508) 

 

Nondrinkers 

(n=1729) 

Moderate 

drinkers 

(n=3427) 

Heavy 

drinkers 

(n=352) 

Age 55.4 ± 13.1 60.8 ± 12.6 52.5 ±12.6 56.6 ± 11.5 

Men 2516 (45.7%) 676 (39.1%) 1653 (48.2%) 187 (53.1%) 

Obesity  1707 (31.0%) 657 (37.9%) 956 (27.9%) 94 (26.7%) 

Hypertension 2112 (38.3%) 842 (48.7%) 1080 (31.5%) 190 (53.0%) 

Type 2 Diabetes 487 (8.8%) 272 (15.7%) 193 (5.6%) 22 (6.3%) 

Alcohol 

consumption(g/d) 
4.7 (15) 0 (0) 9.1 (12.2) 51.3 (27.6) 

Values are mean ± SD or n (%); alcohol consumption is presented as median (IQR) 
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Table 2. Boruta algorithm selected genes 

     Gene sets 

Gene Chr   Start Stop 

 

 

P Wikipathways  

MSigDB 

hallmark  

MSigDB 

immunologic 

signature  

Association 

FDR <0.2  

Pairwise 

Pearson r 

<0.6 

IFI44L 1 79086136 79108668 9.6e-1  √    

FCGR1A 1 149718521 149765367 5.8e-2   √   

IFI6 1 27992587 28359029 5.3e-1   √   

SORT1 1 109850942 109940573 3.4e-4 √     

MEIS1 2 66653313 66800441 7.2e-13     × 

ODC1 2 10568023 10688889 8.4e-11 ×     

P2RY14 3 150929912 150996391 2.3e-4  √    

PLAGL1 6 144261449 144385677 3.9e-6  √    

ABCA13 7 48237836 48700550 5.7e-10   ×   

DOCK4 7 111365666 111846508 1.8e-7  √ √  √ 

GAPVD1 9 128022911 128191972 7.2e-1  √    

LCN2 9 130893682 130915718 4.2e-9   √   

DDX58 9 32455306 32732887 4.7e-1   √   

IFITM1 11 310891 315260 2.4e-3  √    

UTP20 12 101640624 101780384 2.2e-7  √    

OLFM4 13 53584428 53708870 5.1e-13   × ×  

TNFSF13B 13 108897127 108960825 5.0e-6     √ 

CTSG 14 25042724 25045559 8.1e-16 ×  × ×  

IL4R 16 27325194 27385797 1.3e-10 √     

MPO 17 56347222 56358430 6.1e-11 √ √ √ √  

CYTH1 17 76670136 76778378 4.2e-2 √     

ATP5F1D 19 1239851 1244813 1.3e-1  √    

CEACAM8 19 43084395 43224500 3.6e-9   × ×  

BPI 20 36932545 36965907 5.0e-10   √   

RBM38 20 55966449 55984369 6.4e-5  √    

×: transcripts have been identified using conventional linear regression models (reference 9)  

P values are from meta-analysis in reference 9.  

Transcription start and stop position are based on GRCh37. 
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Table 3. Cross-sectional analysis of Bruta method selected genes with CVD risk factors 

 
Obesity Hypertension Type 2 diabetes 

Gene OR 95% CI P OR 95% CI P OR 95% CI P 

FCGR1A 1.54 1.38, 1.72 3.0e-14       

SORT1 2.65 2.04, 3.45 3.7e-13       

ODC1 2.04 1.72, 2.41 2.2e-16    1.80 1.32, 2.44 1.6e-4 

ABCA13 2.29 1.73, 3.01 4.5e-9       

DOCK4 1.84 1.56, 2.16 2.0e-13       

GAPVD1 3.02 2.31, 3.93 3.3e-16       

LCN2 1.71 1.54, 1.90 6.7e-24    1.32 1.14, 1.54 3.5e-4 

IFITM1 1.32 1.13, 1.54 5.3e-4       

UTP20 2.24 1.58, 3.18 5.9e-6       

OLFM4 1.51 1.33, 1.71 1.7e-10       

IL4R     0.49 
0.38, 

0.62 
3.3e-9    

CEACAM8 1.58 1.42, 1.76 2.1e-17       

BPI 1.31 1.17, 1.47 4.4e-6       

RBM38 2.05 1.79, 2.35 6.7e-25       1.72 1.35, 2.21 1.5e-5 

Generalized estimation equations with adjustment for age, sex, current smoking status, FHS cohorts (the 

Offspring or Third Generation cohort), estimated blood cell compositions, and BMI (only in analyses for 

hypertension and type 2 diabetes) 
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Figure 1. Study Flow Chart 
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Figure 2. ROC of selected predictors. 1) Boruta method was based on the 25 Boruta method selected transcripts; 2) 1,985 transcripts 

and 3) 25 transcripts were from alcohol-gene expression analyses using conventional linear regression (reference 9); 4) 144 CpGs was 

from meta-analysis of alcohol associated DNA methylation markers (reference 21); 5) Combined predictors from sets 1, 3, and 4.  
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