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CARTESIAN NETS AND GROUPOIDS 

BY 

M. A. TAYLOR 

Introduction. Aczel has conjectured, [1, p. 448], the possibility of developing a 
net theory for structures more general than quasigroups. Steps in this direction 
have been taken by Havel who considers nets associated with multigroupoids [2], 
The work presented here introduces a generalization of 3-nets and their algebraiza-
tion which is wide enough to encompass most algebraic structures based on a 
single binary operation. 

The main theorems are concerned primarily with groupoids and the nets corre
sponding to them when under the constraints of the Thomsen and Reidemeister 
closure conditions. A net is used as a "geometric model" of a class of isotopic 
binary systems and the closure conditions may be formulated either "geometri
cally", i.e., in terms of the net, or algebraically. This makes it possible to develop 
theorems in the intuitive "geometric model" and transform them into purely 
algebraic terms. 

Notation and Definitions. 

DEFINITION. A net is a set S which is partitioned into four subsets X, Y, Z 
(called line sets) and P (called the point set) together with a binary relation /. 
The members of the line sets are called lines and the members of the point set are 
called points. 

The conditions N1-N6 are placed on / a n d S; 
Nl : If Up then one and only one of / and/? is a point. 
N2 : If / is a line then there exists a point/? such that Up. 
N3: If/? is a point then there exist lines x e X,y e Y, z eZ such that xlp, yip, zip. 

A useful notation is the following: 
|xj/z|olines x, y, z are from different line sets and there exists a point/? such that 

xlp, yip, zip. (Read \xyz\ as "the lines x, y and z are concurrent".) 
N4: If/x and l2 are members of the same line set and IJp, l2Ip, then /1=/2 . 
N5 : If ll9 l2 belong to the same line set, and \l-jDc\o\lJbc\ for all b, c concurrent with 

l± or /2, implies lx=l2. 
N6: If /?!, /?2 are points and x, y, z are from different line sets, xlpl9 ylp±, zlp±, 

xlp29 ylp2, zlp2=>px=p2. 
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Nets will be denoted by quintuplets of the form (X, Y, Z, / , P) or triples (X, 
Y, Z). Where a net is not specifically designated by a quintuplet or a triple it can be 
assumed to be of the form (X, Y, Z, J, P). 

J will be used to denote an indexing set. 

DEFINITION. A net isomorphism or simply an isomorphism, H, from 

Ni = (Xl9 Yl9 Zl9 Il9 PL) to N2 = (X29 ya, Z2, J2, P2) 
is a bijection 

# : * ! U 7 1 U Z 1 U P 1 ^ I 2 U 7 2 U Z 2 U P 2 

such that 

H(Si) = S2 

where S is replaceable by X, Y, Z, or P. Also, 

UlP^H(l)I2H(p)9 

and 

m/2#=>there exist a line / from Nx and a point/? from Px such that, 

m = H(l), q = //(p) and Z/jp. 

REMARK. Isomorphy between nets is an equivalence relation. 

DEFINITION. A binary system, 

-:S1xS2-+B(SJ9 

is a binary operation on part of the cartesian product of two sets Sl9 S29 into a set 
of subsets, B(S3), of a third set S3. 

The operation on the ordered pair (sl9 s2) giving the set {s,}, SXE Sl9 s2E S2, 
Sj e S3,j ej, is denoted by 

Si'S2= {Sj}. 

A method of associating a net with a binary system is given below. This method 
requires that additional technical restrictions be included in the definition of 
binary system. These are that the domain of the operation is always taken as being 
nonvoid and the binary system has the properties : 

1 (a) For all sx e S± there exists s2 e S2 such that sx • s2 is defined. 
1(b) If txE Sl9 S2E S2 are such that whenever tx • s2, s±- s2 are defined t± • s2= 

Si ' s2, s2 e S29 then t1=s1. 
2(a) For all s2 E S2 there exists s1 e S± such that sx * s2 is defined. 
2(b) If t2 E S29 s2 E S2 are such that whenever sx • t29 s± • £2 are defined, s, - t<>= 

sx' s2, S±E Sl9 then t2=s2. 
3(a) For all s3 E S3 there exists s± E Sl9 s2 E S2 such that S3ES±- S2. 

3(b) If tz E S39 5*3 E S3 are such that whenever SZES±- S29 also t3Es1- s29 and 
whenever t3 E tx • t2 also s3 E tx • t29 then 53=^3. 
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The set {^} is called a product of s± and s2. If all the defined products are singleton 
sets, then the set of an element is identified with the element. Such a binary system 
is called a halfgroupoid. 

A halfgroupoid is called a groupoid if S1=S2=S3=S9 and if the domain of the 
binary operation is 5 x 5 . 

Binary systems will be denoted by quadruplets (Sl9 S29 S39 •)• Groupoids will be 
denoted by pairs (S, °). 

DEFINITION. A binary system (S[9 S2, S3, °) is said to be isotopic with a binary 
system (S*, S|, S|, •) if there exist bijections 

/• S1 —> Si9 g • S2 ^- S2, /i : S3 —> S3 

such that 

K{Si o S2}) = / ( S j ) • g(52), Si G S j , 52 G Sg, Si o 52 C S3. 

Isomorphic nets and isotopic binary systems. We define a binary system on the 
net N= (X, Y, Z, J, P) of the form 

• : I x 7 ^ B ( Z ) 
by 

We denote such a binary system by 5(iV). 
Conversely, we can derive a net from a given binary system. Suppose (Sl9 S2, 

S3, •) is the given binary system. We choose mutually disjoint sets X9 Y, Z with the 
same cardinalities as Sl9 S2, S3 respectively. 

Let fiS^r+X, g:S2->Y9 h\Sz->Z be bijections. Consider now all distinct state
ments of the form 

Sj G Sx ' S2 , St G Sl9 S2 G S a , Sô 7* </> j ZJ 

which are obtainable from the binary system, and let P be an index for the set of 
all such statements. 

We then define the net (Z, Y9 Z, /, P) by, 

s1-s2 = {sj}^>f(s1)Ipj 

=> g(S2)IP> 

=> h(sj)IpJ j G J, 

where ps e P is the index of the statement ss G SX • s2. 
Clearly, we do not obtain a unique net this way, but a family of isomorphic nets. 

Any net obtained this way from a binary system B will be written N(B). 

Classical, and Cartesian nets and their algebraic counterparts. Two types of nets 
to which we give specific consideration are the Classical and Cartesian nets. 
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DÉFINITION. A Classical net is a net in which any two members of different line 
sets are related to a unique point; i.e. if ll9 /2 are from different line sets then there 
exists a unique p eP such that IJp, IJp. 

If N is a Classical net then S(N) is isotopic with a quasigroup [1]. 

DEFINITION. A Cartesian net is a net with the property that if x e X, y e Y then 

there exists a uniquepeP such that xlp, yip. 

It is easily shown that if G is a groupoid then N(G) is a Cartesian net. However it 
is not necessarily true that if N is a Cartesian net, S(N) is isotopic to a groupoid, 
e.g. the net illustrated in Diagram 0. The binary system associated with this net has 
the multiplication table 

*1 

x% 

x3 

)>1 

Zl 

Z2 

. Z3 

>>2 

Z2 

z* 

z4 

y* 

z* 

z4 

z4 

y4 

*4 

z4 

^5 

A finite groupoid must have a square multiplication table. 

7 l J>2 J3 V4 

DIAGRAM 0 
Closure conditions. 

DEFINITION. In a net (X, Y, Z) an array of the form 

I xi)Vi 11 ̂ J V I I xi EX> yieY 

IX3JV2II^1^3^I ^ e Z 

IX3JV3I 1 = 1,2,3. 

is called a T-conftguration. If such an array implies that \x2yzzz\ then we say that the 
Thomsen condition, or T, holds in the net. 

DEFINITION. The R-configuration is 

I X l ^ l I I ̂ l ^ S I *< G X, ^ G Y 
l^jWl I^JV^I I^S^sl Z * G Z 

\xiyxzz\ |x4j3z4| î = 1,2, 3,4. 
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This configuration is said to close if |x3j4z4|. If all ^-configurations close in a net 
then we say that the Reidemeister condition, or R, holds in that net. 

DEFINITION. The Reconfiguration is 

I xxy2zx I I x±y3z31 x{ E X, y t e Y, Z{G Z . 
\x2yiZi\ \xzy2z2\ \x2y2z3\ ; = i 2 3 4 
IX4JV2I 1-̂ 43̂ 2̂ 41 ' ' ' 

T h i s conf igura t ion is said t o close if |x3j>3z4 |. T h e B x condition, o r B x , is sa id t o 
hold in a net if all ^-configurations close. 

DEFINITION. The Reconfiguration is 

I XlJVl I 1*1)̂ 31 
l*2j>lZll IX2.K2Z2I 1*23^31 

I ^ J l ^ l 1X3̂ 3̂ 41 • 

This configuration is said to close if |x2j4z4| and the B2 condition, or R2, is said to 
hold if all such configurations close. 

We conclude this section with the introduction of two notations. 
\\lJ2W0liy h a r e fr°m different line sets and there exists a point/? such thatIJp, 

l2Ip, (read ll-J2\\ as "the lines lx and l2 intersect). 
L(ll912) is the set of all lines / such that \l lx l2\. 

Theorems. Theorem 1 is a summary of several theorems, the proofs of which may 
be found in [1]. Theorem 2 is the summary of several theorems developed in [4]. 

THEOREM 1. If T, R, Bl9 or R2 (respectively) hold in a Classical net N, then S(N) 
is isotopic with an abelian group, group, right Rol loop or left Rol loop (respectively). 

The Bol identities are, 

right Bol:[(xy)z]y = x[(yz)y] 

left Bol:y[z(xy)] = [y(zy)]x 

DEFINITION. A loop which is both left and right Bol is called a Moufang loop. 

THEOREM 2. Let N= (X, Y, Z) be a Cartesian net in which T, R, Bx or B2 hold. If 
there exists x0 e X such that {L(x0, y) | y e Y}=Z and if there exists zQeZ such that 
\\yz0\\,for all y e Y, then N is a Classical net. 

If we combine Theorems 1 and 2, we get, 

THEOREM 3. Let N be a Cartesian net under the conditions of Theorem 2, then 
S(N) is isotopic to an abelian group, group, right Bol loop or left Bol loop (respec
tively). 
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Theorem 3 is a mixture of "algebraic" and "geometric" forms. It is possible to 
give a version of Theorem 3 which is completely algebraic. This is done by noting 
that when dealing with groupoids the closure conditions may be defined without 
recourse to nets. 

The Closure conditions in a groupoid (G, •) 

DEFINITION. The Thomsen condition, or T, holds in (G, •) if for all xl9 x2, x3, yx 

* i * y2 = x2 ' J i ? xi ' y$ — xs ' y\ 

implies that 
x2 ' y$ — xz ' y%' 

DEFINITION. The Reidemeister condition, or R holds in (G, •) if for all xx, x2, x3, 
x*,yi,yz,yz,y*£G 

Xl ' ^2 = X2 ' Jl» Xl ' y* = X2 ' ^35 * 3 ' y2 = X 4 * J l 

implies that 
X3 * J7 4 = X 4 ' ^3-

DEFINITION. The B± condition, or Bx, holds in (G, •) if for all xl9 x2, x3, x4, y\, y2, 
y2eG 

Xl' y2 = X2' J l? X2 ' y2 = Xl ' ^3» * 4 ' J l = * 3 ' ^2 

implies that 

•^4 * y2 = xz ' y%-

DEFINITION. The B2 condition, or B2, holds in (G, •) if for all x±, x2, x2, yl9 y2, 
J3574^G 

x i ' y 2 — x2 ' y^ x2 ' y 2 — x% * y^ x i * y± = x2 * ^ 3 

implies that 
X2 ' ^4 = * 3 ' ^3-

It is easily checked that these definitions are equivalent to the original definitions 
provided we restrict ourselves to nets which give rise to isotopes of groupoids or 
arise from isotopes of groupoids. 

We now have, 

THEOREM 4. Let (G, •) be a groupoid in which T, R, Bx or B2 hold (respectively). 
If there exist gl9 g2£G such that gx- G = G and the equation x • y=gz has a solution 
in xfor ally e G then (G, •) is isotopic to an abelian group, group, right Bol loop or 
left Bol loop (respectively). 

This is the purely algebraic form of Theorem 3. 

https://doi.org/10.4153/CMB-1973-056-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1973-056-3


1973] CARTESIAN NETS AND GROUPOIDS 353 

We shall now proceed to develop several theorems about Cartesian nets and the 
algebraic structures which arise from them, and use these results to give theorems 
of a purely algebraic nature. 

PROPOSITION 1. Let N be a Cartesian net in which there exist x0 eX9y0e Y such 
that for every given z eZ there are unique x e X, y e Y which satisfy L(x0, z)=y, 
L(yQ, z)=x, then S(N) is isotopic with a groupoid which possesses a unit element. 

Proof. We construct a groupoid of the required form on the Z line set. Define 
mappings, 

f:Z-+X, g:Z~>Y 
by 

f(z) = LOo, z) = x (say) zeZ, 

g(z) = L(x0, z) = y (say) xeX, yeY. 

Clearly/and g are bijections. 
We define a groupoid °:ZxZ->Z, by 

^1 o Z2 = / ( Z ^ g f e ) , Zl9 Z2 G Z. 

where f(z1)g(z2) is a product in S(N). 
This groupoid, (Z, °), is an isotope of S(N), and its operation may be described in 

net terms by (Diagram 1) 

Z\ o z2 = /(zi)g(z2) = L(L(yo, Zi)> L(*o> zè) = £(/0i)> g02))-

If we write z0=L(x0, y0) then, for all z1 e Z, 

zx o z0 = L(L(j/0, Zj), L(x0, z0)) = L(L(y0, z j , y0) = zx 

z0 o zx = L(L(j;0, z0), L(x0, zx)) = L(x0, L(x0, z j ) = zx 

i.e. z0 is the unit element for (Z, °). 

/*(*!)=: I(y0»^l) 

J0 £&) = £(*o> zù 

DIAGRAM 1 
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THEOREM 5. Let N=(X, Y, Z) be a Cartesian net with x0e X, y0e Y such that 
{L(x0, y)\ye Y} = {L(x, y0) | x G X}=Z. If T holds in N then S(N) is isotopic with 
a commutative semigroup S. Moreover S is embeddable in a group. 

In proving Theorem 5 we require a result which was obtained in [4], which we 
quote here without proof. 

LEMMA. 1. Let N=(X, Y, Z) be a Cartesian net in which there exist x0 e X, y0e 
Y such that {L(x0,y)\ye Y} = {L(x, y0) | x e X}=Z, and in which T holds. If 
£(jo> *i)=£0>o> ^2) *i> x2 eX then xx=x2 and if L(x0, j i )=L(x 0 , j 2 ) , y^y\ e Y, 
theny1=y2. 

Proof of Theorem 5. Lemma 1 shows that x0, y0 fulfill the conditions of the 
Proposition 1, so we can construct (Z, °) in the manner of Proposition 1. For the 
remainder of this proof (Z, °) will refer to the groupoid specifically constructed for 
this proof. 

First we show that (Z, °) is commutative. Let zl5 z2 G Z. 

zi o z2 = f(z1)g(z2) 

Z2oZ1= f(z2)g(z1). 

From the definition o f /and g, 

/(zj) = L(y0, z±) = x1 (say) 

/(z2) = L(y0, z2) = x2 (say) 

g(*i) = L(*o> zi) = J>i (say) 
g(z2) = L(x0, z2) = y2 (say) 

i.e., 

Uy<» *i) = LOo> yù 
L(yo, x2) = L(x0, y2) 

This represents a ^-configuration which closes, (Diagram 2), and 

/(zi)g(z2) = L(L(j0, zO, L(x0, z2)) = L(xl9 y2) 

f(z2)g(z1) = L(L(j;o, z2), L(x0, zO) = L(x2, y±). 

Ns 

\ 

N 

\ 

\ z 2 o Z l 

^ \ ^ 2 

\ 

ZJ.OZ2 

Jo J i Ja 
DIAGRAM 2 

Thus we conclude that (Z, °) is commutative. 
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We shall now show that (Z, °) is associative. Consider 

zl0z2 = L(y0,f(z1oz2)) 

Z2 o Zi = L(f(Zz)9 g(z±)) 

T / r f \ \ zl> z2? 3 ^ 

Zz o Za = MJo» / (Z3 ° Z2J) 

Z2 o Z3 = L(f(z2), g(28)). 

(Z, °) is commutative so 

£Oo>/(zi o z2)) = L(/(z2), g ^ ) ) 

£Oo,/(z3 o z2)) = L(f(z2), g(z3)). 

This represents a ^-configuration which closes (Diagram 3) to give 

L(f(zx o z2), g(z3)) = L(/(z3 o z2), g(z±)) 
i.e. 

(Zx o Z2) o Z3 — (Z3 o Z2) o Zx 

Employing the commutativity of (Z, °) we find 

\Z1 o Z2) o Z3 = Zj_ o (Z 2 o Z3 ) . 

(Z3 o Z2) o ^ 

/ & • * * ) 

/&> 

In order to complete the proof we have to embed (Z, °) in a group. This is 
ways possible for a commutative semigroup provided it is cancellative ; we 
show that (Z, °) is cancellative. Suppose, 

Zj_ o Z2 = Zj_ o Z3 Z1? Z2 , Z 3 G Z 

In net terms this becomes 

Uf(zi), g(zz)) = L(f(zi), g02)) = z i o z2 
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£( /Oi) , gf>2)) = L(x09 g(z1 o z2)) 

£(/Oi)> gOs)) = ^Oo, gOi o z2)) 

represent a ^-configuration in which x0 takes the part of both "A;2" and "# 3" in the 

usual configuration. This configuration closes with, 

£(*o> g(z2)) = £(*o> gOs)) (Diagram 4) 

£(*a) g(*a) 

DIAGRAM 4 

Hence, g(z2)=g(zz), as a consequence of Lemma 1, and in particular, as g is 
bijective, 

Z 2 = = Z 3 * 

(Z, °) is, therefore, left cancellative. The symmetry of the Thomsen condition with 
respect to the Zand F line sets decrees that the groupoid is also right cancellative. 

Thus (Z, °) is a cancellative commutative semigroup and as such may be em
bedded in a group. 

THEOREM. 6. Let N be a Cartesian net with x0e X, y0e Y as in Theorem 5. If R 
holds in N then S(N) is isotopic with a semigroup S. Moreover S can be represented 
in the form of two non-intersecting sub semigroup s Sl9 S2 such that 

S = Sx U S2 

where S1 is a group and S2 is a two sided ideal. 

The following pair of lemmas which were proved in [4] will be used in the proof 
of Theorem 6. 

LEMMA 2. IfB1 holds in a net (X, 7, Z) then \xy±z\, \xy2z\ implies y1=y2, for all 

Ji» y2 G Y, x E X, z eZ. 

LEMMA 3. IfB2 holds in a net (X, Y, Z) then \xxyz\, \x2yz\ implies xx=x2,for all 
xu x2 e X, y e Y, z eZ. 
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Proof of Theorem 6. If the condition R holds in a net, then Bx and B2 also 
hold in that net. Consequently, by Lemmas 2 and 3, S(N) is cancellative, and the 
isotope (Z, °) of S(N) is also cancellative. A cancellative semigroup with a unit 
element can be represented as the union of two subsemigroups with the properties 
given in the statement of the theorem, so it is sufficient to show that (Z, °) is a 
semigroup [3, p. 261]. 

Consider 

*2 = £ ( / ( z 2 ) , y<>) = L(x09 g{z2)) zl9 z2, zzeZ 

zlQz2 = L(f(z1 o z2), y0) = L{f(zx)9 g(z2)) 

z2 o z3 = L(x0, g(z2 o z3)) = L(f(z2), g(z3)). 

This represents an ^-configuration (Diagram 5) with closure 

(Zx o Z2) o 2-3 

J'o £(*a) g(z»> g(*a0*a) 

DIAGRAM 5 

£ ( / O l o Z2), g(z3)) = LC/CZx), g(z2 o Z3)) 

i.e. 
(Zj o Z2) o Z3 = Zi o (Z 2 o Z 3) . 

The associativity identity, X( JZ)=(XJ)Z , implies a set of identities known as the 
alternativity identities. 

These are, 

right alternative : x( y y) = (x y)y 

left alternative: x(xy) — (xx)y. 

The right (left) alternative identity is a special case of the right (left) Bol identity. 

DEFINITION. A subset N1=(X1, Yl9Zl9Il9 Px) of a net N= {X9 7, Z, /, P) is any 
net for which 

xx c x, yx c y, Zx c z, ^ c p, 
and Ix is the restriction of / to the union of Xl9 Yl9 Zx and Px. 

THEOREM 7. Let Nbea Cartesian net in which there exist x0 e X,y0e Y such that 
{L(xQ9y)\ye Y} = {L(x,y0)\xeX}=Z. 
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ffB1 and B2 hold in N then S(N) is isotopic to a groupoid Gl9 with a unit element, 
in which the left and right alternative identities hold. Moreover, 

Gx = M U G2 M riG2 

where M is a Moufang loop G2 is a two sided ideal. 

<f> 

Proof. We consider the groupoid (Z, °) set up in the usual way, and we show 
that (Z1? °), (Z2, °) where 

and 

Zx = {z\ \zxy\9xeXl9ye Yt} 

Xx = {x | L(x, y) = zQ9ye Y}9 

Yi = {y | Ux9 y) = z09xe X}9 

Z 2 = Z Z1? 

z0 = L(x0, y0) 

have the properties required by the theorem. 
First we show that the subnet N±=(Xl9 Yl9 Zx) of TV is a Classical net. 
Let x1eX9y1e Y be such that L(xl9 yi)=z09 xx^xQ. (If such x± does not exist 

then the groupoid (Zl9 °) becomes a one element groupoid which is trivially a 
Moufang loop). Now there exists zxeZ such that z1=L(y09 x±) and there exists 
y2=L(x09 zx). If x2 e X then there exists xzeX such that 

L(yz, x2) = £()>o> *s) (Diagram 6). 

Y ^ -v2 

A 3 " " 

* 0 

* 1 '" 

X ^ i 

% 
\ 

^ 
\ 

^s5° 

s. 

*\ 

DIAGRAM 6 

)'i 

BL holds in the net so 

L(x2, y0) = L(x3, yx). 

This holds for all x2 e X, hence 

{L(x, j / 0 ) | x 6 l } c {L(x, y0 I x G X}. 

As the left hand side of the above expression is equal to Z, 

{ L ( x , j 1 ) | x e X } = Z. 
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The roles of Zand F may be interchanged, as B2 also holds, to give 

{L(xl9 y)\yeY} = {L(x9 yj\xeX} = Z. 

We now show that if z±eZ and xxeX then y1=L(x1, z±) implies that yx e Yv 

The definition of Zx ensures that if zx eZx then 

zx = L(x'09 y'0) x'0 G Xl9 y'0 e Yx. 

xf
0 and J 0 respectively have all the properties of x0 and j 0 respectively so by the first 

part of the proof, if j 1 =L(x 1 , zx) then 

{Liyl9x)\xEX} = Z9 

and in particular there exists x2 G X such that 

L(yi> x*) = *o-
Hence 

In a similar manner we can show that 

*i = L(yi> zù> y± e Fi, zj. G Z± 
implies X1EX1. 

We have proved that for xeXl9 ye Yl9 zeZx U j y J , ll^izj and Hz^H. The 
Cartesian property of the net N and the fact that Lemmas 2 and 3 are applicable in 
this case ensure that N± is a Classical net. Consequently (Zl9 °) is a loop which is 
left and right Bol, i.e., a Moufang loop. 

In order to show that (Z2, °) is a two sided ideal we have to prove that 

z o Z <= Z 2 z G Z 2 

A o Z —̂ A 2 

This is equivalent to 

{L(L(z9 y0)9 y) \ y e Y} c Z2 z G Z2 

{L(L(z, x0), x) | x G X) c Z2. 
Suppose 

L(L(z, j;0), yx) = zx GZx zeZ 

then as x0 G A^ and as there exists y2 e Y such that, 

U**> yè = Zi 
it follows that 

However x09 y2, zx fulfill the conditions of the first part of the proof, hence, be
cause \\L(yQ9 z)z1\\, 

L(y09 z) G Xx. 
Consequently, as y0 e Yl9 

L(L(yQ9 z), y0) e Zx 
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i.e. 

From this we deduce that 

{L(L(z, y0), y) \ y e Y} <= Z2 z G Z2. 

Similarly it may be shown that 

{L(L(z, x0), x ) | x e X } c Z2. 

It only remains to confirm that the left and right alternative identities hold in 
(Z, °). This follows immediately from Lemmas 4 and 5 below. 

LEMMA 4. Let N be a Cartesian net in which there exist x0 e X, y0 e Y such that 
given z eZ there are unique x e X, y G Y which satisfy L(x0, z)=y, L(y0, z)—x. If 
Bx holds in N then S(N) is isotopic to a groupoid with a unit element in which the right 
alternative identity holds. 

LEMMA 5. Let Nbea Cartesian net in which there exist x0 e X,y0e Y as in Lemma 
4. IfB2 holds in N then S(N) is isotopic to a groupoid with a unit element in which the 
left alternative identity holds. 

The proofs of these two lemmas are similar, so we give only the proof of Lemma 
4. 

Proof of Lemma 4. Construct (Z, °) in the usual manner. Let zl9 z2 G Z. There 
exist xl9 x2, x3 G X, yl9 y2 G Y such that 

L(y<» *i) = L(x09 yx) = z2 

M*l> J l ) = M*0» ^2) = = Z2 ° Z2 

Ux* Jo) = z i 

U*2> yd = (̂*3> Jo) = z i o z2. 

These represent a Bx configuration (Diagram 7), which closes to give 

£(*3> yd = L(*2, y2)' 

However 

£(*3> Jl) = Ol o ZÙ o Z2 

and 
L(x2, y2) = z1 o (z2 o z2). 

Hence left alternatively holds in (Z, °). 

DEFINITION. Theunion, UiV^y G J, of aset of subnets ^ — ( Z , , Y,, Z ; , / ; , P3) of 
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DIAGRAM 7 

a net JV= (X, Y, Z, / , i>) is that net 

U Nt = ( u X,-, u 7„ U Zj91', u P,) 

where / ' is the restriction of / to the union of all lines and points in uNj. 
3 

THEOREM 8. Let N be a Cartesian net in which there exists x0 e X, y0 e Y such 
that {L(x0,y) \y e Y}={L(y0, x) | x eX}=Z, and in which L(x0,y0)=L(x,y0)=> 
x0=x. 

If Bx holds in N then N is the union of subnets Nj={Xjy Y,Z) jeJ, and the 
S(Nj)j E J are isotopic to groupoids which possess a unit element and in which the 
right alternative identity holds. 

THEOREM 9. Let N be a Cartesian net in which there exists x0e X, y0e Y such 
that {L(x0,y) \y e Y}={L(yQ, x) | x eX}=Z, and in which L(x0,y0)=L(x0, j)=> 

IfB2 holds in N then N is the union of subnets N5=(X, Y3, Z)j e J, and the S(Nj)j e 
J are isotopic to groupoids which possess a unit element and in which the left alternative 
identity holds. 

Again we prove only one of the theorems. 

Proof of Theorem 8. Lemma 2 ensures that given z eZ there is a unique y e Y 
such that L(x0, y)=z. 

Consider the subsets P(z) of X given by 

P(z) = L(z, y0), zeZ. 
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Define {X£jeJ to be the set of sets of X-lines such that each set Xi contains one and 
only one member of P(z), z eZ. 

The nets (Xj, Y, Z) are Cartesian nets, each of which fulfills the conditions of 
Lemma 4. 

The union of the nets is clearly equal to N. 

We present now purely algebraic forms of Theorem 5, 6 and 7. 
In the following theorems, G is a groupoid (G, •) and there exist elements gl9 

g2eG such that gx • G = G • g2=G. 

THEOREM 10. If T holds in G then G is isotopic to a commutative semigroup which 
is embeddable in a group. 

THEOREM 11. If R holds in G then G is isotopic to a semigroup S which can be 
represented in the form of two-intersecting subsemigroups Sl9 S2 such that S=S1 U S2, 
where S± is a group and S2 is a two sided ideal. 

THEOREM 12. IfB1 andB2 hold in G then G is isotopic to a groupoid Gl9 with unit, in 
which the left and right alternative identities hold and also, GX=M U G2, M C\G2= 0 
where M is a Moufang loop and G2 a two sided ideal. 
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