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Theory of Tests, p-Values, and Confidence Intervals

2.1 Overview
In this chapter we outline the theory of statistical hypothesis tests. This is important for
defining terminology. As we introduce terms, we first show in Section 2.2.1 how they
apply to a simple single sample binomial example. In Section 2.2.2 we explore some
of the generality of the theory by outlining three different ways of formulating the null
and alternative hypotheses for a second data example: a two-sample study with numeric
responses. This shows that there is not one “correct” way of formulating a problem. These
three formulations can get abstract, for example, the hypotheses can be represented by sets
of infinite dimensional parameters. Yet even in this representation, the statistical hypothesis
problem can still be solved. We present this level of abstraction this early in the book to show
the breadth of application of the statistical hypothesis test theory.

In Section 2.3 we show how hypothesis tests are intimately related to confidence intervals.
This relationship is important, because the scientific information in finding a significant
effect (i.e., rejecting the null hypothesis) is enhanced when supplemented with important
information such as an effect estimate and its confidence interval. In Section 2.4 we define
some important properties of hypothesis tests.

Readers who are less theoretically inclined can skip to the end-of-chapter summary
(Section 2.5). This summary will provide the essential terminology and information needed
for the rest of the book.

2.2 Components of a Hypothesis Test
2.2.1 Main Definitions with a Simple Example

A hypothesis test has three basic parts: (1) the set of possible values of data if the study is
repeated, (2) a set of probability models that is partitioned into two sets of models, called
the null hypothesis set and alternative hypotheses set, and (3) the decision rule which uses
the observed data to decide whether or not you reject the null hypothesis (i.e., whether or
not you reject the statement that the true data generating probability model is in the null
hypothesis set). The decision rule is a function of the data and the α-level. We describe each
part separately.

Suppose we observe a vector of data, say x. For a statistical hypothesis test, we envision
that the data comes from a data generating process, or probability model. If we reran the
data generating process, then we would get a different vector of data. Let X be the set of all
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2.2 Components of a Hypothesis Test 9

possible data vectors associated with this process. The set X is called the sample space or
support.

Example 2.1 Suppose we observe x = 6 successes out of n = 10 tries. Suppose the data
generating process is binomial with n = 10 and parameter θ with 0 < θ < 1. Then here
x = 6 and X = {0,1, . . . ,10}.

Let the probability model associated with the data generating process be denoted Pθ ,
where θ represents the parameter vector, which may be infinite dimensional (see Example
2.4). We do not know the value of θ but assume that it is one member in a set of possible
values, �, and therefore, Pθ is one member of a set of probability models, P = {Pθ : θ ∈ �}
(see Note N1 for set notation explanation). We partition the probability models into two
disjoint sets, the null hypothesis models, P0 = {Pθ : θ ∈ �0} and the alternative hypothesis
models, P1 = {Pθ : θ ∈ �1}. The null (H0) and alternative (H1) hypothesis statements are

H0 : θ ∈ �0

H1 : θ ∈ �1,

where θ is the true parameter.

Example 2.1 (continued) For the binomial example, Pθ is a binomial distribution with
parameters n and θ . Let � = {θ : θ ∈ [0,1]}. We might want to know if θ is bigger than 0.5.
In this case we partition � as �0 = {θ : θ ∈ [0,0.5]} and �1 = {θ : θ ∈ (0.5,1]}. We can
write the hypotheses in this case as H0 : θ ≤ 0.5 and H1 : θ > 0.5.

The final piece of the hypothesis test is the decision rule, which we write as δ. The decision
rule is a function of X (a possible element of X ) and the significance level. The significance
level is set by the researcher, and it is usually denoted α, and hence is sometimes called the
α-level.1 The result of the decision rule is the probability of rejecting the null hypothesis. For
example, if we observe x, the probability of rejecting the null hypothesis using a significance
level of α is δ(x,α). Typically, we only use decision rules that only give two values, 0 (do
not reject the null) or 1 (reject the null). Other decision rules are called randomized decision
rules and are not discussed in this chapter and are rarely used in practice (see Note N2). A
valid decision rule is defined such that, the probability of rejecting the null hypothesis for
any one of the null hypothesis models is less than or equal to α. Mathematically, a valid
(nonrandomized) decision rule has (for any α ∈ (0,1))

sup
θ∈�0

Pr[δ(X,α) = 1|θ] ≤ α. (2.1)

The left-hand side of the above equation is called the size of the hypothesis test.
When the alternative represents parameters only in one direction, we call this a one-sided

hypothesis test. Example 2.1 is a one-sided hypothesis test, because the alternatives are all
θ > 0.5. We can formulate one-sided hypotheses in the other direction: H0 : θ ≥ 0.5 and

1 Lehmann and Romano (2005) use the term significance level, but Greenland (2019) prefers “α-level” because
Fisher and other British authors sometimes use “significance level” to mean p-value. We never use
“significance level” to mean p-value, and we use “significance level” and “α-level” interchangeably. We do not
always use α-level because it can sometimes lead to awkward phrases like “for the one-sided test we use α/2
for the α-level.”
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10 2 Theory of Tests, p-Values, and Confidence Intervals

H1 : θ < 0.5. For the binomial problem, a two-sided formulation is H0 : θ = 0.5 and H1 : θ �=
0.5. For setting significance levels, in medical publications the tradition has been to use
α = 0.05 for two-sided tests. Often the two-sided test rejects at the α = 0.05 level if either
of the one-sided tests rejects at the α = 0.025 level. Thus, we would argue that a significance
level of 0.025 for a one-sided test is appropriate when an α = 0.05 for two-sided tests is
appropriate. Of course, not all situations demand using two-sided α = 0.05 (see Note N3).

Aside from tradition, the α-level is somewhat arbitrary. Because of this, a useful approach
is to give the smallest α-level for which we would reject the null hypothesis for the observed
data at that level and all larger levels. This is known as the p-value. In mathematical notation,
for nonrandomized decision rules the p-value is

p(x) = inf{α : δ(x,α∗) = 1 for all α∗ ≥ α}. (2.2)

So that for a valid hypothesis test, we have

sup
θ∈�0

Pr[p(X) ≤ α|θ] ≤ α. (2.3)

We call a p-value function, p(·), that satisfies Equation 2.3 a valid p-value.2
Except with rare exceptions, applied decision rules are monotonic in α, rejecting more

often as α increases (see Note N4). For monotonic decision rules, we can think of the
p-value function as providing an ordering of the possible data from the most extreme (least
likely under the null) to the least extreme (most likely under the null), where least and most
likely are defined using a θ ∈ �0 that maximizes the left-hand side of expression 2.3. Then
the p-value can be interpreted as the probability of observing equal or more extreme data
under the null hypothesis (see Note N5).

We always want valid decision rules but sometimes we settle for approximately valid
decision rules. For example, we might base a decision rule on asymptotics, so that as the
sample size gets larger and larger the decision rule gets closer and closer to valid. These are
asymptotically valid decision rules. These are discussed in Section 2.4.

Sometimes when using nonasymptotic decision rules or tests we use the term exact to
mean valid. In some statistical literature, exact means that the inequality in the definition
of validity (expression 2.1) is an equality; however, in this book, we use the term exact as
synonymous with valid. This latter usage is more common in the biostatistics literature (for
example, Fisher’s exact test is valid, but the size is generally not equal to the α-level).

Now consider decision rules related to our example.

Example 2.1 (continued) For the binomial testing H0 : θ ≤ 0.5 versus H1 : θ > 0.5, we
use the binomial distribution to define δ. First, note that larger values of x suggest larger
values of θ , so we want to reject when x ≥ c, where c is a constant that depends on n and
α. We want to choose c to give a valid test and have as much power as possible, so we want
the smallest c that gives a size less than or equal to α. To calculate the size, in this case we
only need to calculate the probabilities under the model on the boundary between the null
and alternative hypotheses, the binomial with θ = 0.5. When n = 10 and c = 8 or c = 9
we get sizes (i.e., probabilities of rejection at the boundary) of Pr[X ≥ 8|θ = 0.5] = 0.0547

2 The term p-value can refer to either p(x) (the value of the p-value function evaluated at the data x),
or p(·) (the p-value function itself); the meaning is inferred from the context.
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and Pr[X ≥ 9|θ = 0.5] = 0.0107. So when α = 0.05, a valid test uses the decision rule,
δ(X,0.05) = 1 if X ≥ 9 and 0 otherwise.

2.2.2 Hypothesis Test Components for a Two-Sample Example
Suppose we have two samples with five independent responses in each sample. Let the
data be x= [y,z], where y is a vector of responses, and z is the vector of associated group
indicators. For example,

y = {3.1,5.2,6.6,5.2,1.3,6.8,9.2,11.1,9.5,2.2},
z = {2,1,2,1,1,1,2,2,2,1}. (2.4)

Suppose we want to know if the responses from Group 1 (i.e., those with zi = 1) are
in general larger or smaller than the responses from Group 2. There are many ways to
formulate the null and alternative hypotheses; we present three formulations as Examples
2.2–2.4. Here we do not examine all the features that determine the process that created
the data (for that see Chapter 3). The data generating and analysis context may favor one
formulation over another, (for that see Chapter 9), although there are situations where many
different formulations would be acceptable. The purpose of presenting three hypothesis test
formulations here is to get a flavor for the different ways the components of the hypothesis
test may be formulated, and to emphasize that there is a choice for each data set.

The first example formulation is the t-test. We give a standard set of assumptions associ-
ated with this test, although other formulations of the t-test are possible (see Chapter 9).

Example 2.2 In this t-test formulation, we assume that the group indicators are fixed, and
the responses are samples from a normal distribution. Each normal response can be any
real number, so we write Yi ∈ � for the ith response, or Y ∈ �10 for all 10 responses. The
sample space is X = {Y,z : Y ∈ �10}.

If zi = 1, then we assume Yi is normal with mean μ1 and variance σ 2
1 , or Yi ∼ N(μ1,σ

2
1 ),

while if zi = 2, then Yi ∼ N(μ2,σ
2
2 ). Here Pθ represents the probability model for the 10

responses of the Y vector. The parameter θ is four-dimensional, θ = [μ1,σ1,μ2,σ2]. The
possible values of θ are

� = {μi,σi : μi ∈ (−∞,∞),σi ∈ (0,∞),i = 1,2} .
One formulation of the null and alternative hypotheses is H0 : μ1=μ2 and H1 : μ1 �= μ2.

This is shorthand for expressing the two sets of possible parameters,

�0 = {μi,σi : μ1 = μ2,μi ∈ (−∞,∞),σi ∈ (0,∞),i = 1,2}
�1 = {μi,σi : μ1 �= μ2,μi ∈ (−∞,∞),σi ∈ (0,∞),i = 1,2} .

We can calculate p-values by using Welch’s t-test, which takes the difference in means of
the groups, divides that difference by an estimate of the standard error of that difference, and
compares the resulting ratio to a t-distribution. We show in Chapter 9 that Welch’s t-test is
an approximately valid way to calculate p-values and confidence intervals when we allow
σ1 �= σ2 as in this formulation.

A second way to formulate statistical hypotheses for the data of expression 2.4 is as a
randomization test. This switches the randomness from the responses to the group indicators.
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12 2 Theory of Tests, p-Values, and Confidence Intervals

Example 2.3 Suppose the data generating process keeps the responses the same every
time new data is generated, but the group indicator vector is randomly shuffled. For example,
suppose we do an experiment where we randomize 10 individuals to two interventions (z = 1
or z = 2). We imagine redoing the experiment such that the group indicators were different
each time, but the interventions had the same effects, so that the ith response would be
the same no matter which of the two interventions was applied. Then the sample space is
X ={y,Z : Z is a vector with five ones and five twos}. There are 10 choose 5, or 252 ele-
ments in X .

For this example, Pθ represents the probability model for the Z vectors, vectors of length
10 with 5 zeros and 5 ones. So θ could be a vector of length 252 giving the probability for
each of the 252 elements in X . Typically, �0 is a set with one value, a vector of length
252 with each element of the vector equal to 1/252. The set �1 would be all other possible
probability vectors, in other words,

�1 =
{
θ = [θ1, . . . ,θ252] : 0 ≤ θi ≤ 1 for all i,

∑
θi = 1, and θ �=

[
1

252
, . . . ,

1
252

]}
.

In this case, typically we do not refer to θ in describing the hypothesis test (since it is
not a parameter that is useful for describing the data), but only use it in the probability
calculations under the null hypothesis.

In this example, we have that under the null hypothesis each of the 252 ways of picking
the vector Z are equally likely. To choose a decision rule, we first choose a test statistic,
T . The test statistic is a function of the possible values of the data, X, that returns a scalar
value. So T allows us to order the sample space. Let us assume that larger values of T (X)

indicate more extreme values under the null hypothesis. For example, we may use T which is
the mean of responses from one group (zi = 2) minus the mean of responses from the other
group (zi = 1). Note that because θ is such a large dimension, we cannot look at the null
and alternative hypotheses and automatically see how to define more extreme values. There
are many choices for defining that extremeness, and choosing T implicitly defines a direction
for measuring extremeness under the null hypothesis. Given T we want the smallest value c

such that under the null hypothesis

Pr[T (X) ≥ c] ≤ α.

The calculations that find c depend on x and can be computationally difficult. Tests using
this kind of decision rule are called permutation tests (see Chapter 10 for more details).

Finally, we consider a proportional odds formulation. This allows us to estimate a
parameter for an effect (the proportional odds parameter) yet does not require nearly as
many assumptions as the t-test (Example 2.2). In fact, the number of parameters is infinite,
yet we can still use a permutation test to calculate the p-value.

Example 2.4 Again, suppose we have observed data vector as listed in expression 2.4.
Now, let the ith elements of y and z be yi and zi . Assume that if zi = 1, then Yi , the random
variable associated with yi , is distributed with distribution F . We write this as Yi ∼F ,
so Pr[Yi ≤ y]=F(y) for any y. Also, if zi = 2, then Yi ∼G. We assume F and G are
unspecified distributions with support [0,∞). In other words, because somehow we know
that the response variable in this setting cannot have a negative value, the possible values of
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Yi are in [0,∞). Thus, X = {Y,z : Y ∈ (�+)10}. There are an uncountably infinite number
of elements in X .

The probability model, Pθ , is represented by the two distributions F and G with support
on [0,∞). Consider a proportional odds model where the odds of one group are proportional
to the odds of the other group. Letting F and G be cumulative distribution functions (cdfs),
assume that for each y ∈ (0,∞),

G(y)

1−G(y)
= β

F(y)

1− F(y)
,

where β ∈ (0,∞). This implies that

G(y) = βF(y)

1− F(y)+ βF(y)
.

So the parameters, θ , can be represented by the scalar β which is in (0,∞), and the (infinite
dimensional) cdf, F . We can write � = {β,F }. A typical partition is �0 = {β,F : β = 1}
and �1 = {β,F : β �= 1}, with hypotheses usually written as H0 : β = 1 and H1 : β �= 1.

Under the null hypothesis that β = 1, then F =G, and we can use a test statistic, T ,
similarly to what was done in Example 2.3. Under the set of null hypothesis probability
models, it is not possible to calculate Pr[T (X) ≥ c] for a constant c, without making some
assumptions about F . But we can calculate the conditional probability given the ordered
vector of responses. When we use the conditional probability to calculate the p-value, this is
a permutation test (just as was done in Example 2.3). For the proportional odds model, we
usually rank all of the 10 responses and use the difference in means of the ranks between the
groups as the test statistic, T . This gives us the Wilcoxon-Mann-Whitney test (see Chapter 9).

So, although it is a bit complicated to show, we can calculate p-values using the
permutation test methods, and this creates valid p-values for all sample sizes (see
Note N6).

So the same permutation method for deriving decision rules can be applied to the
assumptions of Example 2.3 as well as Example 2.4.

When we are being formal, we write the hypothesis test as the set {δ,A}, where
A = {X ,P0,P1} is the set of assumptions defining the sample space, X , the null hypothesis
model or models, P0 = {Pθ : θ ∈ �0}, and the alternative hypothesis models, P1 = {Pθ :
θ ∈ �1}. This formality is often not necessary, and the hypothesis test is sometimes defined
by the δ with the assumptions A implied. The formality is useful when talking about how the
same decision rule may be used for different sets of assumptions. For example, a permutation
test with the same test statistic, T (x), is valid for the assumptions of either Example 2.3 or
Example 2.4 (see also Chapter 8).

2.3 Confidence Sets: Inverting a Series of Hypothesis Tests
It is possible to create a confidence set by inverting a series of hypothesis tests. For one-
dimensional parameters, in many cases, the set is an interval and is known as a confidence
interval. We start with confidence sets for the general case, where θ may be a vector of
parameters. Then most of the rest of this section focuses on the case when θ is a scalar.
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14 2 Theory of Tests, p-Values, and Confidence Intervals

2.3.1 Inverting Point Null Hypotheses
First, consider the general case where θ may be a vector. Let

H0 : θ = θ0

H1 : θ �= θ0

be a series of point null hypotheses and their alternatives indexed by θ0. Suppose you have
a series of valid (nonrandomized) decision rules associated with each set of hypotheses,
δ(X,α;θ0). Let the p-value associated with H0 : θ = θ0 be p(X,θ0) then δ(X,α;θ0) =
I (p(X,θ0) ≤ α). For each X let the set of θ0 values for which we fail to reject the null
hypotheses be

CS(X,1− α) = {θ0 : δ(X,α;θ0) = 0}
= {θ0 : p(X,θ0) > α} . (2.5)

Then CS(X,1−α) is a 100(1−α)% confidence set (also known as a confidence region) and

Pr [θ ∈ CS(X,1− α)|θ] ≥ 1− α for all θ , (2.6)

so that CS(X,1− α) is valid.
When θ is a scalar, the alternative hypothesis (H1 : θ �= θ0) associated with the point

null hypothesis (H0 : θ = θ0) is called the two-sided hypothesis, and the confidence set
given by Equation 2.5 will often be an interval and is called the confidence interval. But
the confidence set is not guaranteed to be an interval for scalar θ , since there may be gaps.
In that case, a confidence interval can be defined by filling in the gaps. In other words, the
100(1− α)% confidence interval is

C(X,1− α) = (θL,θU ), (2.7)

where θL = min [CS(X,1− α)] if it exists and −∞ (or the minimum possible value of θ)
otherwise, and similarly θU = max [CS(X,1− α)] if it exists or ∞ (or the maximum
possible value of θ) otherwise. Since CS(X,1 − α) is valid by Equation 2.6, the associated
confidence interval, C(X,1 − α), will be valid as well. For a given p-value function for a
series of two-sided hypotheses, p(X,θ0), define the matching confidence set as CS(X,1−α)

of Equation 2.5, and the matching confidence interval as C(X,1− α) of Equation 2.7. If the
matching confidence set is an interval, i.e., CS(X,1 − α) = C(X,1 − α), then we say that
p(X,θ0) and C(X,1−α) are compatible, meaning that for any x, the rejection of H0 : θ = θ0
when p(x,θ0) ≤ α occurs if and only if C(x,1− α) excludes θ0.

For some p-value functions the matching confidence intervals are not compatible. In
other words, sometimes there is a gap in the matching confidence sets. To show that this
noncompatibility problem can occur in practice, we consider an example with Fisher’s exact
test, which can be used to test for differences between two groups when the responses
are binary.

Example 2.5 For the two-sided test there are two versions of Fisher’s exact test: the
Fisher–Irwin test and the central Fisher’s exact test. The noninterval confidence set can
occur with the Fisher–Irwin version (the default version in fisher.test in R, see Note N7).
Suppose we observe proportions of 7/262 from one group and 30/494 from another. We are
interested in comparing the population proportions, say θ1 and θ2. Let β = θ2(1−θ1)

θ1(1−θ2)
represent
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an odds ratio. The value β = 1 if θ1 = θ2 and β > 1 if θ2 > θ1. If we test H0 : β = 0.99
using the Fisher–Irwin test we fail to reject at the 0.05 level (p = 0.05005), when we test
H0 : β = 1.00 we do reject (p = 0.04996), but when we test H0 : β = 1.01 we fail to
reject again (p = 0.05006). So the 95% confidence set for the odds ratio has a hole in it:
CS(x,0.95) = {β : β ∈ (0.177,0.993) or β ∈ (1.006,1.014)}.

The details of the example are not important at this juncture (see Chapter 7). The critical
point is that for a commonly used test, inverting a series of two-sided hypothesis test can
give a confidence set that is not an interval. However, noninterval confidence sets rarely
occur, even when using a procedure (e.g., the Fisher–Irwin test) with this possibility. If the
confidence set is not an interval, we create one by filling in the gap. For Example 2.5 this
gives a 95% confidence interval of (0.177,1.014).

2.3.2 Central Intervals: Inverting Two One-Sided Hypotheses
An alternative strategy to create a two-sided confidence interval than inverting a series of
point null hypotheses (such as H0 : θ = θ0) is to combine the confidence intervals from two
series of one-sided hypothesis tests. Typically, we combine two 100(1 − α/2)% one-sided
confidence intervals, to get one 100(1− α)% two-sided confidence interval, which we call a
central confidence interval. This strategy has the advantage that we can automatically infer
either one-sided hypothesis test by using either the lower or the upper limits of the interval.
Start with the alternative-is-greater series of one-sided hypotheses,

H0 : θ ≤ θB

H1 : θ > θB,

indexed by θB , the parameter value on the boundary between the null and alternative
hypotheses. Suppose the associated (nonrandomized) decision rule associated with the
valid hypothesis test is δAG(X,α/2;θB), where AG represents the alternative-is-greater
hypotheses. Using the validity property of the hypothesis test, we can show that for any
θ ∈ �0, the probability of failing to reject the null hypothesis is at least 1 − α/2 (see
Problem P1). We can use this property to define a confidence set

CL(x,1− α/2) = {θB : δAG(x,α;θB) = 0}. (2.8)

The set CL(X,1−α/2) will almost always be an interval (see Problem P2). If it is not an inter-
val we can write an interval that contains it as [θL(X,1− α/2),∞), where θL(X,1−α/2) =
minCL(x,1−α/2) (or−∞ if no minimum exists) and if appropriate, we may replace∞with
θmax , the maximum possible value of θ . Similarly, we can create an analogous confidence set
starting with the alternative-is-less series of one-sided hypothesis tests (i.e., with H0 : θ ≥ θB
and H1 : θ < θB ), and its decision rule δAL. The associated confidence set is

CU(x,1− α/2) = {θB : δAL(x,α/2;θB) = 0}, (2.9)

and let the smallest interval that contains it be (−∞,θU (x,1− α/2)]. Then a central 100
(1 − α)% confidence interval is the two-sided interval that is the intersection of both
one-sided intervals, giving

Cc(x,1− α) = [θL(x,1− α/2),θU (x,1− α/2)] . (2.10)
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A central confidence interval created this way is valid, since

Pr [θ ∈ Cc(X,1− α)|θ] ≥ 1− α.

Now we return to the Fisher’s exact test example.

Example 2.5 (continued) Now consider the confidence interval created by inverting the
central Fisher’s exact test, the test created from two one-sided Fisher’s exact tests (unlike
the two-sided test, for each pair of the one-sided hypotheses, there is only one version of a
one-sided Fisher’s exact test). Again, using the data, 7/262 from one group and 30/494 from
the other, we get a p-value of p = 0.0518 and a 95% central confidence interval on the odds
ratio of (0.155,1.006).

2.3.3 Compatibility
On page 14 we defined compatibility between p-value functions and confidence intervals,
where the p-value was based on a series of point null hypotheses. Here we define
compatibility more formally so that it can apply to other types of tests and p-values.

Consider first a single hypothesis test using the formal definition given on page 13). Let
the hypothesis test be {δ,A}, where A = {X ,P0,P1} is the set of assumptions defining the
sample space, X , the null hypothesis model or models, P0 = {Pθ : θ ∈ �0}, and the
alternative hypothesis models, P1 = {Pθ : θ ∈ �1}. Define the (nonrandomized) decision
rule in terms of a p-value, so that δ(x,α;�0) = I (p(x,�0) ≤ α). Let CS(x,1 − α) be a
confidence set procedure.

Definition 2.1 Compatibility of test and confidence set: A hypothesis test {δ,A} is
compatible with a confidence set procedure CS(x,1−α) when, for any x, δ(x,α;�0)= 1
(or equivalently p(x,�0) ≤ α) if and only if θ /∈ �0 for all θ ∈ CS(x,1 − α). The
definition is the same if the confidence set is a confidence interval.

Now consider a series of hypothesis tests. Let t be the index for each specific hypothesis
test and let the associated null and alternative parameter spaces be �0(t) and �1(t). For
example, a series of alternative-is-greater hypotheses could be represented by parameter
spaces �0(t) = {θ : θ ≤ t} and �1(t) = {θ : θ > t}. Let the associated p-value function
for the series be p(x,�0(t)). Then analogously to Definition 2.1, the p-value function is
compatible with a confidence set procedure CS(x,1−α) when for any t and x, p(x,�0(t)) ≤
α if and only if θ /∈ �0(t) for all θ ∈ CS(x,1− α).

A closely related property of a p-value function is coherence. A p-value function
p(x,�0(t)) is coherent if for every x ∈ X , then p(x,�0(s)) ≤ p(x,�0(t)) if �0(s) ⊆ �0(t)
(see Röhmel (2005) or Fay and Hunsberger (2021)).

2.3.4 Three-Decision Rules
For many situations, we want to know not just whether θ = θB , but if it is not equal, we want
to know if θ > θB or θ < θB . For example, suppose θ represents the difference in means of
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the response from a randomized trial of a new treatment compared to the standard treatment,
and θB = 0 represents equal means. At the design stage, we do not know if standard is better
than new or vice versa, so it will be difficult to choose one of the one-sided hypothesis tests
in advance. In this case we consider the three-decision rule, where the three decisions are:
(1) fail to reject H0 : θ = θB ; (2) reject H0 : θ = θB and conclude θ > θB ; or (3) reject
H0 : θ = θB and conclude θ < θB .

The three-decision rule can be tested by using a central confidence interval together with
its associated two-sided p-value, we can then combine the two-sided hypothesis with both
one-sided hypotheses to create a three-decision rule. It works like this. Let pc be the p-value
created from doubling the minimum of the one-sided p-values,

pc(x,θB) = min {1,2pAG(x,θB),2pAL(x,θB)} , (2.11)

where pAG(x,θB) is the p-value associated with the one-sided null hypothesis H0 : θ ≤ θB
(AG represents the alternative-is-greater hypotheses). If pc ≤ α, we reject H0 : θ = θB
at level α. Alternatively, we say we reject H0 : θ = θB with a two-sided p-value equal
pc, which implies that we would reject for any pc ≤ α. Then if the 100(1 − α)% central
confidence interval, say (θL,θU ), is compatible with pc, this means the following: either
θB < θL in which case we reject H0 : θ ≤ θB with p-value pc/2 = pAG, or θU < θB in
which case we reject H0 : θ ≥ θB with p-value pc/2 = pAL.

2.4 Properties of Hypothesis Tests
It is useful to present the Type I and II errors in Table 2.1.

A Type I error is when we reject the null hypothesis when the null is true, while a Type II
error is when we fail to reject the null hypothesis when the alternative is true.

Consider first the Type I error. Ideally, we design our decision rules to be valid, meaning
the rate of Type I errors under any probability model in the null hypothesis is less than or
equal to the α-level, α. Rejecting the null hypothesis is known as finding a significant effect
(regardless of the truth, which is not known). It can be difficult to develop a decision rule that
is valid for all sample sizes. In some cases, we can get approximate validity. One important
property for these kinds of decision rules is that you have asymptotic validity, so that the
approximation gets better as you collect more data. We give more details about asymptotics
in Section 3.7 and Chapter 10.

Now consider the Type II error, failing to reject the null hypothesis when it is false. When
we do not reject the null, we often use the phrase “fail to reject the null” (or equivalently “fail

Truth

Null Alternative

Reject Type I

Decision
Null Error
Fail to Type II
Reject Null Error

Table 2.1 Tabular description of Type I and Type II errors
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to find a significant effect”) to emphasize that we cannot make a strong statement regarding
either hypothesis. We can fail to reject the null because either (1) the null hypothesis is true,
or (2) even though the null hypothesis is false, the data do not appear extreme under the null
perhaps due to randomness or not enough data. A common mistake is to interpret failure to
reject the null as showing that the null is true, when it often means that there are insufficient
data to say anything practically meaningful about the hypotheses.

Let β(θ) be the Type II error rate when the probability parameter vector is θ . We want
β(θ) to be small for some reasonably likely values of θ ∈ �1. Typically, instead of talking
about Type II error rates, we talk about power, the probability of rejecting the null given
θ . The implications for minimizing Type II error rates and maximizing power are the same,
since the power under θ is equal to 1− β(θ). For applied work, we typically require that the
power be large, about 80% or 90%, under a reasonably likely alternative, or an alternative
that is based on minimum clinical significance. If the power is small, then it is likely that at
the end of the study we will fail to reject the null hypothesis, which may not give us much
new scientific information.

Most reasonable hypothesis tests are consistent for some θ ∈ �1, meaning that the power,
1− β(θ) increases to 1 as the sample size approaches infinity. For these hypotheses, we can
determine the smallest sample size, say n, such that the power is at least the target power
(say 90%) for a specific θ . This is an important part of designing a study (see Chapter 20).

Ideally, for any set of assumptions, A, we want to pick the decision rule that is most
powerful among all possible decision rules for any θ ∈�1. The resulting test, {δ,A}, is called
the uniformly most powerful (UMP) test. For many sets of assumptions, there does not exist
a UMP test. In this case, when choosing between two decision rules (assuming both are
valid), one would choose the one that has larger power under the alternative model of interest
for some fixed sample size. Alternatively, one could fix θ ∈�1 and compare the minimum
sample size needed to achieve a specific power, 1 − β(θ), between the two decision rules.
For example, if N1 and N2 represent those sample sizes for decision rules δ1 and δ2, then the
relative efficiency of δ2 with respect to δ1 is defined as the ratio, r = N1/N2. In other words,
δ2 will require r times the sample size of δ1 to get the same power (given θ).

Another way to choose between decision rules is to choose the one that has larger relative
efficiency asymptotically. Since most tests are consistent for all θ ∈ �1, the way to measure
the asymptotic relative efficiency (ARE) is to consider a sequence of parameters, θn, that
approach the boundary between the null and alternative as n goes to infinity. In most cases,
the ARE is useful because it does not depend on the power or on which θ in the alternative
is chosen.

Two properties of decision rules that are useful for applied work are the very closely
related properties of invariance and equivariance. Invariance under a set of transformations
is when the decision rule does not change after applying the transformation to the data. For
example, one might want a decision rule to give the same result if you make a monotonic
transformation of the responses, such as taking the log of the response. Equivariance is
when the decision rule changes appropriately if you transform the data and the hypotheses
in the same way. For example, consider a binomial response, where x represents the number
of successes with parameters n and θ . Let δ(x,α;θ0) be a decision rule testing the null
H0 : θ = θ0. Suppose that instead you measure failures, n− x. Then the decision rule would
be equivariant to switching the successes and failures if δ(x,α;θ0) = δ(n−x,α;1−θ0) for all
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x and θ0. Another type of equivariance is palindromic equivariance, defined as equivariant
to systematically switching the order of the responses (and parameters) so that the largest
response (or parameter) becomes the smallest, the next largest becomes the next smallest, and
so on. In much of the literature, no distinction is made between invariance and equivariance,
and both are known as invariance. For example, “invariant to monotonic transformations”
usually means “equivariant to monotonic transformations,” and this is usually clear from the
context. In the rest of this book, we usually use the term invariance to include equivariance.

Robustness is an important idea for applied work. A test is robust if the results do not
change drastically for minor violations of the assumptions. For example, if we perform a one-
sample t-test on data that is only approximately normally distributed, the results will often be
reasonable. For some types of approximately normal data, however, the t-test may have poor
power. For example, if the population is roughly normal except for a few extreme outliers,
the t-test will have very poor power for testing the mean (see Chapter 5). Another way
to improve the robustness is to change your hypotheses and base your tests on parameters
that are not highly dependent on a small percentage of outliers. For example, you might test
inferences about the median rather than the mean. These robustness ideas will be emphasized
throughout this book.

Other properties, not emphasized much in this book are mentioned in Section 2.6.

2.5 Summary
A hypothesis test has several components:

• A set of possible data values, known as the sample space or support;
• A set of probability models that is partitioned into two models (the null and alternative

hypotheses); and
• A decision rule, which determines whether the null hypothesis is rejected. It is a function

of the data and the α-level.

An α-level, α, is set by the researcher. If the probability of the decision rule rejecting the
null hypothesis is always less than or equal to α, given that the null is true, then the rule is
said to be valid. Another useful quantity is the p-value which is the smallest α such that we
would reject the null hypothesis for a given data set at level α (and additionally we would
reject for all α∗ > α). We desire valid decision rules, but sometimes settle for approximately
valid rules.

We can create central confidence intervals by inverting two one-sided hypothesis tests,
and these intervals are good for making directional inferences (i.e., making three-decision
rules).

The Type I error rate is the probability of rejecting the null hypothesis when it is true.
The Type II error rate is the probability of failing to reject the null when the alternative is
true. Failing to reject the null hypothesis often occurs when there are insufficient data to say
anything meaningful about the hypothesis, so it is important not to declare that the null is
true. Power is the probability of rejecting the null hypothesis, usually under an alternative
hypothesis model. For applied work, we typically require that power be large, such as 80 or
90%, whenever a reasonably likely alternative is true; otherwise, the research could provide
little new information.
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20 2 Theory of Tests, p-Values, and Confidence Intervals

The following properties are desirable when selecting among possible decision rules: high
power, invariance (i.e., the inferences are unchanged with certain transformations to the
data), and robustness (i.e., the test performs well even with some violations of assumptions).

2.6 Extensions and Bibliographic Notes
Lehmann and Romano (2005) give a comprehensive theoretical treatment of statistical
hypothesis tests. Their text has an emphasis on optimal tests (e.g., uniformly most powerful
tests). For example, it covers the Neyman–Pearson lemma, that defines the most powerful
test for comparing simple null and alternative hypotheses (a simple hypothesis is one that has
only one element, e.g., the simple null has �0 that is one parameter not a set of parameters).
Further, their text defines an unbiased test: a test where the power to reject is at least as large
as the size for all θ ∈ �1. By restricting the set of tests to unbiased tests, one can sometimes
find a test that is uniformly most powerful among those unbiased tests; this is called the
UMP unbiased test. Similarly, we can consider an invariance property, and find the UMP
tests among those with that invariance property.

2.7 Notes
N1 Set notation: A set is a collection of objects. For example, the even numbers greater

than 0 and less than 10 are a set, {2,4,6,8}. We can write the same set in the following
way: {x : x is even and x > 0 and x < 10}. This notation is read as, the collection of
all xs such that (the “:” means such that) x meets all three conditions mentioned. This
notation can be useful if you are defining a set in relation to some function. For example,
{x : f (x) > 5}, means all xs such that f (x) > 5. If X is a set, the notation x ∈ X means
x is in that set.

N2 Randomized decision rules: An important theoretical use of randomized decision rules
is for getting hypothesis tests with sizes (size is defined below Equation 2.1) exactly
equal to α when the data are discrete. Consider Example 2.1, a binomial with n = 10. If
we set

δ(x,0.05) =
⎧⎨⎩

1 if x ≥ 9
0.05−Pr[X≥9|θ=.5]

Pr[X=8|θ=.5] = 0.893 if x = 8
0 if x ≤ 7,

then the size will be exactly equal to 0.05. The problem is that if x = 8, then sometimes
we reject the null hypothesis but sometimes we do not, and whether we reject or not does
not depend on the data. So two analysts could do the proper analysis on the same data and
come up with different answers. This makes many applied statisticians uncomfortable,
especially since the randomness is obviously coming from the random number generator
not the data. Sometimes applied statisticians will use methods that use random number
generators to implement a method with many samples (for example the use of bootstrap
sampling, or Monte Carlo sampling), but in those cases the randomness is added to
aid in calculations and the probability of getting very different answers by two different
implementations can be kept small by using a large number of samples in the calculation.
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N3 Setting α-level: Ebola is a very serious disease, and as of the beginning of 2015
there had not been a vaccine that had been tested for efficacy in humans. There was
a very large outbreak of Ebola in West Africa that started in 2014, and a study was
quickly designed to test some of the best vaccines in development. During the protocol
development, some questioned about whether to use an α-level of 0.05 for a two-sided
test. If the vaccine showed promise, but the significance was between 0.05 and 0.10, it
might make sense to stop the study and start supplying the vaccine to the population if
the outbreak was still continuing at that point. In this case, the Type I error (calling a
useless vaccine effective) might not be as big a problem as a Type II error (failing to
detect a significant effect on an effective vaccine).

N4 Monotonic decision rules: Formally, a monotonic decision rule has δ(x,α1) ≤ δ(x,α2)
for all x and α1 < α2. For some simple examples that show nonmonotonic decision rules
are possible (but not necessarily practical) see (Lehmann and Romano, 2005, Problems
3.17, 3.58). One reason nonmonotonic decision rules have been proposed is to increase
power for unbiased (see Section 2.6) tests, but this can lead to some strange behaviour
(Perlman and Wu, 1999).

N5 Surprisal: For cases when the p-value can be interpreted as the probability of observing
equal or more extreme data under the null, a transformation has been proposed: using the
surprisal, s = − log2(p). The surprisal gives a way to envision small probabilities. An
s = 6 is the probability associated with seeing six heads in a row from fair coin tosses.
A p-value of p = 0.05 corresponds to s = 4.3 which is close to seeing four heads in a
row (see Greenland, 2017).

N6 Two-sample permutation test: Here is how to show that a two-sample permutation
test is valid under the assumptions of Example 2.4. First consider conditioning on the
order statistics of y: the values of y ordered from smallest to largest. This is simply a
way of conditioning on the 10 values of y, but not on the original order of the indexes
associated with them. This conditioning makes the calculation of the p-values tractable.
Let yo be the vector of order statistics, and Yo the associated vector of random variables.
For clarity, we write the constant c as c(yo) to emphasize that it depends on yo. Then
unconditionally we have,∫

Pr[T (X) ≥ c(yo)|Yo = yo]Pr[Yo = yo],

where the integration is over all the possible values of yo (and T (x) is a function of
the data like the difference in means or difference in mean ranks). We do not need to
worry about the details of the integration because we solve for c(yo) using the methods
of Example 2.3. To see this, note that when yo is fixed, then the only possible values of y
are the permutations of the indices for the yi . And it turns out that permuting the indices
of the yi and keeping zi fixed, gives the same possibilities as keeping the yi fixed and
permuting the zi . But because there are 5 ones and 5 twos in zi , we can group the 10!
different permutations of the indices of zi into 252 groups of 5! 5! permutations, where
within each group all 5! 5! permutations give the same z. Thus, we can solve for c(yo)
so that Pr[T (X) ≥ c(yo)|Yo = yo] ≤ α for all yo. So since each conditional term is
≤α, when we integrate over the set of possible values of yo, this integral is also ≤α.
Mathematically,
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Pr[T (X) ≥ c(yo)] ≤
∫

αPr[Yo = yo] = α.

N7 Fisher–Irwin test and central Fisher exact tests in R: The default in fisher.test
in R (at least for version 4.0.4 or earlier), is to use the Fisher–Irwin two-sided
p-value, but to invert the central Fisher’s exact test to get the confidence intervals (hence,
those confidence intervals are neither matching nor compatible with the Fisher–Irwin
p-values). To get matching confidence intervals use the exact2x2 R package. The
Fisher–Irwin test cannot get compatible confidence intervals but can get matching
confidence intervals. See Fay (2010a) or Fay and Hunsberger (2021) for discussion of
the Fisher’s exact tests and their matching confidence intervals. For the general issue of
matching confidence intervals see Fay (2010b). For another example, see Problem P2.

2.8 Problems
P1 Show that for a valid decision rule, for any θ ∈ �0, the probability of failing to reject

the null hypothesis at level α is at least 1 − α. Hint: start with the definition of a valid
decision rule, Equation 2.1. Multiply the expression by −1 and add 1 to both sides, then
use Pr[δ = 0] = 1− Pr[δ = 1] to get

min
θ∈�0

Pr[δ(X,α) = 0|θ] ≥ 1− α.

P2 Matching confidence interval not compatible: For an example of a confidence set
derived from inverting a one-sided hypothesis test that does not give an interval,
consider the one-sided exact unconditional test for the two-sample binomial problem
using the score method (see Section 10.7). Using the exact2x2 R package explore
this. For example, testing 130/248 against 76/170, and test different null hypotheses,
H0 : β ≥ β0, for β0 = 0.02,0.024, or 0.0.26. Are the p-values monotonic? If they are
not what does this mean in terms of confidence sets possibly being confidence intervals?
(Fay and Hunsberger, 2021).
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