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Introduction

Let k be a polygonal knot in Euclidean 3-space, p a projection onto a
plane. If p\k is 1:1 except at a finite number of points, which are not
vertices of k and at which p\k is 2 : 1, then p(k) is said to be a regular
projection of k; this means that p(k) is a closed curve with a finite number
of double points ("crossings") which are not points of tangency. Clearly for
every polygonal knot there is a plane onto which it can be projected regu-
larly. At each crossing of p(k), the knot k assigns an overcrossing arc and
an undercrossing arc of the projection; conversely, if at each crossing we
say which arc is an overcrossing, then there is a knot, uniquely determined
up to homeomorphism, with this regular projection with the assigned
overcrossings.

A knot which is the boundary of a disc is said to be trivial. It is well-
known (see for instance Alexander [1] p. 299) that given any regular projec-
tion p(k) of a polygonal knot, there is a trivial knot with the same regular
projection. This may readily be visualized by the method of "laying down
a rope along the projection", i.e., orient the projection p(k) and choose a
starting point P on the projection, then at a crossing of two arcs a and /S
of p{k), a is to be an undercrossing if it lies between P and /? in the orienta-
tion of p(k). The resultant knot is trivial.

Clearly the same theorem holds if p(k) is a regular projection of a
polygonal knot k embedded in Sxl, where S is a 2-sphere, / is the closed
unit interval [0, 1], and p is the projection S x / - > S x { 0 } ; for p(k) is
contractible in the complement of a point of S, so Alexander's theorem
applies.

Our aim is to generalize the result to all surfaces S, that is, to prove

THEOREM 1. Let S be a surface, orientable or not, compact or not. Let
k be a polygonal knot contained in, and contractible in, the interior of Sxl, with
regular projection p(k) in SX {0}. Then there exists a knot k' CSx [ j , -J]
which has the same regular projection, and which bounds a disc in S X [•J, §].
(Since every knot with projection p(k) is freely homotopic to k, the condi-
tion that k be contractible is necessary.)
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482 N. Smythe [2]

Note that the method of "laying down rope" does not work in general;
in the figure, starting at P leads to the knot shown, which is not trivial in
the space Sxl, where 5 is an annulus.

/ S

Figure 1

Unexpectedly, the proof of Theorem 1 involves the notion of a total
ordering of the fundamental group TI(S) which is invariant under left multi-
plication. Theorem 4 states that such an ordering exists for every surface
other than the projective plane. Since in fact no such ordering exists for
the projective plane, a separate argument is required to prove Theorem 1
in this case; this is achieved by showing that every contractible regular
projection p(k) in the projective plane is contractible in the complement
of some point, reducing the problem to that of the Mobius band.

We begin with a study of left invariant orderings of groups.

1

DEFINITION. A total ordering of a group G is said to be left invariant if
whenever « < ! i w e have au < av, for all a e G.

Any free abelian group may be given a left invariant ordering by
choosing an arbitrary ordering of its generators, then ordering the elements
of the group lexicographically.

THEOREM 2. The free group of finite or countable rank has a left in-
variant ordering {in fact, an ordering which is both left and right invariant).
(This result is well-known, see for instance Everett and Ulam [2].)
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PROOF. Any countable free group can be embedded in the free group
F of rank 2, so it suffices to order F. Let Fn denote the w-th group of the
lower central series of F, where F = Fx. Then FJFn+1 is free abelian of
finite rank, and f] Fn — 1.

Let 0n : Fn ->• FJFn+1 be the canonical map, and let <„ be any left
invariant total ordering of FJFn+1.

For any two distinct elements u, v of F there is a unique integer n(u, v)
such that »" 1 «£j ?

B ( B ) , r F B | U i , | + 1 . Note that n(u, v) = n(v, u). Define
M < v if 0n(v~1u) <„ 1.

Since < n is a left ordering, u < v and v < u cannot both occur.
Transitivity of < is shown as follows. If u < v < w, put n = n(u, v)

and m — n{v,w). There are three cases:

(a) if n < m, then w~xu = (w^v) (v^u) e Fn—Fn+1,
and 0n(w~1u) = 0n(v~1u) < „ 1, so u < w;

(b) if n > m, then w~xu e Fm—Fm+1,
and 0m(w-1u) = ^ ( w - 1 ^ ) < m 1, so u < re>;

(c) if n = m, then w~xu e F n ,
and ^ ( W ^ M ) == 0n(w~1v). 0n(v~1u) <n 1, so ^(tei^w) ^ l, i.e.
w~~xu e Fn—Fn+1 and « < ze>.

Thus < is a total ordering of the elements of F.
Now if u < v and a e F, then (au)~1(a«) = w-1w, so a« < av; thus we

have a left invariant ordering. In fact, because we chose the subgroups Fn

to be members of the lower central series, we also have 0n{a-1v-1ua) =
0n(v~1u), so ua < va; thus the ordering is also a right ordering. Q.e.d.

COROLLARY. The fundamental group of any open surface or surface with
boundary has a left invariant ordering.

For the fundamental group of such a surface is free.
The proof of the following result is now clear.

THEOREM 3. Let N be a normal subgroup of the group G. If both N and
G/N have left invariant orderings, then so does G.

For we may combine these orderings as in the previous theorem:

if w~xu eN, define u < w if wxu < 1 in the ordering of N;
if wxu e G—N, define u < w if the image of w~xu < 1 in GJN.

This defines a left ordering of G; it should be noted that this ordering
is not usually right invariant.

We apply this result to find a left invariant ordering of the groups of
surfaces.
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THEOREM 4. Let G be the fundamental group of any surface other than
the protective plane. Then G has a left invariant total ordering.

PROOF. The closed surfaces are the only outstanding cases. The orien-
table surfaces have fundamental group of the form

while the non-orientable surfaces have fundamental group of the form

(a1, • • •, ak : a1a1a2a2 • • • akak = 1)

for integral h ^ 0 and k Ŝ  1.
If h = 0 (the surface is the 2-sphere), the group is trivial, so has a

left invariant total ordering; if k = 1, the surface is the projective plane,
and the group is cyclic of order 2, so has no left invariant total ordering.

For h 5: 1 and k ^ 2, there is a homomorphism of the group onto the
infinite cyclic group. The kernel of this homomorphism is the fundamental
group of a covering space of the surface with infinitely many sheets; this
covering space is therefore an open surface, and the kernel is a free group.
The preceding theorem gives the result.

In connection with this result, I am informed by G. Baumslag that
the groups of the orientable closed surfaces can be given an ordering which
is both left and right invariant (for they are residually free, so can be em-
bedded in a direct product of free groups). On the other hand, this is not
true of the groups of non-orientable surfaces; it is easily seen that the group
of the Klein bottle (a, b : aabb = 1) has no 2-sided ordering.

We proceed to the proof of Theorem 1.
The cases S = sphere and S = plane are covered by Alexander's

theorem. We shall defer the case 5 = projective plane to the next section.
For any other surface S, let M be the interior of 5, and denote by

M 2 RxRxI the universal covering space of Mxl, where R denotes
the real line. Let e : M -> M xl be the covering map.

p(k) is covered by closed curves ku = Tu(k^), where kx is the particular
such curve through the base point of M and Tu is the covering translation
corresponding to the element uen{MxI) «s 7t(S); we assume n(S) has
been given a left invariant ordering.

Let p~ : RxRxI -> RxRx{0} be the projection over p. The collec-
tion of closed curves {ku} has only double points as singularities (which are
not points of tangency); we shall construct simple closed curves {&„} in
the interior of M which project regularly onto {ku} under p and such that

K = TM.
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[5] Trivial knots with arbitrary projection 485

Choose an orientation for p(k), thus inducing an orientation in each ku.
Choose disjoint neighbourhoods of the double points of the collection ku,
so small that in each neighbourhood there are two simple arcs of the col-
lection with one crossing; at a crossing P of kx with itself we denote these
arcs by A (P) and B(P), where A (P) is the arc preceding B(P) in the orien-
tation of kx starting at the base point of M; at a crossing P of kx and ku,
we denote the arcs by C(P) and D(P), where C(P) is the arc in kx and
D(P) is the arc in ku.

a) If (r, s, 0) is a point of kx not in any of the chosen neighbourhoods,
or is a point of an arc A (P), or is a point of an arc C(P) where P is a double
point of kx and ku with u > 1, then we choose (r, s,\) to be a point of k1.

b) If (r, S, 0) is a point of an arc B(P), or is a point of C(P) where P
is a double point of kx and ku with u < 1, then as the point of kx lying over
(r, s, 0) we choose a point (r, s, ^-\-t), 0 < t sS \, t varying continuously
so as to be \ at P and approaching 0 as (r, s, 0) approaches the boundary
of the neighbourhood of P.

The result is a simple closed curve k1 with regular projection
pfa) = kt. Let ku = Tu{kx).

These are disjoint simple closed curves. For suppose Q e ku nkv.
Then Tu-i(Q) = Pekxn £„_,„ and Tv-i(Q) = P' e £e-iu n ^ . We may
assume « > a. Since />(P) is a double point of kx and ku-iv with M-1V < 1,
we have by construction that P e RxRx{%}; on the other hand, fi(P')
is a double point of kt and kv-ia with z)-1^ > 1, so by construction
P' eRxRxQ}. But TUP = TVP', and covering translations leave the
third co-ordinate invariant, giving a contradiction.

Next we notice that if h~u lies above kv (in the sense of the third co-
ordinate) at any crossing of ku and kv, then it does so at all their crossings,
for this depends only on the fact that u > v.

Furthermore if ku lies above kv and kv lies above kw then ku lies above

Thus we may depress the curves ku for u < 1, and lift the curves kv

for v > 1 without disturbing k1; that is, precisely, there is an isotopy
ht : M -+ M, with h0 being the identity and such that \ has the following
properties:

i) h^kJCRxRxiO,^) for u < 1
ii) h^kj) = kx remains fixed in RxRx\^,\]

iii) hx(kv) CRxRx(%,l) for v > 1
iv) ph^ku) == &„, and is a regular projection, for all w.

Then A1(fc1) has been isolated in the 3-cell RxRx [-J, £]. The lifting
process described in a) and b) above is exactly the process of "laying down
a rope" when restricted to the crossings of kx with itself; by Alexander, fc,
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is therefore contractible in the complement of U«*i^u> bounding a non-
singular disc D in R x R X [%, £] not meeting any other ku.

Since k1 n Tu(kj) = 0, e(kj) is a simple closed curve in Mxl with
regular projection pe{k-y) = p{k). eijc^j bounds the singular disc e(D).
However since e(D) n Tu(&i) = 0, e(D) has at most internal singularities.
By Dehn's Lemma [3], e(D) may be modified in a neighbourhood of its
singularities (and therefore within M x [J, J]) so that e(fcx) bounds a non-
singular disc.

This completes the proof of Theorem 1 except for the case S = projec-
tive plane.

We now assumep(k) is the regular projection onto 5 X {0} of a polygonal
knot in 5 xl, where S is the projective plane. The following Lemma reduces
this case to that of the Mobius band, thus completing Theorem 1.

LEMMA. If p(k) is contractible in the projective plane, then it is contrac-
tible in the complement of some point.

PROOF. From the closed curve p (k) we form a finite number of disjoint
simple closed curves Cx, • • •, Cm, the "Seifert circles" of p(k), as follows.

At each crossing P oip(k) choose a neighbourhoodN(P) in the projec-
tive plane which is homeomorphic to a disc and is so small that it contains
no other crossings; p(k) n N(P) consists of two arcs a and /3 crossing at P.
Choose a point A on a. preceding P in the orientation of p{k), and a point
B on p succeeding P in the orientation of p(k). Join A to B by an arc y in
N(P) not meeting p(k) in any other points, and delete the open arcs AP,
PB.

Diagrammatically:

Figure 2

After this is done at each crossing, we have constructed a number of
closed curves which have no crossings, and whose union differs from p(k)
only within a small neighbourhood of the crossings of p{k); these are the
desired curves C1, • • • , Cm.
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It is easily seen that p(k) is homotopic within the set p(k) u (JiV(P)
to a product of conjugates of C1, • • •, Cm.

Considered as 1-cycles of S, 2 C4 is homologous to p(k), which is con-
tractible in S; thus 2 Ct ~ 0- Now H^S) is cyclic of order two, so that an
even number of the cycles Ct are non-bounding; suppose C1 and C2 are non-
bounding. S—C1 is an open disc so C2 C S—C1 is contractible, contradicting
our assumption. Thus every C,- is null-homologous and therefore contrac-
tible in S.

C( separates 5 into two connected regions with C,- as common boundary;
by the usual Euler characteristic argument, one of these pieces is a Mobius
band, the other is a disc Dt. It may happen that D( contains a Seifert circle
C}; since D, contains no Mobius band, we must have D3 C D(. Let Dx, • • •, Dn

be the "outermost" discs, i.e. those not contained in any other disc of the
collection; these discs are pairwise disjoint.

To the subspace (J"=i Dt w e add the discs N(P), for each crossing P
of p(k), to get a connected proper subspace S' of 5 containing p(k). Since
p(k) is homotopic within S' to a product of conjugates of the C/s, and each
C< is contractible within S', we have that p (k) is contractible in S'.

Thus^>(&) is contractible in the complement of a point of S, i.e., within
a Mobius band contained in S.

It should be noted that the analogous result is not true for other closed
surfaces. Thus if S is any closed surface whose universal covering space is the
Euclidean plane, let I be a simple closed curve in the plane enclosing a
sheet over S; then k, the image of k in S, is a contractible closed curve of
S which is not contractible in the complement of any point. Clearly k may
be chosen so that k is a regular projection of a polygonal knot in Sxl.

4. Applications

The Alexander theorem is the basis for the definition of the Gordian
invariant, or unknotting number, of a knot in 3-space. For every regular
projection of a polygonal knot, some number of crossings may be changed
to give a trivial knot; the Gordian invariant is the smallest such number
over all projections. This definition may now be extended to knots projected
onto surfaces other than the plane.

As an application in another direction, we have

COROLLARY. Let T be a torus, and kx and k2 be oriented disjoint knots
in the interior ofTxI such that the projection p (kt u k2) onTx {0} is a regular
projection of the link kx u k2 with p(k1) r\p(k2) # 0. Then if kx is homotopic
to k2, there exist knots k\,k'2 in the interior of Txl with oriented regular
projections pik^) = p(kx), p(k'2) = p{k2), such that k'x u k2 bounds a non-
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singular polyhedral annulus in the interior of Txl (and therefore there is an
isotopy of Txl taking k'x onto k'2 which leaves the boundary of Txl fixed).

PROOF. Let P be a point oip(k1) n p(k2). Choose a small neighbourhood
of P in T X {0} containing no other crossings, meeting p (kx) in an arc a, and
p(k2) in an arc /?. As in fig. 3, choose two parallel arcs <f> and y> joining a
and /?, cutting off arcs a and p from a and /S respectively. Let D denote the
disc in T X {0} bounded by <f>, ip, a and p. Let k* denote the closed curve
produced from p (kj) and p (k2) by this operation, with orientation induced
from pikj).

Then k* is homologous to k1—k2 in Txl, so is homologous to zero.
But Hx(TxI) p& TI(TXI), so k* is contractible. Also k* is the regular projec-
tion of some knot.

Figure 3

Then there is a knot k" in T x [j, £] bounding a polyhedral disc D",
the points of k" being of the form (q, \) for (q, 0) e k* except near crossings,
and such that D" meets 7"x [̂ , J] only at points of k". In particular k"
contains arcs <f>', y>' contained wholly in T x {|} and which lie over (f>, y>
respectively. Let a', p , D'inTx {J} be the sets lying over a, p, D respectively.

Since D' n D" = t>' n D" = <f> u xp', D' u D" is a non-singular poly-
hedral surface with two boundaries k[ and k'2 with regular projections p(k1)
and p(k2). By calculation of its Euler characteristic, this surface is an an-
nulus q.e.d.

This result gives

COROLLARY. Let V be a solid torus (Vollring) with boundary torus T,
and let p{k) be a regular projection on T of some knot k in a neighbourhood of
T homeomorphic to Txl. If k has winding number 1 in V, then there is a knot k
in an arbitrarily small neighbourhood ofp(k) which is a core of V.

PROOF. For any given d > 0, choose a neighbourhood of T homeo-
morphic to Txl lying within d of T, with projection map p' : T xl -»• T
such that p(k) is the regular projection p'(k') of some knot k' in this neigh-
bourhood. Choose a simple closed curve I onT with winding number 1 in V
such that lnp(k) =£ 0.
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[9] Trivial knots with arbitrary projection 489

Then there exist knots k*, I* with regular projections p'(k*) = p{k),
p'(l*) = I respectively, and an isotopy of Txl taking I* onto k* leaving
the boundary of Txl fixed. This may be extended to an isotopy of V
leaving T fixed. Since / is simple, I* bounds an annulus with I and is therefore
a core of V. Thus k* is also a core of V.
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