CARTESIAN NETS AND GROUPOIDS

BY
M. A. TAYLOR

Introduction. Aczel has conjectured, [1, p. 448], the possibility of developing a net theory for structures more general than quasigroups. Steps in this direction have been taken by Havel who considers nets associated with multigroupoids [2]. The work presented here introduces a generalization of 3-nets and their algebraization which is wide enough to encompass most algebraic structures based on a single binary operation.

The main theorems are concerned primarily with groupoids and the nets corresponding to them when under the constraints of the Thomsen and Reidemeister closure conditions. A net is used as a "geometric model" of a class of isotopic binary systems and the closure conditions may be formulated either "geometrically', i.e., in terms of the net, or algebraically. This makes it possible to develop theorems in the intuitive "geometric model" and transform them into purely algebraic terms.

Notation and Definitions.

Definition. A net is a set S which is partitioned into four subsets X, Y, Z (called line sets) and P (called the point set) together with a binary relation I. The members of the line sets are called lines and the members of the point set are called points.

The conditions N1-N6 are placed on I and S;
N 1 : If $l I p$ then one and only one of l and p is a point.
N 2 : If l is a line then there exists a point p such that $l I p$.
N3: If p is a point then there exist lines $x \in X, y \in Y, z \in Z$ such that $x I p, y I p, z I p$.
A useful notation is the following:
$|x y z| \Leftrightarrow \operatorname{lines} x, y, z$ are from different line sets and there exists a point p such that $x I p, y I p, z I p$. (Read $|x y z|$ as "the lines x, y and z are concurrent".)
N4: If l_{1} and l_{2} are members of the same line set and $l_{1} I p, l_{2} I p$, then $l_{1}=l_{2}$.
N5: If l_{1}, l_{2} belong to the same line set, and $\left|l_{1} b c\right| \Leftrightarrow\left|l_{2} b c\right|$ for all b, c concurrent with l_{1} or l_{2}, implies $l_{1}=l_{2}$.
N6: If p_{1}, p_{2} are points and x, y, z are from different line sets, $x I p_{1}, y I p_{1}, z I p_{1}$, $x I p_{2}, y I p_{2}, z I p_{2} \Rightarrow p_{1}=p_{2}$.

[^0]Nets will be denoted by quintuplets of the form (X, Y, Z, I, P) or triples $(X$, $Y, Z)$. Where a net is not specifically designated by a quintuplet or a triple it can be assumed to be of the form (X, Y, Z, I, P).
J will be used to denote an indexing set.
Definition. A net isomorphism or simply an isomorphism, H, from

$$
N_{1}=\left(X_{1}, Y_{1}, Z_{1}, I_{1}, P_{1}\right) \quad \text { to } \quad N_{2}=\left(X_{2}, Y_{2}, Z_{2}, I_{2}, P_{2}\right)
$$

is a bijection

$$
H: X_{1} \cup Y_{1} \cup Z_{1} \cup P_{1} \rightarrow X_{2} \cup Y_{2} \cup Z_{2} \cup P_{2}
$$

such that

$$
H\left(S_{1}\right)=S_{2}
$$

where S is replaceable by X, Y, Z, or P. Also,

$$
l I_{1} p \Rightarrow H(l) I_{2} H(p),
$$

and
$m I_{2} q \Rightarrow$ there exist a line l from N_{1} and a point p from P_{1} such that,

$$
m=H(l), \quad q=H(p) \quad \text { and } \quad l I_{1} p
$$

Remark. Isomorphy between nets is an equivalence relation.
Definition. A binary system,

$$
\because S_{1} \times S_{2} \rightarrow B\left(S_{3}\right),
$$

is a binary operation on part of the cartesian product of two sets S_{1}, S_{2}, into a set of subsets, $B\left(S_{3}\right)$, of a third set S_{3}.

The operation on the ordered pair (s_{1}, s_{2}) giving the set $\left\{s_{j}\right\}, s_{1} \in S_{1}, s_{2} \in S_{2}$, $s_{j} \in S_{3}, j \in J$, is denoted by

$$
s_{1} \cdot s_{2}=\left\{s_{j}\right\}
$$

A method of associating a net with a binary system is given below. This method requires that additional technical restrictions be included in the definition of binary system. These are that the domain of the operation is always taken as being nonvoid and the binary system has the properties:

1(a) For all $s_{1} \in S_{1}$ there exists $s_{2} \in S_{2}$ such that $s_{1} \cdot s_{2}$ is defined.
1(b) If $t_{1} \in S_{1}, s_{2} \in S_{2}$ are such that whenever $t_{1} \cdot s_{2}, s_{1} \cdot s_{2}$ are defined $t_{1} \cdot s_{2}=$ $s_{1} \cdot s_{2}, s_{2} \in S_{2}$, then $t_{1}=s_{1}$.

2(a) For all $s_{2} \in S_{2}$ there exists $s_{1} \in S_{1}$ such that $s_{1} \cdot s_{2}$ is defined.
2(b) If $t_{2} \in S_{2}, s_{2} \in S_{2}$ are such that whenever $s_{1} \cdot t_{2}, s_{1} \cdot s_{2}$ are defined, $s_{1} \cdot t_{2}=$ $s_{1} \cdot s_{2}, s_{1} \in S_{1}$, then $t_{2}=s_{2}$.

3(a) For all $s_{3} \in S_{3}$ there exists $s_{1} \in S_{1}, s_{2} \in S_{2}$ such that $s_{3} \in s_{1} \cdot s_{2}$.
3(b) If $t_{3} \in S_{3}, s_{3} \in S_{3}$ are such that whenever $s_{3} \in s_{1} \cdot s_{2}$, also $t_{3} \in s_{1} \cdot s_{2}$, and whenever $t_{3} \in t_{1} \cdot t_{2}$ also $s_{3} \in t_{1} \cdot t_{2}$, then $s_{3}=t_{3}$.

The set $\left\{s_{j}\right\}$ is called a product of s_{1} and s_{2}. If all the defined products are singleton sets, then the set of an element is identified with the element. Such a binary system is called a halfgroupoid.

A halfgroupoid is called a groupoid if $S_{1}=S_{2}=S_{3}=S$, and if the domain of the binary operation is $S \times S$.

Binary systems will be denoted by quadruplets ($\left.S_{1}, S_{2}, S_{3}, \cdot\right)$. Groupoids will be denoted by pairs (S, \circ).

Definition. A binary system ($S_{1}^{1}, S_{2}^{1}, S_{3}^{1}$, ${ }^{\circ}$) is said to be isotopic with a binary system ($\left.S_{1}^{2}, S_{2}^{2}, S_{3}^{2}, \cdot\right)$ if there exist bijections

$$
f: S_{1}^{1} \rightarrow S_{1}^{2}, \quad g: S_{2}^{1} \rightarrow S_{2}^{2}, \quad h: S_{3}^{1} \rightarrow S_{3}^{2}
$$

such that

$$
h\left(\left\{s_{1} \circ s_{2}\right\}\right)=f\left(s_{1}\right) \cdot g\left(s_{2}\right), \quad s_{1} \in S_{1}^{1}, \quad s_{2} \in S_{2}^{1}, \quad s_{1} \circ s_{2} \subset S_{3}^{1} .
$$

Isomorphic nets and isotopic binary systems. We define a binary system on the net $N=(X, Y, Z, I, P)$ of the form

$$
\because X \times Y \rightarrow B(Z)
$$

by

$$
x \cdot y=\left\{z_{j}\right\} \Leftrightarrow x I p_{j}, \quad y I p_{j}, \quad z_{j} I p_{j}, \quad j \in J .
$$

We denote such a binary system by $S(N)$.
Conversely, we can derive a net from a given binary system. Suppose (S_{1}, S_{2}, $\left.S_{3}, \cdot\right)$ is the given binary system. We choose mutually disjoint sets X, Y, Z with the same cardinalities as S_{1}, S_{2}, S_{3} respectively.

Let $f: S_{1} \rightarrow X, g: S_{2} \rightarrow Y, h: S_{3} \rightarrow Z$ be bijections. Consider now all distinct statements of the form

$$
s_{j} \in s_{1} \cdot s_{2}, \quad s_{1} \in S_{1}, \quad s_{2} \in S_{2}, \quad s_{j} \neq \phi \quad j \in J
$$

which are obtainable from the binary system, and let P be an index for the set of all such statements.

We then define the net (X, Y, Z, I, P) by,

$$
\begin{aligned}
s_{1} \cdot s_{2}=\left\{s_{j}\right\} & \Rightarrow f\left(s_{1}\right) I p_{j} \\
& \Rightarrow g\left(s_{2}\right) I p_{j} \\
& \Rightarrow h\left(s_{j}\right) I p_{j} \quad j \in J
\end{aligned}
$$

where $p_{j} \in P$ is the index of the statement $s_{j} \in s_{1} \cdot s_{2}$.
Clearly, we do not obtain a unique net this way, but a family of isomorphic nets. Any net obtained this way from a binary system B will be written $N(B)$.

Classical, and Cartesian nets and their algebraic counterparts. Two types of nets to which we give specific consideration are the Classical and Cartesian nets.

Definition. A Classical net is a net in which any two members of different line sets are related to a unique point; i.e. if l_{1}, l_{2} are from different line sets then there exists a unique $p \in P$ such that $l_{1} I p, l_{2} I p$.

If N is a Classical net then $S(N)$ is isotopic with a quasigroup [1].
Definition. A Cartesian net is a net with the property that if $x \in X, y \in Y$ then there exists a unique $p \in P$ such that $x I p, y I p$.

It is easily shown that if G is a groupoid then $N(G)$ is a Cartesian net. However it is not necessarily true that if N is a Cartesian net, $S(N)$ is isotopic to a groupoid, e.g. the net illustrated in Diagram 0. The binary system associated with this net has the multiplication table

	y_{1}	y_{2}	y_{3}	y_{4}
x_{1}	z_{1}	z_{2}	z_{3}	z_{4}
x_{2}	z_{2}	z_{3}	z_{4}	z_{4}
x_{3}	z_{3}	z_{4}	z_{4}	z_{5}

A finite groupoid must have a square multiplication table.

Closure conditions.

Definition. In a net (X, Y, Z) an array of the form

$$
\begin{array}{ll}
\left|x_{1} y_{2} z_{1}\right|\left|x_{2} y_{1} z_{1}\right| & x_{i} \in X, \quad y_{i} \in Y \\
\left|x_{3} y_{1} z_{2}\right|\left|x_{1} y_{3} z_{2}\right| & z_{i} \in Z \\
\left|x_{3} y_{2} z_{3}\right| & i=1,2,3 .
\end{array}
$$

is called a T-configuration. If such an array implies that $\left|x_{2} y_{3} z_{3}\right|$ then we say that the Thomsen condition, or T, holds in the net.

Definition. The R-configuration is

$$
\begin{array}{lll}
\left|x_{1} y_{2} z_{1}\right| & \left|x_{1} y_{4} z_{3}\right| & x_{i} \in X, \quad y_{i} \in Y \\
\left|x_{2} y_{1} z_{1}\right|\left|x_{3} y_{2} z_{2}\right| & \left|x_{2} y_{3} z_{3}\right| & z_{i} \in Z \\
\left|x_{4} y_{1} z_{2}\right| & \left|x_{4} y_{3} z_{4}\right| & i=1,2,3,4 .
\end{array}
$$

This configuration is said to close if $\left|x_{3} y_{4} z_{4}\right|$. If all R-configurations close in a net then we say that the Reidemeister condition, or R, holds in that net.

Definition. The B_{1}-configuration is

$$
\begin{array}{llll}
\left|x_{1} y_{2} z_{1}\right| & \left|x_{1} y_{3} z_{3}\right| & x_{i} \in X, \quad y_{i} \in Y, \quad z_{i} \in Z . \\
\left|x_{2} y_{1} z_{1}\right| & \left|x_{3} y_{2} z_{2}\right| & \left|x_{2} y_{2} z_{3}\right| & i=1,2,3,4 .
\end{array}
$$

This configuration is said to close if $\left|x_{3} y_{3} z_{4}\right|$. The B_{1} condition, or B_{1}, is said to hold in a net if all B_{1}-configurations close.

Definition. The B_{2}-configuration is

$$
\begin{array}{ll}
\left|x_{1} y_{2} z_{1}\right| & \left|x_{1} y_{4} z_{3}\right| \\
\left|x_{2} y_{1} z_{1}\right|\left|x_{2} y_{2} z_{2}\right| & \left|x_{2} y_{3} z_{3}\right| \\
\left|x_{3} y_{1} z_{2}\right| & \left|x_{3} y_{3} z_{4}\right|
\end{array}
$$

This configuration is said to close if $\left|x_{2} y_{4} z_{4}\right|$ and the B_{2} condition, or B_{2}, is said to hold if all such configurations close.

We conclude this section with the introduction of two notations.
$\left\|l_{1} l_{2}\right\| \Leftrightarrow l_{1}, l_{2}$ are from different line sets and there exists a point p such that $l_{1} I p$, $l_{2} I p$, (read $\left\|l_{1} l_{2}\right\|$ as 'the lines l_{1} and l_{2} intersect).
$L\left(l_{1}, l_{2}\right)$ is the set of all lines l such that $\left|l l_{1} l_{2}\right|$.

Theorems. Theorem 1 is a summary of several theorems, the proofs of which may be found in [1]. Theorem 2 is the summary of several theorems developed in [4].

Theorem 1. If T, R, B_{1}, or B_{2} (respectively) hold in a Classical net N, then $S(N)$ is isotopic with an abelian group, group, right Bol loop or left Bol loop (respectively).

The Bol identities are,

$$
\begin{array}{r}
\text { right Bol: }[(x y) z] y=x[(y z) y] \\
\text { left Bol: } y[z(x y)]=[y(z y)] x
\end{array}
$$

Definition. A loop which is both left and right Bol is called a Moufang loop.
Theorem 2. Let $N=(X, Y, Z)$ be a Cartesian net in which T, R, B_{1} or B_{2} hold. If there exists $x_{0} \in X$ such that $\left\{L\left(x_{0}, y\right) \mid y \in Y\right\}=Z$ and if there exists $z_{0} \in Z$ such that $\left\|y z_{0}\right\|$, for all $y \in Y$, then N is a Classical net.

If we combine Theorems 1 and 2, we get,

Theorem 3. Let N be a Cartesian net under the conditions of Theorem 2, then $S(N)$ is isotopic to an abelian group, group, right Bol loop or left Bol loop (respectively).

Theorem 3 is a mixture of "algebraic" and "geometric" forms. It is possible to give a version of Theorem 3 which is completely algebraic. This is done by noting that when dealing with groupoids the closure conditions may be defined without recourse to nets.

The Closure conditions in a groupoid (\boldsymbol{G}, \cdot)

Definition. The Thomsen condition, or T, holds in (G, \cdot) if for all $x_{1}, x_{2}, x_{3}, y_{1}$ $y_{2}, y_{3} \in G$
implies that

$$
x_{1} \cdot y_{2}=x_{2} \cdot y_{1}, \quad x_{1} \cdot y_{3}=x_{3} \cdot y_{1}
$$

$$
x_{2} \cdot y_{3}=x_{3} \cdot y_{2}
$$

Definition. The Reidemeister condition, or R holds in (G, \cdot) if for all x_{1}, x_{2}, x_{3}, $x_{4}, y_{1}, y_{2}, y_{3}, y_{4} \in G$

$$
x_{1} \cdot y_{2}=x_{2} \cdot y_{1}, \quad x_{1} \cdot y_{4}=x_{2} \cdot y_{3}, \quad x_{3} \cdot y_{2}=x_{4} \cdot y_{1}
$$

implies that

$$
x_{3} \cdot y_{4}=x_{4} \cdot y_{3} .
$$

Definition. The B_{1} condition, or B_{1}, holds in (G, \cdot) if for all $x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}$, $y_{3} \in G$

$$
x_{1} \cdot y_{2}=x_{2} \cdot y_{1}, \quad x_{2} \cdot y_{2}=x_{1} \cdot y_{3}, \quad x_{4} \cdot y_{1}=x_{3} \cdot y_{2}
$$

implies that

$$
x_{4} \cdot y_{2}=x_{3} \cdot y_{3} .
$$

Definition. The B_{2} condition, or B_{2}, holds in (G, \cdot) if for all $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}$, $y_{3}, y_{4} \in G$

$$
x_{1} \cdot y_{2}=x_{2} \cdot y_{1}, \quad x_{2} \cdot y_{2}=x_{3} \cdot y_{1}, \quad x_{1} \cdot y_{4}=x_{2} \cdot y_{3}
$$

implies that

$$
x_{2} \cdot y_{4}=x_{3} \cdot y_{3} .
$$

It is easily checked that these definitions are equivalent to the original definitions provided we restrict ourselves to nets which give rise to isotopes of groupoids or arise from isotopes of groupoids.

We now have,

Theorem 4. Let ($G, \cdot \cdot$) be a groupoid in which T, R, B_{1} or B_{2} hold (respectively). If there exist $g_{1}, g_{2} \in G$ such that $g_{1} \cdot G=G$ and the equation $x \cdot y=g_{2}$ has a solution in x for all $y \in G$ then (G, \cdot) is isotopic to an abelian group, group, right Bol loop or left Bol loop (respectively).

This is the purely algebraic form of Theorem 3.

We shall now proceed to develop several theorems about Cartesian nets and the algebraic structures which arise from them, and use these results to give theorems of a purely algebraic nature.

Proposition 1. Let N be a Cartesian net in which there exist $x_{0} \in X, y_{0} \in Y$ such that for every given $z \in Z$ there are unique $x \in X, y \in Y$ which satisfy $L\left(x_{0}, z\right)=y$, $L\left(y_{0}, z\right)=x$, then $S(N)$ is isotopic with a groupoid which possesses a unit element.

Proof. We construct a groupoid of the required form on the Z line set. Define mappings,

$$
f: Z \rightarrow X, \quad g: Z \rightarrow Y
$$

by

$$
\begin{array}{ll}
f(z)=L\left(y_{0}, z\right)=x(\text { say }) & z \in Z \\
g(z)=L\left(x_{0}, z\right)=y(\text { say }) & x \in X, \quad y \in Y
\end{array}
$$

Clearly f and g are bijections.
We define a groupoid $\circ: Z \times Z \rightarrow Z$, by

$$
z_{1} \circ z_{2}=f\left(z_{1}\right) g\left(z_{2}\right), \quad z_{1}, z_{2} \in Z
$$

where $f\left(z_{1}\right) g\left(z_{2}\right)$ is a product in $S(N)$.
This groupoid, (Z, \circ), is an isotope of $S(N)$, and its operation may be described in net terms by (Diagram 1)

$$
z_{1} \circ z_{2}=f\left(z_{1}\right) g\left(z_{2}\right)=L\left(L\left(y_{0}, z_{1}\right), L\left(x_{0}, z_{2}\right)\right)=L\left(f\left(z_{1}\right), g\left(z_{2}\right)\right)
$$

If we write $z_{0}=L\left(x_{0}, y_{0}\right)$ then, for all $z_{1} \in Z$,

$$
\begin{aligned}
& z_{1} \circ z_{0}=L\left(L\left(y_{0}, z_{1}\right), L\left(x_{0}, z_{0}\right)\right)=L\left(L\left(y_{0}, z_{1}\right), y_{0}\right)=z_{1} \\
& z_{0} \circ z_{1}=L\left(L\left(y_{0}, z_{0}\right), L\left(x_{0}, z_{1}\right)\right)=L\left(x_{0}, L\left(x_{0}, z_{1}\right)\right)=z_{1}
\end{aligned}
$$

i.e. z_{0} is the unit element for (Z, \circ).

DIAGRAM 1

Theorem 5. Let $N=(X, Y, Z)$ be a Cartesian net with $x_{0} \in X, y_{0} \in Y$ such that $\left\{L\left(x_{0}, y\right) \mid y \in Y\right\}=\left\{L\left(x, y_{0}\right) \mid x \in X\right\}=Z$. If Tholds in N then $S(N)$ is isotopic with a commutative semigroup S. Moreover S is embeddable in a group.

In proving Theorem 5 we require a result which was obtained in [4], which we quote here without proof.

Lemma. 1. Let $N=(X, Y, Z)$ be a Cartesian net in which there exist $x_{0} \in X, y_{0} \in$ Y such that $\left\{L\left(x_{0}, y\right) \mid y \in Y\right\}=\left\{L\left(x, y_{0}\right) \mid x \in X\right\}=Z$, and in which T holds. If $L\left(y_{0}, x_{1}\right)=L\left(y_{0}, x_{2}\right) x_{1}, x_{2} \in X$ then $x_{1}=x_{2}$ and if $L\left(x_{0}, y_{1}\right)=L\left(x_{0}, y_{2}\right), y_{1}, y_{2} \in Y$, then $y_{1}=y_{2}$.

Proof of Theorem 5. Lemma 1 shows that x_{0}, y_{0} fulfill the conditions of the Proposition 1, so we can construct ($Z,{ }^{\circ}$) in the manner of Proposition 1. For the remainder of this proof $\left(Z,{ }^{\circ}\right)$ will refer to the groupoid specifically constructed for this proof.

First we show that $\left(Z,{ }^{\circ}\right)$ is commutative. Let $z_{1}, z_{2} \in Z$.

$$
\begin{aligned}
& z_{1} \circ z_{2}=f\left(z_{1}\right) g\left(z_{2}\right) \\
& z_{2} \circ z_{1}=f\left(z_{2}\right) g\left(z_{1}\right) .
\end{aligned}
$$

From the definition of f and g,

$$
\begin{aligned}
& f\left(z_{1}\right)=L\left(y_{0}, z_{1}\right)=x_{1} \quad \text { (say) } \\
& \left.f\left(z_{2}\right)=L\left(y_{0}, z_{2}\right)=x_{2} \quad \text { (say }\right) \\
& \left.g\left(z_{1}\right)=L\left(x_{0}, z_{1}\right)=y_{1} \quad \text { (say }\right) \\
& g\left(z_{2}\right)=L\left(x_{0}, z_{2}\right)=y_{2} \quad \text { (say) }
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
& L\left(y_{0}, x_{1}\right)=L\left(x_{0}, y_{1}\right) \\
& L\left(y_{0}, x_{2}\right)=L\left(x_{0}, y_{2}\right)
\end{aligned}
$$

This represents a T-configuration which closes, (Diagram 2), and

$$
\begin{aligned}
& f\left(z_{1}\right) g\left(z_{2}\right)=L\left(L\left(y_{0}, z_{1}\right), L\left(x_{0}, z_{2}\right)\right)=L\left(x_{1}, y_{2}\right) \\
& f\left(z_{2}\right) g\left(z_{1}\right)=L\left(L\left(y_{0}, z_{2}\right), L\left(x_{0}, z_{1}\right)\right)=L\left(x_{2}, y_{1}\right) .
\end{aligned}
$$

Thus we conclude that $\left(Z,{ }^{\circ}\right)$ is commutative.

We shall now show that $\left(Z,{ }^{\circ}\right)$ is associative. Consider

$$
\begin{aligned}
& z_{1} \circ z_{2}=L\left(y_{0}, f\left(z_{1} \circ z_{2}\right)\right) \\
& z_{2} \circ z_{1}=L\left(f\left(z_{2}\right), g\left(z_{1}\right)\right) \\
& z_{3} \circ z_{2}=L\left(y_{0}, f\left(z_{3} \circ z_{2}\right)\right) \quad z_{1}, z_{2}, z_{3} \in Z \\
& z_{2} \circ z_{3}=L\left(f\left(z_{2}\right), g\left(z_{3}\right)\right) .
\end{aligned}
$$

$\left(Z,{ }^{\circ}\right)$ is commutative so

$$
\begin{aligned}
& L\left(y_{0}, f\left(z_{1} \circ z_{2}\right)\right)=L\left(f\left(z_{2}\right), g\left(z_{1}\right)\right) \\
& L\left(y_{0}, f\left(z_{3} \circ z_{2}\right)\right)=L\left(f\left(z_{2}\right), g\left(z_{3}\right)\right)
\end{aligned}
$$

This represents a T-configuration which closes (Diagram 3) to give

$$
L\left(f\left(z_{1} \circ z_{2}\right), g\left(z_{3}\right)\right)=L\left(f\left(z_{3} \circ z_{2}\right), g\left(z_{1}\right)\right)
$$

i.e.

$$
\left(z_{1} \circ z_{2}\right) \circ z_{3}=\left(z_{3} \circ z_{2}\right) \circ z_{1} .
$$

Employing the commutativity of (Z, \circ) we find

$$
\left(z_{1} \circ z_{2}\right) \circ z_{3}=z_{1} \circ\left(z_{2} \circ z_{3}\right)
$$

DIAGRAM 3
In order to complete the proof we have to embed (Z, \circ) in a group. This is always possible for a commutative semigroup provided it is cancellative; we will show that (Z, \circ) is cancellative. Suppose,

$$
z_{1} \circ z_{2}=z_{1} \circ z_{3} \quad z_{1}, z_{2}, z_{3} \in Z
$$

In net terms this becomes

$$
L\left(f\left(z_{1}\right), g\left(z_{2}\right)\right)=L\left(f\left(z_{1}\right), g\left(z_{2}\right)\right)=z_{1} \circ z_{2}
$$

and also

The equations

$$
L\left(x_{0}, g\left(z_{1} \circ z_{2}\right)\right)=z_{1} \circ z_{2}
$$

$$
\begin{aligned}
& L\left(f\left(z_{1}\right), g\left(z_{2}\right)\right)=L\left(x_{0}, g\left(z_{1} \circ z_{2}\right)\right) \\
& L\left(f\left(z_{1}\right), g\left(z_{3}\right)\right)=L\left(x_{0}, g\left(z_{1} \circ z_{2}\right)\right)
\end{aligned}
$$

represent a T-configuration in which x_{0} takes the part of both " x_{2} " and " x_{3} " in the usual configuration. This configuration closes with,

DIAGRAM 4
Hence, $g\left(z_{2}\right)=g\left(z_{3}\right)$, as a consequence of Lemma 1 , and in particular, as g is bijective,

$$
z_{2}=z_{3}
$$

$\left(Z,{ }^{\circ}\right)$ is, therefore, left cancellative. The symmetry of the Thomsen condition with respect to the X and Y line sets decrees that the groupoid is also right cancellative.

Thus ($Z,{ }^{\circ}$) is a cancellative commutative semigroup and as such may be embedded in a group.

Theorem. 6. Let N be a Cartesian net with $x_{0} \in X, y_{0} \in Y$ as in Theorem 5. If R holds in N then $S(N)$ is isotopic with a semigroup S. Moreover S can be represented in the form of two non-intersecting subsemigroups S_{1}, S_{2} such that

$$
S=S_{1} \cup S_{2}
$$

where S_{1} is a group and S_{2} is a two sided ideal.
The following pair of lemmas which were proved in [4] will be used in the proof of Theorem 6 .

Lemma 2. If B_{1} holds in a net (X, Y, Z) then $\left|x y_{1} z\right|,\left|x y_{2} z\right|$ implies $y_{1}=y_{2}$, for all $y_{1}, y_{2} \in Y, x \in X, z \in Z$.

Lemma 3. If B_{2} holds in a net (X, Y, Z) then $\left|x_{1} y z\right|,\left|x_{2} y z\right|$ implies $x_{1}=x_{2}$, for all $x_{1}, x_{2} \in X, y \in Y, z \in Z$.

Proof of Theorem 6. If the condition R holds in a net, then B_{1} and B_{2} also hold in that net. Consequently, by Lemmas 2 and $3, S(N)$ is cancellative, and the isotope $\left(Z,{ }^{\circ}\right)$ of $S(N)$ is also cancellative. A cancellative semigroup with a unit element can be represented as the union of two subsemigroups with the properties given in the statement of the theorem, so it is sufficient to show that $\left(Z,{ }^{\circ}\right)$ is a semigroup [3, p. 261].

Consider

$$
\begin{gathered}
z_{2}=L\left(f\left(z_{2}\right), y_{0}\right)=L\left(x_{0}, g\left(z_{2}\right)\right) \quad z_{1}, z_{2}, z_{3} \in Z \\
z_{1} \circ z_{2}=L\left(f\left(z_{1} \circ z_{2}\right), y_{0}\right)=L\left(f\left(z_{1}\right), g\left(z_{2}\right)\right) \\
z_{2} \circ z_{3}=L\left(x_{0}, g\left(z_{2} \circ z_{3}\right)\right)=L\left(f\left(z_{2}\right), g\left(z_{3}\right)\right) .
\end{gathered}
$$

This represents an R-configuration (Diagram 5) with closure

diagram 5

$$
L\left(f\left(z_{1} \circ z_{2}\right), g\left(z_{3}\right)\right)=L\left(f\left(z_{1}\right), g\left(z_{2} \circ z_{3}\right)\right)
$$

i.e.

$$
\left(z_{1} \circ z_{2}\right) \circ z_{3}=z_{1} \circ\left(z_{2} \circ z_{3}\right) .
$$

The associativity identity, $x(y z)=(x y) z$, implies a set of identities known as the alternativity identities.

These are,

$$
\begin{aligned}
\text { right alternative: } & x(y y)=(x y) y \\
\text { left alternative: } & x(x y)=(x x) y .
\end{aligned}
$$

The right (left) alternative identity is a special case of the right (left) Bol identity.
Definition. A subset $N_{1}=\left(X_{1}, Y_{1}, Z_{1}, I_{1}, P_{1}\right)$ of a net $N=(X, Y, Z, I, P)$ is any net for which

$$
X_{1} \subset X, \quad Y_{1} \subset Y, \quad Z_{1} \subset Z, \quad P_{1} \subset P
$$

and I_{1} is the restriction of I to the union of X_{1}, Y_{1}, Z_{1} and P_{1}.
Theorem 7. Let N be a Cartesian net in which there exist $x_{0} \in X, y_{0} \in Y$ such that $\left\{L\left(x_{0}, y\right) \mid y \in Y\right\}=\left\{L\left(x, y_{0}\right) \mid x \in X\right\}=Z$.

If B_{1} and B_{2} hold in N then $S(N)$ is isotopic to a groupoid G_{1}, with a unit element, in which the left and right alternative identities hold. Moreover,

$$
G_{1}=M \cup G_{2} \quad M \cap G_{2}=\phi
$$

where M is a Moufang loop G_{2} is a two sided ideal.
Proof. We consider the groupoid ($Z,{ }^{\circ}$) set up in the usual way, and we show that $\left(Z_{1},{ }^{\circ}\right),\left(Z_{2},{ }^{\circ}\right)$ where

$$
\begin{aligned}
Z_{1} & =\left\{z| | z x y \mid, x \in X_{1}, y \in Y_{1}\right\} \\
X_{1} & =\left\{x \mid L(x, y)=z_{0}, y \in Y_{\}}, \quad z_{0}=L\left(x_{0}, y_{0}\right)\right. \\
Y_{1} & =\left\{y \mid L(x, y)=z_{0}, x \in X\right\}
\end{aligned}
$$

and

$$
Z_{2}=Z-Z_{1}
$$

have the properties required by the theorem.
First we show that the subnet $N_{1}=\left(X_{1}, Y_{1}, Z_{1}\right)$ of N is a Classical net.
Let $x_{1} \in X, y_{1} \in Y$ be such that $L\left(x_{1}, y_{1}\right)=z_{0}, x_{1} \neq x_{0}$. (If such x_{1} does not exist then the groupoid ($Z_{1},{ }^{\circ}$) becomes a one element groupoid which is trivially a Moufang loop). Now there exists $z_{1} \in Z$ such that $z_{1}=L\left(y_{0}, x_{1}\right)$ and there exists $y_{2}=L\left(x_{0}, z_{1}\right)$. If $x_{2} \in X$ then there exists $x_{3} \in X$ such that
$L\left(y_{2}, x_{2}\right)=L\left(y_{0}, x_{3}\right) \quad$ (Diagram 6).

DIAGRAM 6
B_{1} holds in the net so

$$
L\left(x_{2}, y_{0}\right)=L\left(x_{3}, y_{1}\right)
$$

This holds for all $x_{2} \in X$, hence

$$
\left\{L\left(x, y_{0}\right) \mid x \in X\right\} \subset\left\{L\left(x, y_{1}\right) \mid x \in X\right\} .
$$

As the left hand side of the above expression is equal to Z,

$$
\left\{L\left(x, y_{1}\right) \mid x \in X\right\}=Z
$$

The roles of X and Y may be interchanged, as B_{2} also holds, to give

$$
\left\{L\left(x_{1}, y\right) \mid y \in Y\right\}=\left\{L\left(x, y_{1}\right) \mid x \in X\right\}=Z
$$

We now show that if $z_{1} \in Z$ and $x_{1} \in X$ then $y_{1}=L\left(x_{1}, z_{1}\right)$ implies that $y_{1} \in Y_{1}$. The definition of Z_{1} ensures that if $z_{1} \in Z_{1}$ then

$$
z_{1}=L\left(x_{0}^{\prime}, y_{0}^{\prime}\right) \quad x_{0}^{\prime} \in X_{1}, \quad y_{0}^{\prime} \in Y_{1} .
$$

x_{0}^{\prime} and y_{0}^{\prime} respectively have all the properties of x_{0} and y_{0} respectively so by the first part of the proof, if $y_{1}=L\left(x_{1}, z_{1}\right)$ then

$$
\left\{L\left(y_{1}, x\right) \mid x \in X\right\}=Z
$$

and in particular there exists $x_{2} \in X$ such that

$$
L\left(y_{1}, x_{2}\right)=z_{0} .
$$

Hence

$$
y_{1} \in Y_{1} .
$$

In a similar manner we can show that

$$
x_{1}=L\left(y_{1}, z_{1}\right), \quad y_{1} \in Y_{1}, \quad z_{1} \in Z_{1}
$$

implies $x_{1} \in X_{1}$.
We have proved that for $x \in X_{1}, y \in Y_{1}, z \in Z_{1}\left\|x_{1} y_{1}\right\|,\left\|y_{1} z_{1}\right\|$ and $\left\|z_{1} x_{1}\right\|$. The Cartesian property of the net N and the fact that Lemmas 2 and 3 are applicable in this case ensure that N_{1} is a Classical net. Consequently $\left(Z_{1},{ }^{\circ}\right)$ is a loop which is left and right Bol, i.e., a Moufang loop.

In order to show that $\left(Z_{2},{ }^{\circ}\right)$ is a two sided ideal we have to prove that

$$
\begin{aligned}
& z \circ Z \subset Z_{2} \quad z \in Z_{2} \\
& Z \circ z \subset Z_{2}
\end{aligned}
$$

This is equivalent to

$$
\begin{aligned}
& \left\{L\left(L\left(z, y_{0}\right), y\right) \mid y \in Y\right\} \subset Z_{2} \quad z \in Z_{2} \\
& \left\{L\left(L\left(z, x_{0}\right), x\right) \mid x \in X\right\} \subset Z_{2} .
\end{aligned}
$$

Suppose

$$
L\left(L\left(z, y_{0}\right), y_{1}\right)=z_{1} \in Z_{1} \quad z \in Z
$$

then as $x_{0} \in X_{1}$ and as there exists $y_{2} \in Y$ such that,

$$
L\left(x_{0}, y_{2}\right)=z_{1}
$$

it follows that

$$
y_{2} \in Y_{1} .
$$

However x_{0}, y_{2}, z_{1} fulfill the conditions of the first part of the proof, hence, because $\left\|L\left(y_{0}, z\right) z_{1}\right\|$,

$$
L\left(y_{0}, z\right) \in X_{1} .
$$

Consequently, as $y_{0} \in Y_{1}$,

$$
L\left(L\left(y_{0}, z\right), y_{0}\right) \in Z_{1}
$$

i.e.

$$
z \in Z_{1} .
$$

From this we deduce that

$$
\left\{L\left(L\left(z, y_{0}\right), y\right) \mid y \in Y\right\} \subset Z_{2} \quad z \in Z_{2}
$$

Similarly it may be shown that

$$
\left\{L\left(L\left(z, x_{0}\right), x\right) \mid x \in X\right\} \subset Z_{2}
$$

It only remains to confirm that the left and right alternative identities hold in $\left(\mathrm{Z},{ }^{\circ}\right.$). This follows immediately from Lemmas 4 and 5 below.

Lemma 4. Let N be a Cartesian net in which there exist $x_{0} \in X, y_{0} \in Y$ such that given $z \in Z$ there are unique $x \in X, y \in Y$ which satisfy $L\left(x_{0}, z\right)=y, L\left(y_{0}, z\right)=x$. If B_{1} holds in N then $S(N)$ is isotopic to a groupoid with a unit element in which the right alternative identity holds.

Lemma 5. Let N be a Cartesian net in which there exist $x_{0} \in X, y_{0} \in Y$ as in Lemma 4. If B_{2} holds in N then $S(N)$ is isotopic to a groupoid with a unit element in which the left alternative identity holds.

The proofs of these two lemmas are similar, so we give only the proof of Lemma 4.

Proof of Lemma 4. Construct ($Z,{ }^{\circ}$) in the usual manner. Let $z_{1}, z_{2} \in Z$. There exist $x_{1}, x_{2}, x_{3} \in X, y_{1}, y_{2} \in Y$ such that

$$
\begin{aligned}
& L\left(y_{0}, x_{1}\right)=L\left(x_{0}, y_{1}\right)=z_{2} \\
& L\left(x_{1}, y_{1}\right)=L\left(x_{0}, y_{2}\right)=z_{2} \circ z_{2} \\
& L\left(x_{2}, y_{0}\right)=z_{1} \\
& L\left(x_{2}, y_{1}\right)=L\left(x_{3}, y_{0}\right)=z_{1} \circ z_{2}
\end{aligned}
$$

These represent a B_{1} configuration (Diagram 7), which closes to give

$$
L\left(x_{3}, y_{1}\right)=L\left(x_{2}, y_{2}\right) .
$$

However
and

$$
L\left(x_{3}, y_{1}\right)=\left(z_{1} \circ z_{2}\right) \circ z_{2}
$$

$$
L\left(x_{2}, y_{2}\right)=z_{1} \circ\left(z_{2} \circ z_{2}\right) .
$$

Hence left alternatively holds in $\left(Z,{ }^{\circ}\right)$.
Definition. The union, $\cup N_{j}, j \in J$, of a set of subnets $N_{j}=\left(X_{j}, Y_{j}, Z_{j}, I_{j}, P_{j}\right)$ of

a net $N=(X, Y, Z, I, P)$ is that net

$$
\cup_{j} N_{j}=\left(\cup_{j} X_{j}, \cup_{j} Y_{j}, \cup_{j} Z_{j}, I^{\prime}, \underset{j}{\cup} P_{j}\right)
$$

where I^{\prime} is the restriction of I to the union of all lines and points in $\underset{j}{\cup} N_{j}$.
Theorem 8. Let N be a Cartesian net in which there exists $x_{0} \in X, y_{0} \in Y$ such that $\left\{L\left(x_{0}, y\right) \mid y \in Y\right\}=\left\{L\left(y_{0}, x\right) \mid x \in X\right\}=Z$, and in which $L\left(x_{0}, y_{0}\right)=L\left(x, y_{0}\right) \Rightarrow$ $x_{0}=x$.

If B_{1} holds in N then N is the union of subnets $N_{j}=\left(X_{j}, Y, Z\right) j \in J$, and the $S\left(N_{j}\right) j \in J$ are isotopic to groupoids which possess a unit element and in which the right alternative identity holds.

Theorem 9. Let N be a Cartesian net in which there exists $x_{0} \in X, y_{0} \in Y$ such that $\left\{L\left(x_{0}, y\right) \mid y \in Y\right\}=\left\{L\left(y_{0}, x\right) \mid x \in X\right\}=Z$, and in which $L\left(x_{0}, y_{0}\right)=L\left(x_{0}, y\right) \Rightarrow$ $y=y_{0}$.

If B_{2} holds in N then N is the union of subnets $N_{j}=\left(X, Y_{j}, Z\right) j \in J$, and the $S\left(N_{j}\right) j \in$ J are isotopic to groupoids which possess a unit element and in which the left alternative identity holds.

Again we prove only one of the theorems.
Proof of Theorem 8. Lemma 2 ensures that given $z \in Z$ there is a unique $y \in Y$ such that $L\left(x_{0}, y\right)=z$.

Consider the subsets $P(z)$ of X given by

$$
P(z)=L\left(z, y_{0}\right), \quad z \in Z
$$

Define $\left\{X_{j}\right\}_{j \in J}$ to be the set of sets of X-lines such that each set X_{j} contains one and only one member of $P(z), z \in Z$.

The nets $\left(X_{j}, Y, Z\right)$ are Cartesian nets, each of which fulfills the conditions of Lemma 4.

The union of the nets is clearly equal to N.
We present now purely algebraic forms of Theorem 5, 6 and 7 .
In the following theorems, G is a groupoid ($G, \cdot)$ and there exist elements g_{1}, $g_{2} \in G$ such that $g_{1} \cdot G=G \cdot g_{2}=G$.

Theorem 10. If Tholds in G then G is isotopic to a commutative semigroup which is embeddable in a group.

Theorem 11. If R holds in G then G is isotopic to a semigroup S which can be represented in the form of two-intersecting subsemigroups S_{1}, S_{2} such that $S=S_{1} \cup S_{2}$, where S_{1} is a group and S_{2} is a two sided ideal.

THEOREM 12. If B_{1} and B_{2} hold in G then G is isotopic to a groupoid G_{1}, with unit, in which the left and right alternative identities hold and also, $G_{1}=M \cup G_{2}, M \cap G_{2}=\varnothing$ where M is a Moufang loop and G_{2} a two sided ideal.

References

1. J. Aczel, Quasigroups, nets and nomograms, Advances in Math. (1) 3 (1965), 383-450.
2. V. P. Havel, Nets associated to multigroupoids, Aequationes Math. 5 (1970), 10-18.
3. E. S. Ljapin, Semigroups, Amer. Math. Soc., Providence, R.I., 1963.
4. M. A. Taylor, Classical, Cartesian and solution nets, Mathematica, 13 (1971), 151-166.
[^1]
[^0]: Received by the editors July 6, 1970 and, in revised form, June 7, 1972.

[^1]: Acadia University,
 Wolfville, Nova Scotia

