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Abstract
The random-cluster model is a unifying framework for studying random graphs, spin systems and elec-
trical networks that plays a fundamental role in designing efficient Markov Chain Monte Carlo (MCMC)
sampling algorithms for the classical ferromagnetic Ising and Potts models. In this paper, we study a nat-
ural non-local Markov chain known as the Chayes–Machta (CM) dynamics for the mean-field case of the
random-cluster model, where the underlying graph is the complete graph on n vertices. The random-
cluster model is parametrised by an edge probability p and a cluster weight q. Our focus is on the critical
regime: p= pc(q) and q ∈ (1, 2), where pc(q) is the threshold corresponding to the order–disorder phase
transition of the model. We show that the mixing time of the CM dynamics is O(log n · log log n) in this
parameter regime, which reveals that the dynamics does not undergo an exponential slowdown at critical-
ity, a surprising fact that had been predicted (but not proved) by statistical physicists. This also provides
a nearly optimal bound (up to the log log n factor) for the mixing time of the mean-field CM dynamics in
the only regime of parameters where no non-trivial bound was previously known. Our proof consists of
a multi-phased coupling argument that combines several key ingredients, including a new local limit the-
orem, a precise bound on the maximum of symmetric random walks with varying step sizes and tailored
estimates for critical random graphs. In addition, we derive an improved comparison inequality between
the mixing time of the CM dynamics and that of the local Glauber dynamics on general graphs; this results
in better mixing time bounds for the local dynamics in the mean-field setting.
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1. Introduction
The random-cluster model generalises classical random graph and spin system models, providing
a unifying framework for their study [14]. It plays an indispensable role in the design of effi-
cientMarkov ChainMonte Carlo (MCMC) sampling algorithms for the ferromagnetic Ising/Potts
model [31, 8, 20] and has become a fundamental tool in the study of phase transitions [2, 12, 11].

The random-cluster model is defined on a finite graph G= (V , E) with an edge probability
parameter p ∈ (0, 1) and a cluster weight q> 0. The set of configurations of the model is the
set of all subsets of edges A⊆ E. The probability of each configuration A is given by the Gibbs
distribution:

μG,p,q(A)= 1
Z

· p|A|(1− p)|E|−|A|qc(A); (1)
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where c(A) is the number of connected components in (V , A) and Z := Z(G, p, q) is the
normalising factor called the partition function.

The special case when q= 1 corresponds to the independent bond percolation model, where
each edge of the graphG appears independently with probability p. Independent bond percolation
is also known as the Erdös–Rényi random graph model when G is the complete graph.

For integer q≥ 2, the random-cluster model is closely related to the ferromagnetic q-state Potts
model. Configurations in the q-state Potts model are the assignments of spin values {1, . . . , q} to
the vertices ofG; the q= 2 case corresponds to the Isingmodel. A sampleA⊆ E from the random-
cluster distribution can be easily transformed into one for the Ising/Potts model by independently
assigning a random spin from {1, . . . , q} to each connected component of (V ,A). Random-cluster
based sampling algorithms, which include the widely studied Swendsen–Wang dynamics [30],
are an attractive alternative to Ising/Potts Markov chains since they are often efficient at ‘low-
temperatures’ (large p). In this parameter regime, several standard Ising/Potts Markov chains are
known to converge slowly.

In this paper we investigate theChayes–Machta (CM) dynamics [10], a naturalMarkov chain on
random-cluster configurations that converges to the random-cluster measure. The CM dynamics
is a generalisation to non-integer values of q of the widely studied Swendsen–Wang dynamics [30].
As with all applications of the MCMCmethod, the primary object of study is themixing time, that
is, the number of steps until the dynamics is close to its stationary distribution, starting from the
worst possible initial configuration. We are interested in understanding how the mixing time of
the CM dynamics grows as the size of the graph G increases, and in particular how it relates to the
phase transition of the model.

Given a random-cluster configuration (V , A), one step of the CM dynamics is defined as
follows:

i. activate each connected component of (V , A) independently with probability 1/q;
ii. remove all edges connecting active vertices;
iii. add each edge between active vertices independently with probability p, leaving the rest of

the configuration unchanged.

We call (i) the activation sub-step, and (ii) and (iii) combined the percolation sub-step. It is easy to
check that this dynamics is reversible with respect to the Gibbs distribution (1) and thus converges
to it [10]. For integer q, the CM dynamics may be viewed as a variant of the Swendsen–Wang
dynamics. In the Swendsen–Wang dynamics, each connected component of (V , A) receives a
random colour from {1, . . . , q}, and the edges are updated within each colour class as in (ii) and
(iii) above; in contrast, the CM dynamics updates the edges of exactly one colour class. However,
note that the Swendsen–Wang dynamics is only well defined for integer q, while the CM dynamics
is feasible for any real q> 1. Indeed, the CM dynamics was introduced precisely to allow this
generalisation.

The study of the interplay between phase transitions and the mixing time of Markov chains
goes back to pioneering work in mathematical physics in the late 1980s. This connection for the
specific case of the CM dynamics on the complete n-vertex graph, known as themean-field model,
has received some attention in recent years (see [7, 15, 18]) and is the focus of this paper. As
we shall see, the mean-field case is already quite non-trivial and has historically proven to be a
useful starting point in understanding various types of dynamics on more general graphs. We
note that, so far, the mean-field is the only setting in which there are tight mixing time bounds
for the CM dynamics; all other known bounds are deduced indirectly via comparison with other
Markov chains, thus incurring significant overhead [8, 6, 17, 5, 31, 7].

The phase transition for the mean-field random-cluster model is fairly well understood [9, 25].
In this setting, it is natural to re-parameterise by setting p= ζ/n; the phase transition then occurs
at the critical value ζ = ζCR(q), where ζCR(q)= q when q ∈ (0, 2] and ζCR(q)= 2

(
q−1
q−2

)
log (q− 1)
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(a)

(b)

Figure 1. (a): phase structure when q> 2. (b): phase structure when q ∈ (1, 2].

for q> 2. For ζ < ζCR(q) all components are of size O(log n) with high probability (w.h.p.); that
is, with probability tending to 1 as n→ ∞. This regime is known as the disordered phase. On the
other hand, for ζ > ζCR(q) there is a unique giant component of size ≈ θn, where θ = θ(ζ , q); this
regime of parameters is known as the ordered phase. The phase transition is thus analogous to that
in G(n, p) corresponding to the emergence of a giant component.

The phase structure of the mean-field random-cluster model, however, is more subtle and
depends crucially on the second parameter q. In particular, when q> 2 the model exhibits
phase coexistence at the critical threshold ζ = ζCR(q). Roughly speaking, this means that when
ζ = ζCR(q), the set of configurations with all connected components of size O(log n), and set of
configurations with a unique giant component, contribute each a constant fraction of the prob-
ability mass. For q≤ 2, on the other hand, there is no phase coexistence. These subtleties are
illustrated in Figure 1.

Phase coexistence at ζ = ζCR(q) when q> 2 has significant implications for the speed of conver-
gence of Markov chains, including the CM dynamics. The following detailed connection between
the phase structure of the model and the mixing time τCMmix of the CM dynamics was recently
established in [7, 4, 18]. When q> 2, we have:

τCMmix =

⎧⎪⎪⎨⎪⎪⎩
�(log n) if ζ �∈ [ζL, ζR);

�
(
n1/3

)
if ζ = ζL;

e�(n) if ζ ∈ (ζL, ζR),

(2)

where (ζL, ζR) is the so-called metastability window. It is known that ζR = q, but ζL does not have
a closed form; see [7, 25]; we note that ζCR(q) ∈ (ζL, ζR) for q> 2.

When q ∈ (1, 2], there is no metastability window, and the mixing time of the mean-field CM
dynamics is �(log n) for all ζ �= ζCR(q). In view of these results, the only case remaining open
is when q ∈ (1, 2] and ζ = ζCR(q). Our main result shown below concerns precisely this regime,
which is particularly delicate and had resisted analysis until now for reasons we explain in our
proof overview.

Theorem 1.1. The mixing time of the CM dynamics on the complete n-vertex graph when ζ =
ζCR(q)= q and q ∈ (1, 2) is O(log n · log log n).

A �(log n) lower bound is known for the mixing time of the mean-field CM dynamics that
holds for all p ∈ (0, 1) and q> 1 [7]. Therefore, our result is tight up to the lower orderO(log log n)
factor, and in fact even better as we explain in Remark 2.14. The conjectured tight bound when
ζ = ζCR(q) and q ∈ (1, 2) is�(log n).Wemention that the ζ = ζCR(q) and q= 2 case, which is quite
different and not covered by Theorem 1.1, was considered earlier in [24] for the closely related
Swendsen–Wang dynamics, and a tight �(n1/4) bound was established for its mixing time. The
same mixing time bound is expected for the CM dynamics in this regime.
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Our result establishes a striking behaviour for random-cluster dynamics when q ∈ (1, 2).
Namely, there is no slowdown (exponential or power law) in this regime at the critical thresh-
old ζ = ζCR(q). Note that for q> 2, as described in (2) above, the mixing time of the dynamics
undergoes an exponential slowdown, transitioning from �(log n) when ζ < ζL, to a power law at
ζ = ζL, and to exponential in n when ζ ∈ (ζL, ζR). The absence of a critical slowdown for q ∈ (1, 2)
was in fact predicted by the statistical physics community [16], and our result provides the first
rigorous proof of this phenomenon. See Remark 2.5 for further comments.

Our second result concerns the local Glauber dynamics for the random-cluster model. In each
step, the Glauber dynamics updates a single edge of the current configuration chosen uniformly
at random; a precise definition of this Markov chain is given in Section 6. In [7], it was established
that any upper bound on themixing time τCMmix of the CMdynamics can be translated to one for the
mixing time τGDmix of the Glauber dynamics, at the expense of a Õ(n4) factor; the Õ notation hides
polylogarithmic factors. In particular, it was proved in [7] that τGDmix ≤ τCMmix · Õ(n4). We provide
here an improvement of this comparison inequality.

Theorem 1.2. For all q> 1 and all ζ =O(1), τGDmix ≤ τCMmix ·O(n3(log n)2) .
To prove this theorem, we establish a general comparison inequality that holds for any graph,

any q≥ 1 and any p ∈ (0, 1); see Theorem 6.1 for a precise statement. When combined with the
known mixing time bounds for the CM dynamics on the complete graph, Theorem 1.2 yields
that the random-cluster Glauber dynamics mixes in Õ(n3) steps when q> 2 and ζ �∈ (ζL, ζR), or
when q ∈ (1, 2) and ζ =O(1). In these regimes, the mixing time of the Glauber dynamics was
previously known to be Õ(n4) and is conjectured to be Õ(n2); the improved comparison inequality
in Theorem 1.2 gets us closer to this conjectured tight bound. We note, however, that even if
one showed the conjectured optimal bound for the mixing time of the Glauber dynamics, the
CM is faster, even if we take into account the computational cost associated to implementing its
steps.

We conclude this introduction with some brief remarks about our analysis techniques, which
combine several key ingredients in a non-trivial way. Our bound on the mixing time uses the
well-known technique of coupling: in order to show that the mixing time is O(log n · log log n),
it suffices to couple the evolutions of two copies of the dynamics, starting from two arbitrary
configurations, in such a way that they arrive at the same configuration after O(log n) steps with
probability �(1/ log log n). (The moves of the two copies can be correlated any way we choose,
provided that each copy, viewed in isolation, is a valid realisation of the dynamics.) Because of the
delicate nature of the phase transition in the random-cluster model, combined with the fact that
the percolation sub-step of the CM dynamics is critical when ζ = q, our coupling is somewhat
elaborate and proceeds in multiple phases. The first phase consists of a burn-in period, where the
two copies of the chain are run independently and the evolution of their largest components is
observed until they have shrunk to their ‘typical’ sizes. This part of the analysis is inspired by
similar arguments in earlier work [7, 24, 15].

In the second phase, we design a coupling of the activation of the connected components of
the two copies which uses: (i) a local limit theorem, which can be thought of as a stronger ver-
sion of a central limit theorem; (ii) a precise understanding of the distribution of the maximum
of symmetric random walks on Z with varying step sizes; and (iii) precise estimates for the com-
ponent structure of random graphs. We develop tailored versions of these probabilistic tools for
our setting and combine them to guarantee that the same number of vertices from each copy are
activated in each step w.h.p. for sufficiently many steps. This phase of the coupling is the main
novelty in our analysis and allows us to quickly converge to the same configuration. We give a
more detailed overview of our proof in the following section.
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2. Proof sketch and techniques
We now give a detailed sketch of the multi-phased coupling argument for proving Theorem 1.1.
We start by formally defining the notions of mixing and coupling times. Let �RC be the set of
random-cluster configurations of a graph G; let M be the transition matrix of a random-cluster
Markov chain with stationary distribution μ = μG,p,q, and letMt(X0, ·) be the distribution of the
chain after t steps starting from X0 ∈ �RC. The ε-mixing time ofM is given by

τMmix(ε) := max
X0∈�RC

min
t≥0

{||Mt(X0, ·)− μ(·)||TV ≤ ε
}
,

where ||·||TV denotes total variation distance. In particular, the mixing time of M is τMmix :=
τMmix(1/4).

A (one-step) coupling of the Markov chain M specifies, for every pair of states (Xt , Yt) ∈
�RC × �RC, a probability distribution over (Xt+1, Yt+1) such that the processes {Xt} and {Yt} are
valid realisations ofM, and if Xt = Yt then Xt+1 = Yt+1. The coupling time, denoted Tcoup, is the
minimum T such that P[XT �= YT]≤ 1/4, starting from the worst possible pair of configurations
in�RC. It is a standard fact that τMmix ≤ Tcoup; moreover, when P[XT = YT]≥ δ for some coupling,
then τMmix =O(Tδ−1) (see, e.g., [22]).

We provide first a high level description of our coupling for the CM dynamics. For this, we
require the following notation. For a random-cluster configuration X, let Li(X) denote the size
of the i-th largest connected component in (V , X), and let Ri(X) := ∑

j≥i Lj(X)2; in particular,
R1(X) is the sum of the squares of the sizes of all the components of (V , X). Our coupling has
three main phases:

1. Burn-in period: run two copies {Xt}, {Yt} independently, starting from a pair of arbitrary
initial configurations, untilR1(XT)=O

(
n4/3

)
andR1(YT)=O

(
n4/3

)
.

2. Coupling to the same component structure: starting from XT and YT such that R1(XT)=
O
(
n4/3

)
andR1(YT)=O

(
n4/3

)
, we design a two-phased coupling that reaches two config-

urations with the same component structure as follows:

2a. A two-step coupling after which the two configurations agree on all ‘large compo-
nents’;

2b. A coupling that after O(log n) additional steps reaches two configurations that will
also have the same ‘small component’ structure.

3. Coupling to the same configuration: starting from two configurations with the same com-
ponent structure, there is a straightforward coupling that couples the two configurations
in O(log n) steps w.h.p.

We proceed to describe each of these phases in detail.

2.1 The burn-in period
During the initial phase, two copies of the dynamics evolve independently. This is called a burn-in
period and in our case consists of three sub-phases.

In the first sub-phase of the burn-in period the goal is to reach a configuration X such that
R2(X)=O

(
n4/3

)
. For this, we use a lemma from [4], which shows that after T =O(log n) steps of

the CM dynamicsR2(XT)=O
(
n4/3

)
with at least constant probability; this holds when ζ = q for

any initial configuration X0 and any q> 1.

Lemma 2.1 ([4], Lemma 3.42). Let q> 1 and ζ = q, and let X0 be an arbitrary random-cluster
configuration. Then, for any constant C ≥ 0, after T =O(log n) steps R2(XT)=O

(
n4/3

)
and

L1(XT)> Cn2/3 with probability �(1).
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In the second and third sub-phases of the burn-in period, we use the fact that whenR2(Xt)=
O
(
n4/3

)
, the number of activated vertices is well concentrated around n/q (its expectation). This

is used to show that the size of the largest component contracts at a constant rate for T =O(log n)
steps until a configuration XT is reached such that R1(XT)=O

(
n4/3

)
. This part of the analysis

is split into two sub-phases because the contraction for L1(Xt) requires a more delicate analysis
when L1(Xt)= o(n); this is captured in the following two lemmas.

Lemma 2.2. Let ζ = q and q ∈ (1, 2). Suppose R2(X0)=O
(
n4/3

)
. Then, for any constant δ > 0,

there exists T = T(δ)=O(1) such thatR2(XT)=O
(
n4/3

)
and L1(XT)≤ δn with probability �(1).

Lemma 2.3. Let ζ = q and q ∈ (1, 2). Suppose R2(X0)=O
(
n4/3

)
and that L1(X0)≤ δn for a

sufficiently small constant δ. Then, with probability �(1), after T =O(log n) steps R1(XT)=
O
(
n4/3

)
.

Lemmas 2.2 and 2.3 are proved in Section 4. Combining them with Lemma 2.1 immediately
yields the following theorem.

Theorem 2.4. Let ζ = q, q ∈ (1, 2) and let X0 be an arbitrary random-cluster configuration of the
complete n-vertex graph. Then, with probability �(1), after T =O(log n) stepsR1(XT)=O

(
n4/3

)
.

Remark 2.5. The contraction of L1(Xt) established by Lemmas 2.2 and 2.3 only occurs when q ∈
(1, 2); when q> 2 the quantity L1(Xt) may increase in expectation, whereas for q= 2 we have
E[L1(Xt+1) | Xt]≈ L1(Xt), and the contraction of the size of the largest component is due instead
to fluctuations caused by a large second moment. (This is what causes the power law slowdown
when ζ = q= 2.)

Remark 2.6. Sub-steps (ii) and (iii) of the CM dynamics are equivalent to replacing the active
portion of the configuration by a G(m, q/n) random graph, where m is the number of active ver-
tices. Since E[m]= n/q, one key challenge in the proofs of Lemmas 2.2 and 2.3, and in fact in
the entirety of our analysis, is that the random graph G(m, q/n) is critical or almost critical w.h.p.
since m · q/n≈ 1; consequently its structural properties are not well concentrated and cannot be
maintained for the required O(log n) steps of the coupling. This is one of the key reasons why the
ζ = ζCR(q)= q regime is quite delicate.

2.2 Coupling to the same component structure
For the second phase of the coupling, we assume that we start from a pair of configurations X0,
Y0 such that R1(X0)=O

(
n4/3

)
, R1(Y0)=O

(
n4/3

)
. The goal is to show that after T =O(log n)

steps, with probability �(1/ log log n), we reach two configurations XT and YT with the same
component structure, that is, Lj(XT)= Lj(YT) for all j≥ 1. In particular, we prove the following.

Theorem 2.7. Let ζ = q, q ∈ (1, 2) and suppose X0, Y0 are random-cluster configurations such
that R1(X0)=O

(
n4/3

)
and R1(Y0)=O

(
n4/3

)
. Then, there exists a coupling of the CM steps such

that after T =O(log n) steps XT and YT have the same component structure with probability
�
(
(log log n)−1).
Our coupling construction for proving Theorem 2.7 has two main sub-phases. The first is a

two-step coupling after which the two configurations agree on all the components of size above
a certain threshold Bω = n2/3/ω(n), where ω(n) is a slowly increasing function. For convenience
and definiteness we set ω(n)= log log log log n. In the second sub-phase we take care of matching
the small component structures.

We note that when the same number of vertices are activated from each copy of the chain,
we can easily couple the percolation sub-step (with an arbitrary bijection between the activated
vertices) and replace the configuration on the active vertices in both chains with the same random
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sub-graph; consequently, the component structure in the updated sub-graph would be identical.
Our goal is thus to design a coupling of the activation of the components that activates the same
number of vertices in both copies in every step.

In order for the initial two-step coupling to succeed, certain (additional) properties of the
configurations are required. These properties are achieved with a continuation of the initial
burn-in phase for a small number of O(logω(n)) steps. For a random-cluster configuration X,
let R̃ω(X)=∑j : Lj(X)≤Bω

Lj(X)2 and let I(X) denote the number of isolated vertices of X. Our
extension of the burn-in period is captured by the following lemma.

Lemma 2.8. Let ζ = q, q ∈ (1, 2) and suppose X0 is such thatR1(X0)=O
(
n4/3

)
. Then, there exists

T =O(logω(n)) and a constant β > 0 such that R̃ω(XT)=O
(
n4/3ω(n)−1/2), R1(XT)=O

(
n4/3

)
and I(XT)= �(n) with probability �(ω(n)−β).

The proof of Lemma 2.8 is provided in Section 5.1.
With these bounds on R̃ω(XT), R̃ω(YT), I(XT) and I(YT), we construct the two-step coupling

for matching the large component structure. The construction crucially relies on a new local limit
theorem (Theorem 5.1). In particular, under our assumptions, when ω(n) is small enough, there
are few components with sizes above Bω. Hence, we can condition on the event that all of them
are activated simultaneously. The difference in the number of active vertices generated by the
activation of these large components can then be ‘corrected’ by a coupling of the activation of the
smaller components; for this we use our new local limit theorem.

Specifically, our local limit theorem applies to the random variables corresponding to the num-
ber of activated vertices from the small components of each copy. We prove it using a result of
Mukhin [28] and the fact that, among the small components, there are (roughly speaking) many
components of many different sizes. To establish the latter we require a refinement of known
random graph estimates (see Lemma 3.11).

To formally state our result we introduce some additional notation. Let Sω(X) be the set of
connected components of X with sizes greater than Bω. At step t, the activation of the compo-
nents of two random-cluster configurations Xt and Yt is done using a maximal matching Wt
between the components of Xt and Yt , with the restriction that only components of equal size
are matched to each other. For an increasing positive function g and each integer k≥ 0, define
N̂k(t, g) := N̂k(Xt , Yt , g) as the number of matched pairs inWt whose component sizes are in the
interval

Ik(g)=
[

ϑn2/3

2g(n)2k
,
ϑn2/3

g(n)2k

]
,

where ϑ > 0 is a fixed large constant (independent of n).

Lemma 2.9. Let ζ = q, q ∈ (1, 2) and suppose X0, Y0 are random-cluster configurations such
that R1(X0)=O

(
n4/3

)
, R̃ω(X0)=O

(
n4/3ω(n)−1/2), I(X0)= �(n) and similarly for Y0. Then,

there exists a two-step coupling of the CM dynamics such that Sω(X2)= Sω(Y2) with probability
exp
(−O

(
ω(n)9

))
.

Moreover, L1(X2)=O
(
n2/3ω(n)

)
, R2(X2)=O

(
n4/3

)
, R̃ω(X2)=O

(
n4/3ω(n)−1/2), I(X2)=

�(n), N̂k(2,ω(n))= �
(
ω(n)3·2k−1

)
for all k≥ 1 such that n2/3ω(n)−2k−1 → ∞, and similarly

for Y2.

From the first part of the lemma we obtain two configurations that agree on all of their large
components, as desired, while the second part guarantees additional structural properties for the
resulting configurations so that the next sub-phase of the coupling can also succeed with the
required probability. The proof of Lemma 2.9 is given in Section 5.2.
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In the second sub-phase, after the large component are matched, we can design a coupling
that activates exactly the same number of vertices from each copy of the chain. To analyze this
coupling we use a precise estimate on the distribution of the maximum of symmetric random
walks over integers (with steps of different sizes). We are first required to run the chains coupled
for T =O(logω(n)) steps, so that certain additional structural properties appear. Let M(Xt) and
M(Yt) be the components in the matchingWt that belong to Xt and Yt , respectively, and letD(Xt)
and D(Yt) be the complements ofM(Xt) andM(Yt). Let

Zt =
∑

C∈D(Xt)∪D(Yt) |C|2.
Lemma 2.10. Let ζ = q, q ∈ (1, 2). Suppose X0 and Y0 are random-cluster configurations such that
Sω(X0)= Sω(Y0), and N̂k(0,ω(n))= �

(
ω(n)3·2k−1

)
for all k≥ 1 such that n2/3ω(n)−2k−1 → ∞.

Suppose also that L1(X0)=O
(
n2/3ω(n)

)
,R2(X0)=O

(
n4/3

)
, R̃ω(X0)=O

(
n4/3ω(n)−1/2), I(X0)=

�(n), and similarly for Y0.
Then, there exists a coupling of the CM steps such that with probability exp

(
−O
((
logω(n)

)2))
after T =O(logω(n)) steps: Sω(XT)= Sω(YT), ZT =O

(
n4/3ω(n)−1/2), N̂k

(
T,ω(n)1/2

)=
�
(
ω(n)3·2k−2

)
for all k≥ 1 such that n2/3ω(n)−2k−1 → ∞,R1(XT)=O

(
n4/3

)
, I(XT)= �(n), and

similarly for YT.

The proof of Lemma 2.10 also uses our local limit theorem (Theorem 5.1) and is provided in
Section 5.3.

The final step of our construction is a coupling of the activation of the components of size less
than Bω, so that exactly the same number of vertices are activated from each copy in each step
w.h.p.

Lemma 2.11. Let ζ = q, q ∈ (1, 2) and suppose X0 and Y0 are random-cluster configurations such
that Sω(X0)= Sω(Y0), Z0 =O

(
n4/3ω(n)−1/2), and N̂k

(
0,ω(n)1/2

)= �
(
ω(n)3·2k−2

)
for all k≥ 1

such that n2/3ω(n)−2k−1 → ∞. Suppose also thatR1(X0)=O
(
n4/3

)
, I(X0)= �(n) and similarly for

Y0. Then, there exist a coupling of the CM steps and a constant β > 0 such that after T =O(log n)
steps, XT and YT have the same component structure with probability �

(
(log log log n)−β

)
.

We comment briefly on how we prove this lemma. Our starting point is two configura-
tions with the same ‘large’ component structure, that is, Sω(X0)= Sω(Y0). We use the maximal
matching W0 to couple the activation of the large components in X0 and Y0. The small com-
ponents not matched by W0, that is, those counted in Z0, are then activated independently.
This creates a discrepancy D0 between the number of active vertices from each copy. Since
E[D0]= 0 and Var(D0)= �(Z0)= �(n4/3ω(n)−1/2), it follows from Hoeffding’s inequality that
D0 ≤ n2/3ω(n)−1/4 w.h.p. To fix this discrepancy, we use the small components matched by W0.
Specifically, under the assumptions in Lemma 2.11, we can construct a coupling of the activation
of the small components so that the difference in the number of activated vertices from the small
components from each copy is exactly D0 with probability �(1). This part of the construction
utilises random walks over the integers; in particular, we use a lower bound for the maximum of
such a random walk.

We need to repeat this process until Zt = 0; this takes O(log n) steps since Zt ≈ (1− 1/q)tZ0.
However, there are a few complications. First, the initial assumptions on the component structure
of the configurations are not preserved for this many steps w.h.p., so we need to relax the require-
ments as the process evolves. This is in turn possible because the discrepancy Dt decreases with
each step, which implies that the probability of success of the coupling increases at each step. See
Section 5.4 for the detailed proof.
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We now indicate how these lemmas lead to a proof of Theorem 2.7 stated earlier.

Proof of Theorem 2.7. Suppose R1(X0)=O
(
n4/3

)
and R1(Y0)=O

(
n4/3

)
. It follows from

Lemmas 2.8, 2.9, 2.10 and 2.11 that there exists a coupling of the CM steps such that after
T =O(log n) steps, XT and YT could have the same component structure. This coupling succeeds
with probability at least

ρ = �
(
ω(n)−β1

) · exp (−O
(
ω(n)9

)) · exp (−O
(
(logω(n))2

)) · �((log log log n)−β2
)
,

where β1, β2 > 0 are constants. Thus, ρ = �
(
(log log n)−1), since ω(n)= log log log log n. �

Remark 2.12. We pause to mention that this delicate coupling for the activation of the com-
ponents is not required when ζ = q and q> 2. In that regime, the random-cluster model is
super-critical, so after the first O(log n) steps, the component structure is much simpler, with
exactly one large component. On the other hand, when ζ = q and q ∈ (1, 2] the model is critical,
which, combined with the fact mentioned earlier that the percolation sub-step of the dynamics is
also critical when ζ = q, makes the analysis of the CM dynamics in this regime quite subtle.

2.3 Coupling to the same configuration
In the last phase of the coupling, suppose we start with two configurations X0, Y0 with the
same component structure. We are still required to bound the number of steps until the same
configuration is reached. The following lemma from [7] supplies the desired bound.

Lemma2.13. ([7], Lemma 24). Let q> 1, ζ > 0 and let X0, Y0 be two random-cluster configurations
with the same component structure. Then, there exists a coupling of the CM steps such that after
T =O(log n) steps, XT = YT w.h.p.

Combining the results for each of the phases of the coupling, we now prove Theorem 1.1.

Proof of Theorem 1.1. By Theorem 2.4, after t0 =O(log n) steps, with probability �(1), we
haveR1(Xt0 )=O

(
n4/3

)
andR1(Yt0 )=O

(
n4/3

)
. If this is the case, Theorem 2.7 and Lemma 2.13

imply that there exists a coupling of the CM steps such that with probability �
(
(log log n)−1)

after an additional t1 =O(log n) steps, Xt0+t1 = Yt0+t1 . Consequently, we obtain that τCMmix =
O(log n · log log n) as claimed. �
Remark 2.14. The probability of success in Theorem 2.7, which governs the lower order term
O(log log n) in our mixing time bound, is controlled by our choice of the function ω(n) for the
definition of ‘large components’. By choosing ω(n) that goes to ∞ more slowly, we could improve
our mixing time bound toO(log n · g(n)) where g(n) is any function that tends to infinity arbitrar-
ily slowly. However, it seems that new ideas are required to obtain a bound of O(log n) (matching
the known lower bound). In particular, the fact that ω(n)→ ∞ is crucially used in some of our
proofs. Our specific choice of ω(n) yields the O(log n · log log n) bound and makes our analysis
cleaner.

3. Random graph estimates
In this section, we compile a number of standard facts about the G(n, p) random graph model
which will be useful in our proofs. We use G∼G(n, p) to denote a random graph G sampled
from the standard G(n, p) model, in which every edge appears independently with probability p.
A G(n, p) random graph is said to be sub-critical when np< 1. It is called super-critical when
np> 1 and critical when np= 1. For a graph G, with a slight abuse of notation, let Li(G) denote
the size of the i-th largest connected component in G, and letRi(G) := ∑

j≥i Lj(G)2; note that the
same notation is used for the components of a random-cluster configuration, but it will always be
clear from context which case is meant.
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Fact 3.1. Given 0<N1 <N2 and p ∈ [0, 1]. Let G1 ∼G(N1, p) and G2 ∼G(N2, p). For any K > 0,
P[L1(G1)>K]≤ P[L1(G2)>K]. �
Proof. Consider the coupling of (G1,G2) such that G1 is a subgraph of G2. L1(G1)≤ L1(G2)
with probability 1. Proposition just follows from Strassen’s theorem (see, e.g., Theorem 22.6
in [22]). �
Lemma 3.2. ([24], Lemma 5.7). Let I(G) denote the number of isolated vertices in G. If np=O(1),
then there exists a constant C > 0 such that

P[I(G)> Cn]= 1−O(n−1).

Consider the equation

e−dx = 1− x (3)

and let β(d) be defined as its unique positive root. Observe that β is well defined for d > 1.

Lemma 3.3 ([4], Lemma 2.7). Let G∼G(n+m, dn/n) random graph where |m| = o(n) and
limn→∞ dn = d. Assume 1< dn =O(1) and dn is bounded away from 1 for all n ∈N. Then, For
A= o(log n) and sufficiently large n, there exists a constant c> 0 such that

P
[|L1(G)− β(d)n| > |m| +A

√
n
]≤ e−cA2

.

Lemma 3.4 ([4], Lemma 2.16). For np> 0, we have E [R2(G)]=O
(
n4/3

)
.

Consider the near-critical random graph G
(
n, 1+ε

n
)
with ε = ε(n)= o(1).

Lemma3.5 ([24], Theorem 5.9).Assume ε3n≥ 1, then for any A satisfying 2≤A≤ √
ε3n/10, there

exists some constant c> 0 such that

P

[
|L1(G)− 2εn| >A

√
n
ε

]
=O

(
e−cA2

)
.

Corollary 3.6. Let G∼G
(
n, 1+ε

n
)
with ε = o(1). For any positive constant ρ ≤ 1/10, there exist

constants C ≥ 1 and c> 0 such that if ε3n≥ C, then

P [|L1(G)− 2εn| > ρεn]=O
(
e−cε3n

)
.

Lemma 3.7 ([24], Theorem 5.12). Let ε < 0, then E[R1(G)]=O(n/|ε|) .
Lemma 3.8 ([24], Theorem 5.13). Let ε > 0 and ε3n≥ 1 for large n, then E[R2(G)]=O(n/ε).

For the next results, suppose that G∼G
(
n, 1+λn−1/3

n
)
, where λ = λ(n) may depend on n.

Lemma 3.9. If |λ| =O(1), then E [R1(G)]=O
(
n4/3

)
.

Proof. Follows from Lemmas 2.13, 2.15 and 2.16 in [4]. �
All the random graph facts stated so far can be either found in the literature, or follow directly

from well-known results. The following lemmas are slightly more refined versions of similar
results in the literature.

Lemma 3.10. Suppose |λ| =O(h(n)) and let Bh = n2/3h(n)−1, where h :N→R is a positive
increasing function such that h(n)= o(log n). Then, for any α ∈ (0, 1) there exists a constant
C = C(α)> 0 such that, with probability at least α,∑

j:Lj(G)≤Bh
Lj(G)2 ≤ Cn4/3h(n)−1/2.
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Lemma 3.11. Let SB = {j : B≤ Lj(G)≤ 2B} and suppose there exists a positive increasing function g
such that g(n)→ ∞, g(n)= o

(
n1/3

)
, |λ| ≤ g(n) and B≤ n2/3

g(n)2 . If B→ ∞, then there exists constants
δ1, δ2 > 0 independent of n such that

P

[
|SB| ≤ δ1n

B3/2

]
≤ δ2B3/2

n
.

The proofs of Lemmas 3.10 and 3.11 are provided in Appendix C. Finally, the following corol-
lary of Lemma 3.11 will also be useful. For a graphH, letNk(H, g) be the number of components of
H whose sizes are in the interval Ik(g). We note that with a slight abuse of notation, for a random-
cluster configuration X, we also use Nk(X, g) for the number of connected components of X in
Ik(g).
Corollary 3.12. Let m ∈ (n/2q, n] and let g be an increasing positive function that such that
g(n)= o

(
m1/3), g(n)→ ∞ and |λ| ≤ g(m). If H ∼G

(
m, 1+λm−1/3

m

)
, there exists a constant b> 0

such that, with probability at least 1−O
(
g(n)−3), Nk(H, g)≥ bg(n)3·2k−1 for all k≥ 1 such that

n2/3g(n)−2k → ∞.

4. The burn-in period: proofs
In this section we will provide proofs for Lemmas 2.2 and 2.3.

4.1 A drift function
Consider themean-field random-clustermodel with parameters q≥ 1 and p= ζ/n. In this subsec-
tion, we introduce a drift function captures the rate of decay of the size of the largest component
in a configuration under steps of the CM dynamics which will be helpful for proving Lemma 2.2;
this function was first studied in [7].

Given θ ∈ (0, 1], consider the equation

e−ζx = 1− qx
1+ (q− 1)θ

(4)

and let φ(θ , ζ , q) be defined as the largest positive root of (4). We shall see that φ is not defined
for all q and ζ since there may not be a positive root. When ζ and q are clear from the context we
use φ(θ)= φ(θ , ζ , q). Note that β(ζ ) defined by equation (3) is the special case of (4) when q= 1;
observe that β is only well defined when ζ > 1.

We let k(θ , q) := (1+ (q− 1)θ)/q so that φ(θ , ζ , q)= β(ζ · k(θ , q)) · k(θ , q). Hence, φ(θ , ζ , q)
is only defined when ζ · k(θ , q)> 1; that is, θ ∈ (θmin, 1], where θmin = q−ζ

ζ (q−1) . Note that when
ζ = q, φ(θ) is defined for every θ ∈ (0, 1].

For fixed ζ and q, we call f (θ) := θ − φ(θ) the drift function. which is defined on
(max{θmin, 0}, 1].
Lemma 4.1. When q= ζ < 2, the drift function f is non-negative for any θ ∈ [ξ , 1], where ξ is an
arbitrarily small positive constant.

Proof. When ζ = q< 2, the drift function f does not have a positive root, it is continuous in
(0,1], and f (1)> 0; see Lemma 2.5 in [9] and Fact 3.5 in [4]. Since limθ→0 f (θ)= 0, the result
follows. �

4.2 Shrinking a large component: proof of Lemma 2.2
The proof of Lemma 2.2 uses the following lemma, which follows directly from standard random
graph estimates and Hoeffding’s inequality. To simplify the notation, we let L̂(X) := L1(X)/n2/3.
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We use A(X) to denote the number of vertices activated by the step CM dynamics from configu-
ration X. Let �t denote the event that the largest component of the configuration is activated in
step t.

Lemma 4.2 ([4], Claim 3.45). SupposeR2(Xt)=O
(
n4/3

)
and L̂(Xt)≥ B for a large constant B, and

let C be a fixed large constant. Then

1. P

[
R2(Xt+1)<R2(Xt)+ Cn4/3√

L̂(Xt)

∣∣∣∣ Xt ,�t

]
= 1−O

(
L̂(Xt)−1/2

)
.

2. P

[
R2(Xt+1)<R2(Xt)+ Cn4/3√

L̂(Xt)

∣∣∣∣ Xt ,¬�t

]
= 1−O

(
L̂(Xt)−1/2

)
.

Proof of Lemma 2.2. Let T̂ be the first time t when L̂(Xt)≤ δn1/3, let T′ be a large constant we
choose later; we set T := min{T̂, T′}. Observe that with constant probability the largest compo-
nent in the configuration is activated by the CM dynamics for every t ≤ T′, that is, the event
�t occurs for every t ≤ T′. Let us assume this is the case and fix t < T. Suppose R2(Xt)≤
R2(X0)+ t · C√

δ
n

7
6 where C is the positive constant from Lemma 4.2. We show that with high

probability:

i. R2(Xt+1)≤R2(X0)+ t · C√
δ
n

7
6 ; and

ii. L1(Xt+1)≤ L1(Xt)− ξn where ξ is a positive constant independent of t and n.

In particular, it suffices to set T′ = (1− δ)/ξ for the lemma to hold.
First, we show that A(Xt) is concentrated around its mean. Let L1(Xt) := θtn

and L1(Xt+1) := θt+1n. Let E[A(Xt) | �t]= μt = n
q +

(
1− 1

q

)
· θtn, γ := n5/6, and

Jt := [μt − γ ,μt + γ ]. Hoeffding’s inequality implies

P [A(Xt) ∈ Jt | �t]≥ 1− 2 exp
( −2γ 2

R2(Xt)

)
= 1− e−�

(
n1/3

)
.

If A(Xt) ∈ Jt , then the random graph G(A(Xt), p) is super-critical since

A(Xt) · p≥ (μt − γ ) · q
n

=
[
n
q

+
(
1− 1

q

)
· θtn− n5/6

]
· q
n

= 1+ (q− 1)θt − o(1)> 1.

Next, for a super-critical random graph, Lemma 3.3 provides a concentration bound for the
size of largest new component, provided A(Xt) ∈ Jt . To see this, we write G(A(Xt), ζ/n) as

G
(
μt +m, k(θt , q) · q/μt

)
,

wherem := A(Xt)− μt ; notice that |m| ≤ γ = o(n). Let H ∼G
(
μt +m, k(θt , q) · q/μt

)
. Since

k(θt , q) · q= 1+ (q− 1)θt > 1+ δ(q− 1)> 1

holds regardless of n, Lemma 3.3 implies that for φ(θt)> 0 defined in Section 4.1, with high
probability

L1(H) ∈
[
φ(θt)n−√n log n− |m|, φ(θt)n+√n log n+ |m|

]
.

Note that L1(H)= �(n) w.h.p.; hence, since L2(Xt)=O
(
n2/3

)
we have L1(Xt+1)= L1(H) w.h.p.

We have shown that w.h.p.

θt+1 − θt ≤ φ(θt)+
√
n log n
n

− θt − |m|
n

= −f (θt)+
√
log n
n

− |m|
n

,
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where f is the drift function defined in Section 4.1. By Lemma 4.1, we know f (θt)> ξ1 > 0 for
sufficiently small constant ξ1 (independent of n and t). Hence, w.h.p. for sufficiently large n

L1(Xt+1)− L1(Xt)≤ −ξ1n+ o(n)≤ −ξ1n
2

;

this establishes (ii) from above.
For (i), note that for t < T we have L̂(Xt)> δn1/3, so Lemma 4.2 implies,

P

[
R2(Xt+1)<R2(X0)+ t · C√

δ
n

7
6 + Cn4/3√

δn1/6

]
= 1− o(1).

A union bound implies that these two events occur simultaneously w.h.p. and the result
follows. �

4.3 Shrinking amedium size component: proof of Lemma 2.3
In the third sub-phase of the burn-in period, we show that L1(Xt) contracts at a constant rate; the
precise description of this phenomenon is captured in the following lemma.

Lemma 4.3. Suppose R2(Xt)=O
(
n4/3

)
, δn1/3 ≥ L̂(Xt)≥ B for a large constant B := B(q), and a

small constant δ(q, B). Then:

1. There exists a constant α := α(B, q, δ)< 1 such that

P [L1(Xt+1)≤max{αL1(Xt), L2(Xt)} | Xt ,�t]≥ 1− exp
(
−�
(
L̂(Xt)

))
;

2. P [L1(Xt+1)= L1(Xt)|Xt ,¬�t]≥ 1−O
(
L̂(Xt)−3

)
.

Since Lemmas 4.2 suggestsR2(Xt)=O
(
n4/3

)
with reasonably high probability throughout the

execution of the sub-phase, Lemmas 4.3 and 4.2 can be combined to derive the following more
accurate contraction estimate which will be crucial in the proof Lemma 2.3.

Lemma 4.4. Suppose g(n) is an arbitrary function with range in the interval
[
B6, δn1/3

]
where B

is a large enough constant such that for x≥ B6 we have x≥ B(logx)8, and δ := δ(q, B) is a small
constant.

Suppose X0 is such that g(n)≥ L̂(X0)≥ B
(
logg(n)

)8 and R2(X0)=O
(
n4/3

)
, then there exists a

constant D and T =O
(
logg(n)

)
such that at time T, L̂(XT)≤max{B(logg(n))8,D} and R2(XT)≤

R2(X0)+O
(

n4/3
log g(n)

)
with probability at least 1−O

(
log−1g(n)

)
.

We first provide a proof for Lemma 2.3 that recursively uses the contraction estimate of
Lemma 4.4.

Proof of Lemma 2.3. Let B be a constant large enough so that ∀x≥ B6, we have x≥ (logx)48.
Suppose L̂(X0)≤ δn1/3 and R2(X0)=O

(
n4/3

)
for the constant δ = δ(q, B) from Lemma 4.4.

Suppose also L̂(X0)≥ B6; otherwise there is nothing to prove.
Let g0(n) := δn1/3 and gi+1(n) := B(loggi(n))8 for all i≥ 0. Let K be defined as the minimum

natural number such that gK(n)≤ B6. Note that K =O(log∗n). Assume at time t ≥ 0, there exists
an integer j≥ 0 such that Xt satisfies:

1. gj+1(n)≤ L̂(Xt)≤ gj(n), and

2. R2(Xt)=O
(
n4/3

)+O
(∑j−1

k=0
n4/3

log gk(n)

)
.
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We show there exists time t′ > t such that properties 1 and 2 hold for Xt′ for a different index
j′ > j. The following bounds on sums and products involving the gi’s will be useful; the proof is
elementary and delayed to the end of this section.

Claim 4.5. Let K be defined as above. ∀j<K,

i. For any positive constant c, we have
∏j

i=0

(
1− c

log gi(n)

)
≥ 1− 1.5c

log gj(n)

ii.
∑j

i=0
1

log gi(n) ≤ 1.5
log gj(n)

By part (ii) of this claim, note that

O

⎛⎝ j−1∑
k=0

n4/3

log gk(n)

⎞⎠=O
(

n4/3

log gj−1(n)

)
=O

(
n4/3

)
.

Hence, Lemma 4.4 implies that with probability 1−O
((
loggj(n)

)−1
)
there exist a time t′ ≤

t +O( log gj(n)) and a large constant D such that L̂(Xt′) ≤max
{
B
(
loggj(n)

)8 ,D} and R2(Xt′) ≤
R2(Xt)+O

(
n4/3

log gj(n)

)
. If L̂(Xt′) ≤max

{
D, B6

}
we are done. Hence, suppose otherwise that

L̂(Xt′) ∈ (B6, log gj+1(n)
]
. Since the interval (B6, log gj+1(n)] is completely covered by the union

of the intervals [gj+2, gj+1], . . ., [gK , gK−1], there must be an integer j′ ≥ j+ 1 such that gj′+1(n)≤
L̂(Xt′) ≤ gj′(n). Also, notice

R2(Xt′) ≤R2(Xt)+O
(

n4/3

log gj(n)

)
=O

(
n4/3

)+O

⎛⎝ j−1∑
k=0

n4/3

log gk(n)

⎞⎠+O
(

n4/3

log gj(n)

)

=O
(
n4/3

)+O

⎛⎝ j∑
k=0

n4/3

log gk(n)

⎞⎠=O
(
n4/3

)+O

⎛⎝j′−1∑
k=0

n4/3

log gk(n)

⎞⎠ .

By taking at most K steps of induction, we obtain that there exist constants C and c such that with
probability at least ρ := ∏K−1

i=0

(
1− c

log gi(n)

)
, there exists a time

tK ≤
K−1∑
i=0

C log gi(n)

that satisfies L̂(XtK )≤ gK(n)≤ B6 andR2(XtK )=O
(
n4/3

)
. Observe that tK is a time when our goal

has been achieved, so it only remains to show that ρ = �(1) and tK =O(log n). The lower bound
on ρ follows from part (i) of Claim 4.5:

K−1∏
i=0

1− c
log gi(n)

≥ 1− 1.5c
log gK−1(n)

> 1− 1.5c
log B6

= �(1).

By noting that K =O(log∗n), we can also bound tK since
∑K−1

i=0 C log gi(n) is at most log g0(n)+
(K − 1) log g1(n)=O(log n).
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Before proving Lemma 4.4 we provide the proof of Lemma 4.3.

Proof of Lemma 4.3. We start with part 1. Let μt := E[A(Xt)|�t , Xt], γt :=
√
L̂(Xt) · n2/3, and

Jt := [μt − γt ,μt + γt]. Hoeffding’s inequality implies that

P [A(Xt) ∈ Jt | �t , Xt]≥ 1− 2 exp
( −2γ 2

t
R2(Xt)

)
= 1− exp

(
−�
(
L̂(Xt)

))
.

Let m := μt + γt , G∼G
(
m, qn

)
and Ĝ∼G(A(Xt), p). Then, the monotonicity of the largest

component in a random graph implies that for any � > 0

P

[
L1(Ĝ)> � |A(Xt) ∈ Jt

]
=
∑
a∈Jt

P

[
L1(Ĝ)> � |A(Xt)= a

]
P [A(Xt)= a |A(Xt) ∈ Jt]

≤
∑
a∈Jt

P

[
L1(Ĝ)> � |A(Xt)=m

]
P [A(Xt)= a |A(Xt) ∈ Jt]

= P[L1(G)> �]
∑
a∈Jt

P[A(Xt)= a |A(Xt) ∈ Jt]

= P[L1(G)> �].

We bound next P[L1(G)> �]. For this, we rewrite G
(
m, qn

)
as G

(
m, 1+ε

m
)
; since

μt = L̂(Xt) · n2/3 +
(
n− L̂(Xt)n2/3

)
q−1

we have

ε =m · q
n

− 1=
⎛⎝q− 1+ q√

L̂(Xt)

⎞⎠ L̂(Xt)
n1/3

.

Thus,

ε3 ·m=
⎛⎝q− 1+ q√

L̂(Xt)

⎞⎠3
L̂(Xt)3

n

(
L̂(Xt)n2/3 + n− L̂(Xt)n2/3

q
+
√
L̂(Xt)n2/3

)

≥
⎛⎝q− 1+ q√

L̂(Xt)

⎞⎠3

· L̂(Xt)3

n
· n
q

≥ 1
q

·
(
(q− 1)3L̂(Xt)3 + q3

√
L̂(Xt)

3
)

≥ q2L̂(Xt)3/2 ≥ 100L̂(Xt),

where the last inequality follows from the fact that L̂(Xt)> B, where B= B(q) is a sufficiently large
constant.

Since ε3 ·m≥ 1, Lemma 3.5 implies

P

[
|L1(G)− 2εm| >

√
L̂(Xt)

√
m
ε

]
= e−�

(
L̂(Xt)

)
.
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Let c1 = 2
√

1+(q−1)δ
q(q−1) . The upper tail bound implies

P
[
L1(G)≤ 2εm+ c1n2/3

]≥ 1− e−�
(
L̂(Xt)

)
.

We show next that 2εm+ c1n2/3 ≤ αL1(Xt) for some α ∈ (0, 1).

2εm+ c1n2/3

=2

⎛⎝q− 1+ q√
L̂(Xt)

⎞⎠ L̂(Xt)
n1/3

(
L̂(Xt)n2/3 + n− L̂(Xt)n2/3

q
+
√
L̂(Xt)n2/3

)
+ c1n2/3

=2
q

⎛⎝q− 1+ q√
L̂(Xt)

⎞⎠ L̂(Xt)
n1/3

⎡⎣n+
⎛⎝q− 1+ q√

L̂(Xt)

⎞⎠ L̂(Xt)n2/3
⎤⎦+ c1n2/3

=2
q

⎛⎝q− 1+ q√
L̂(Xt)

+ c1q
L̂(Xt)

⎞⎠ L̂(Xt)n2/3 + 2
q

⎛⎝q− 1+ q√
L̂(Xt)

⎞⎠2

L̂(Xt)2n1/3

≤2
q

[
δ
(
q− 1+O

(
L̂(Xt)−1/2

))2 +
(
q− 1+O

(
L̂(Xt)−1/2

))]
L̂(Xt)n2/3,

where in the last inequality we use the assumption that δn1/3 ≥ L̂(Xt). For sufficiently small δ and
sufficiently large B, ∃ α < 1 such that

α >
2
q

[
δ

(
q− 1+ 2q

B1/2

)2
+
(
q− 1+ 2q

B1/2

)]
.

Consequently, L1(G) ≤ 2εm+ c1n2/3 ≤ αL1(Xt) with probability 1− exp
(−�

(
L̂(Xt

))
. If that is

the case, L1(Xt+1)≤max {αL1(Xt), L2(Xt)} =: L+. Therefore,

P
[
L1(Xt+1)≤ L+ | Xt ,�t

]
≥ P

[
L1(Xt+1)≤ L+ | Xt ,�t ,A(Xt) ∈ Jt

] · P [A(Xt) ∈ Jt | Xt ,�t]

≥ 1− exp
(−�

(
L̂(Xt)

))
,

which concludes the proof of part 1.
For part 2, note first that when the largest component is inactive, we have L1(Xt+1)≥ L1(Xt);

hence, it is sufficient to show that L1(Xt+1)≤ L1(Xt) with the desired probability.

Let μ′
t := E [A(Xt) | ¬�t , Xt]=

(
n− L̂(Xt)n2/3

)
q−1, γ ′

t :=
√
L̂(Xt) · n2/3, and J′t := [μ′

t −
γ ′
t ,μ′

t + γ ′
t ]. By Hoeffding’s inequality,

P
[
A(Xt) ∈ J′t | ¬�t , Xt

]≥ 1− exp
(−�

(
L̂(Xt)

))
.

Let G∼G(A(Xt), p), m= μ′
t + γ ′

t and let G+ ∼G
(
μ′
t + γ ′

t , p
)
, By monotonicity of the largest

component in a random graph,

P
[
L1(G)> L1(Xt) |A(Xt) ∈ J′t

]≤ P
[
L1(G+)> L1(Xt)

]
.

Rewrite G
(
μ′
t + γ ′

t , p
)
as G

(
m, 1+ε

m
)
, where

ε =
(
n− L̂(Xt)n2/3

q
+
√
L̂(Xt)n2/3

)
· q
n

− 1=
(√

L̂(Xt)q− L̂(Xt)
)
n−1/3.
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From this bound, applying Lemma 3.7 to G+, we obtain

E
[
R1(G+)

]=O
(m

ε

)
=O

(
n4/3

L̂(Xt)

)
.

Hence, E
[
L1(G+)2

]=O
(
n4/3/L̂(Xt)

)
and by Markov’s inequality

P

[
L1(G+)> L̂(Xt)n2/3

]
= P

[
L1(G+)2 > L̂(Xt)2n4/3

]
≤ E[L1(G+)2]

L̂(Xt)2n4/3
=O

(
1

L̂(Xt)3

)
.

To conclude, we observe that

P[L1(Xt+1)≤ L1(Xt) | Xt ,¬�t]
≥ P

[
L1(G)≤ L1(Xt) | Xt ,¬�t ,A(Xt) ∈ J′t

]
P
[
A(Xt) ∈ J′t | Xt ,¬�t

]
≥
(
1− e−�

(
L̂(Xt)

)) (
1−O

(
1

L̂(Xt)3

))
= 1−O

(
1

L̂(Xt)3

)
,

as desired. �
We are now ready to prove Lemma 4.4.

Proof of Lemma 4.4. Suppose R2(X0)≤D2
1n4/3 for a constant D1. Let T′ := B′ log g(n), where

B′ is a constant such that B′ log g(n)= 2q log1/α

(
g(n)

B
(
logg(n)

)8
)
and α := α(B, q, δ) is the constant

from Lemma 4.3. Let T̂ be the first time

L̂(Xt)≤max
{
B
(
logg(n)

)8,D},
where D is a large constant we choose later. Let T := T′ ∧ T̂, where the operator ∧ takes the
minimum of the two numbers. Define e(t) as the number of steps up to time t in which the largest
component of the configuration is activated.

To facilitate the notation, we define the following events. (The constants C and α are those
from Lemmas 4.3 and 4.2, respectively).

1. Let Hi denote L̂(Xi)>max
{
B
(
logg(n)

)8,D};
2. Let Fi denoteR2(Xi)≤R2(Xi−1)+ Cn4/3L̂(Xi−1)−1/2; let us assume F0 occurs;
3. Let F′

i denoteR2(Xi)≤R2(Xi−1)+ Cn4/3
(
logg(n)

)−4B−1/2; again, we assume F′
0 occurs;

4. Let Qi denote L̂(Xi)≤max
{
αe(i)L̂(X0),D

}
;

5. Let Basei be the intersection of
{
F′
0,Q0,H0

}
, ...,
{
F′
i−1,Qi−1,Hi−1

}
, and

{
F′
i ,Qi

}
.

By induction, we find a lower bound for the probability of BaseT . For the base case, note that
P[Base0] = 1 by assumption. Next we show

P [Basei+1∧T | Basei∧T]= 1−O
((
logg(n)

)−4
)
.

If T ≤ i, then Basei∧T = BaseT = Basei+1∧T , so the induction holds. If T > i, then we have Hi.
By the induction hypothesis F′

1, F
′
2, ..., F

′
i−1,

R2(Xi)≤R2(X0)+ i · Cn4/3(logg(n))−4B−1/2.

Moreover, since i< T ≤ T′ = B′ log g(n) andR2(X0)≤D2
1n4/3, we have

R2(Xi)≤D2
1n

4/3 + CB′n4/3
(
logg(n)

)−3B−1/2.
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GivenR2(Xi)=O
(
n4/3

)
and Hi, Lemma 4.2 implies that Fi+1 occurs with probability

1−O
(
L̂(Xi)−1/2

)
= 1−O

((
logg(n)

)−4
)
.

In addition, note that Fi+1 ∪Hi leads to F′
i+1. Let 1(�t) be the indicator function for the event�t .

Given Hi,Qi andR2(Xi)=O
(
n4/3

)
, Lemma 4.3 implies

L1(Xi+1)≤max{α1(�t)L1(Xi), L2(Xi)} (5)

with probability at least 1−O
(
L̂(Xt)−3)= 1−O

((
logg(n)

)−24
)
.

Dividing equation (5) by n2/3, we obtain Qi+1 for large enough D. In particular, we can choose
D to be D1 + 2. A union bound then implies

P[Basei+1∧T | Basei∧T]≥ P [Basei+1∧T | Basei,Hi]= 1−O
((
logg(n)

)−4
)
.

The probability for BaseT can then be bounded as follows:

P[BaseT]≥
T−1∏
i=0

P
[
Basei+1∧T | Basei∧T

]= T−1∏
i=0

1−O
((
logg(n)

)−4
)

= 1−O
((
logg(n)

)−3
)
.

Next, let us assume BaseT . Then we have

R2(XT)≤R2(X0)+ T′ · Cn4/3(logg(n))−4B−1/2 =R2(X0)+O
(
n4/3

(
logg(n)

)−3
)
.

Notice that if T = T̂ then the proof is complete. Consequently, it suffices to show T̂ ≤ T′ with
probability at least 1− g(n)−�(1).

Observe that K := e(T′) is a binomial random variable Bin
(
T′, 1/q

)
, whose expectation is T′

q =
B′
q log g(n). By Chernoff bound

P

[
K <

B′

2q
log g(n)

]
≤ exp

(
− B′

16q
log g(n)

)
= g(n)−�(1).

If indeed T = T′ and K ≥ B′
2q log g(n), then the event QT implies

L̂(XT)< αe(T)L̂(X0)≤ α

logα

⎛⎝ B
(
logg(n)

)8
g(n)

⎞⎠
L̂(X0)= B

(
logg(n)

)8
g(n)

L̂(X0)≤ B
(
logg(n)

)8,
which leads to T̂ ≤ T. Therefore,

P

[
T̂ > T′ | BaseT

]
≤ P

[
K <

B′

2q
log g(n)

]
= g(n)−�(1),

as desired. �
Proof of Claim 4.5. We first show the following inequality:

1.5
log gj(n)

+ 1
log gj+1(n)

≤ 1.5
log gj+1(n)

. (6)

Note that by direction computation

1.5
log gj(n)

+ 1
log gj+1(n)

= 1.5
(
logB+ log

(
loggj(n)

)8)+ log gj(n)
log gj(n) log gj+1(n)

.
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From the definition of K, we know that gj(n)> B6 for all j<K. Hence, log B< log gj(n)1/6. In
addition, recall that B is such that ∀ x≥ B6, we have x≥ (logx)48; therefore, gj(n)≥

(
loggj(n)

)48.
Then, log

(
loggj(n)

)8 ≤ log gj(n)1/6. Putting all these together,

1.5
(
logB+ log

(
loggj(n)

)8)+ log gj(n)
log gj(n) log gj+1(n)

≤ 1.5
( 1
6 log gj(n)+ 1

6 log gj(n)
)+ log gj(n)

log gj(n) log gj+1(n)

= 1.5 log gj(n)
log gj(n) log gj+1(n)

= 1.5
log gj+1(n)

The proof of part (i) is inductive. The base case (i= 0) holds trivially. For the inductive step note
that

j+1∏
i=0

(
1− c

log gi(n)

)
=
(
1− c

log gj+1(n)

) j∏
i=0

(
1− c

log gi(n)

)

≥
(
1− c

log gj+1(n)

)(
1− 1.5c

log gj(n)

)
≥ 1− c

(
1.5

log gj(n)
+ 1

log gj+1(n)

)
≥ 1− 1.5c

log gj+1(n)
,

where the last inequality follows from (6).
For part (ii) we also use induction. The base case (i= 0) can be checked straightforwardly. For

the inductive step,

j+1∑
i=0

1
log gi(n)

≤ 1
log gj+1(n)

+
j∑

i=0

1
log gi(n)

≤ 1
log gj+1(n)

+ 1.5
log gj(n)

≤ 1.5
log gi(n)

,

where the last inequality follows from (6). �

5. Coupling to the same component structure: proofs
In this section we provide the proofs of Lemmas 2.8, 2.9, 2.10 and 2.11.

5.1 Continuation of the burn-in phase: proof of Lemma 2.8
Recall that for a random-cluster configurationX, letA(X) denote the random variable correspond-
ing to the number of vertices activated by step (i) of the CM dynamics from X.

Proof of Lemma 2.8. We show that there exist suitable constants C, D> 0 and α ∈ (0, 1) such
that ifR1(Xt)≤ Cn4/3 and R̃ω(Xt)>Dn4/3ω(n)−1/2, then

R1(Xt+1)≤ Cn4/3, and (7)

R̃ω(Xt+1)≤ (1− α)R̃ω(Xt) (8)
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with probability ρ = �(1). This implies that we can maintain (7)–(8) for T steps with probability
ρT . Precisely, if we let

τ1 =min
{
t > 0 :R1(Xt)> Cn4/3

}
,

τ2 =min
{
t > 0 : R̃ω(Xt)> (1− α)R̃ω(Xt−1)

}
,

T =min
{
τ1, τ2, c logω(n)

}
,

where the constant c> 0 is chosen such that (1− α)c logω(n) =O(ω(n)−1/2), then T = c logω(n)
with probability ρc logω(n). (Note that ρc logω(n) = ω(n)−β for a suitable constant β > 0.) Hence,
R1(XT)=O

(
n4/3

)
and

R̃ω(XT)≤ R̃ω(X0) ·O
(
ω(n)−1/2)≤R1(X0) ·O

(
ω(n)−1/2)=O

(
n4/3ω(n)−1/2) .

The lemma then follows from the fact that I(XT)= �(n) with probability 1− o(1) by Lemma 3.2
and a union bound.

To establish (7)–(8), let H1
t be the event that A(Xt) ∈

[
n/q− δn2/3, n/q+ δn2/3

]
, where

δ > 0 is a constant. By Hoeffding’s inequality, for a suitable δ > 0, P[H1
t ]≥ 1− 1

8q2 since
R1(Xt)=O

(
n4/3

)
. Let Kt denote the subgraph induced on the inactivated vertices at

the step t. Observe that E
[
R̃ω(Kt)

]= (1− 1
q

)
R̃ω(Xt). Similarly, E

[
R1(Kt)− R̃ω(Kt)

]=(
1− 1

q

) (
R1(Xt)− R̃ω(Xt+1)

)
. Hence, by Markov’s inequality and independence between acti-

vation of each component, with probability at least 1/4q2, the activation sub-step is such that Gu
satisfies

R̃ω(Kt)≤
(
1− 1

2q

)
R̃ω(Xt),

and

R1(Kt)− R̃ω(Kt)≤
(
1− 1

2q

) (
R1(Xt)− R̃ω(Xt+1)

)
.

We denote this event byH2
t . It follows by a union bound thatH1

t andH2
t happen simultaneously

with probability at least 1/8q2. We assume that this is indeed the case and proceed to discuss the
percolation sub-step.

Lemma 3.10 implies that there exists C1 > 0 such that with probability 99/100,

R̃ω

(
G
(
A(Xt),

q
n

))
≤ C1

n4/3

ω(n)1/2
.

Hence,

R̃ω(Xt+1)= R̃ω(Kt)+ R̃ω

(
G
(
A(Xt),

q
n

))
≤
(
1− 1

2q

)
R̃ω(Xt)+ C1

n4/3

ω(n)1/2
≤ (1− α)R̃ω(Xt),

where the last inequality holds for a suitable constant α ∈ (0, 1) and a sufficiently large D since
R̃ω(Xt)>Dn4/3ω(n)−1/2.

On the other hand, Lemma 3.9 implies E
[
R1
(
G
(
A(Xt), qn

))]=O
(
n4/3

)
. By Markov’s inequal-

ity, there exists C2 such that, with probability 99/100,

R1
(
G
(
A(Xt),

q
n

))
≤ C2n4/3.
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For large enough C,

R1(Xt+1)≤R1(Kt)+R1
(
G
(
A(Xt),

q
n

))
≤
(
1− 1

2q

)
R1(Xt)+R1

(
G
(
A(Xt),

q
n

))
≤
(
1− 1

2q

)
Cn4/3 + C2n4/3 ≤ Cn4/3

Finally, it follows from a union bound that (7) and (8) hold simultaneously with probability at
least 98

100·8q2 . �

5.2 Coupling to the same large component structure: proof of Lemma 2.9
To prove Lemma 2.9, we use a local limit theorem to construct a two-step coupling of the CM
dynamics that reaches two configurations with the same large component structure. The construc-
tion of Markov chain couplings using local limit theorems is not common (see [24] for another
example), but it appears to be a powerful technique that may have other interesting applications.
We provide next a brief introduction to local limit theorems.

Local limit theorem. Letm be an integer. Let c1 ≤ · · · ≤ cm be integers and for i= 1, . . . ,m, let Xi
be the random variable that is equal to ci with probability r ∈ (0, 1), and it is zero otherwise. Let us
assume that X1, . . . , Xm are independent random variables. Let Sm =∑m

i=1 Xi, μm =E[Sm] and
σ 2
m =Var(Sm). We say that a local limit theorem holds for Sm if for every integer a ∈Z:

P[Sm = a]= 1√
2πσm

exp
(

− (a− μm)2

2σ 2
m

)
+ o
(
σ−1
m
)
. (9)

We prove, under some conditions, a local limit theorem that applies to the random vari-
ables corresponding to the number of active vertices from small components. Recall that for an
increasing positive function g and each integer k≥ 0, we defined the intervals

Ik =
[

ϑm2/3

2g(m)2k
,
ϑm2/3

g(m)2k

]
,

where ϑ > 0 is a fixed large constant.

Theorem 5.1. Let m be an integer. Let c1 ≤ · · · ≤ cm be integers, and suppose X1, ..., Xm are
independent random variables such that Xi is equal to ci with probability r ∈ (0, 1), and Xi
is zero otherwise. Let g :N→R be an increasing positive function such that g(m)→ ∞ and
g(m)= o(logm). Suppose cm =O

(
m2/3g(m)−1), ∑m

i=1 c2i =O
(
m4/3g(m)−1/2) and ci = 1 for all

i≤ ρm, where ρ ∈ (0, 1) is independent of m. Let � = �(m, g)> 0 be the smallest integer such that
m2/3g(m)−2� = o

(
m1/4). If for all 1≤ k≤ �, we have

∣∣{i : ci ∈ Ik(g)
}∣∣= �

(
g(m)3·2k−1

)
, then a local

limit theorem holds for Sm =∑m
i=1 Xi.

Theorem 5.1 follows from a general local limit theorem proved in [28]; a proof is given in
Appendix A. We provide next the proof of Lemma 2.9.

Proof of Lemma 2.9. First, both {Xt}, {Yt} perform one independent CM step from the initial
configurations X0, Y0. We start by establishing that X1 and Y1 preserve the structural properties
assumed for X0 and Y0.

By assumption R1(X0)=O
(
n4/3

)
, so Hoeffding’s inequality implies that the number of

activated vertices from X0 is such that

A(X0) ∈ I := [
n/q−O(n2/3), n/q+O

(
n2/3

)]
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with probability �(1). Then, the percolation step is distributed as a

G
(
A(X0),

1+ λA(X0)−1/3

A(X0)

)
random graph, with |λ| =O(1) with probability �(1). Conditioning on this event, from
Lemma 3.2 we obtain that I(X1)= �(n) w.h.p. Moreover, from Lemma 3.9 andMarkov’s inequal-
ity we obtain that R1(X1)=O

(
n4/3

)
with probability at least 99/100 and from Lemma 3.10 that

R̃ω(X1)=O
(
n4/3ω(n)−1/2) also with probability at least 99/100.

We show next that X1 and Y1, in addition to preserving the structural properties of X0 and Y0,
also have many connected components with sizes in certain carefully chosen intervals. This fact
will be crucial in the design of our coupling. When A(X0) ∈ I, by Lemmas 3.11 and 3.12 and a
union bound, for all integer k≥ 0 such that n2/3ω(n)−2k → ∞, Nk(X1,ω)= �(ω(n)3·2k−1 ) w.h.p.
(Recall, that Nk(X1,ω) denotes the number of connected components of X1 with sizes in the
interval Ik(ω).) We will also require a bound for the number of components with sizes in the
interval

J =
[
cn2/3

ω(n)6
,
2cn2/3

ω(n)6

]
,

where c> 0 is a constant such that J does not intersect any of the Ik(ω)’s intervals. LetWX (resp.,
WY ) be the set of components of X1 (resp., Y1) with sizes in the interval J. Lemma 3.11 then
implies that for some positive constants δ1, δ2 independent of n,

P

[
|WX| ≥ δ1n

(
ω(n)6

cn2/3

)3/2]
≥ 1− δ2

n

(
cn2/3

ω(n)6

)3/2
= 1−O

(
ω(n)−9) .

All the bounds above apply also to the analogous quantities for Y1 with the same respective prob-
abilities. Therefore, by a union bound, all these properties hold simultaneously for both X1 and Y1
with probability �(1). We assume that this is indeed the case and proceed to describe the second
step of the coupling, in which we shall use each of the established properties for X1 and Y1.

Recall Sω(X1) and Sω(Y1) denote the sets of connected components in X1 and Y1, respec-
tively, with sizes larger than Bω. (Recall that Bω = n2/3ω(n)−1, where ω(n)= log log log log n.)
SinceR1(X1)=O

(
n4/3

)
, the total number of components in Sω(X1) isO

(
ω(n)2

)
; moreover, it fol-

lows from the Cauchy–Schwarz inequality that the total number of vertices in the components in
Sω(X1), denoted ‖Sω(X1)‖, isO

(
n2/3ω(n)

)
; the same holds for Sω(Y1). Without loss of generality,

let us assume that ‖Sω(X1)‖ ≥ ‖Sω(Y1)‖. Let
Γ = {C ⊂WY : ‖Sω(Y1)∪ C‖ ≥ ‖Sω(X1)‖},

and let Cmin = arg minC∈Γ ‖Sω(Y1)∪ C‖. In words, Cmin is the smallest subset C of components
ofWY so that the number of vertices in the union of Sω(Y1) and C is greater than that in Sω(X1).
Since every component inWY has size at least cn2/3ω(n)−6 and |WY | = �

(
ω(n)9

)
, the number of

vertices inWY is �
(
n2/3ω(n)3

)
and so Γ �= ∅. In addition, the number of components in Cmin is

O
(
ω(n)9

)
. Let S ′

ω(Y1)= Sω(Y1)∪ Cmin and observe that the number of components in S ′
ω(Y1) is

also O
(
ω(n)9

)
and that

0≤ ‖S ′
ω(Y1)‖ − ‖Sω(X1)‖ ≤ 2cn2/3ω(n)−6.

Note that ‖Sω(X1)‖ − ‖Sω(Y1)‖ may be �
(
n2/3ω(n)

)
(i.e., much larger than ‖S ′

ω(Y1)‖ −
‖Sω(X1)‖). Hence, if all the components from Sω(Y1) and Sω(X1) were activated, the differ-
ence in the number of active vertices could be �

(
n2/3ω(n)

)
. This difference cannot be corrected

by our coupling for the activation of the small components. We shall require instead that all
the components from S ′

ω(Y1) and Sω(X1) are activated so that the difference is O
(
n2/3ω(n)−6)

instead.
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We now describe a coupling of the activation sub-step for the second step of the CM dynamics.
As mentioned, our goal is to design a coupling in which the same number of vertices are activated
from each copy. If indeedA(X1)=A(Y1), then we can choose an arbitrary bijectivemap ϕ between
the activated vertices ofX1 and the activated vertices ofY1 and use ϕ to couple the percolation sub-
step. Specifically, if u and v were activated in X1, the state of the edges {u, v} in X2 and {ϕ(u), ϕ(v)}
in Y2 would be the same. This yields a coupling of the percolation sub-step such that X2 and Y2
agree on the subgraph update at time 1.

Suppose then that in the second CM step all the components in Sω(X1) and S ′
ω(Y1) are acti-

vated simultaneously. If this is the case, then the difference in the number of activated vertices
is d ≤ 2cn2/3ω(n)−6. We will use a local limit theorem (i.e., Theorem 5.1) to argue that there is a
coupling of the activation of the remaining components inX1 and Y1 such that the total number of
active vertices in both copies is the same with probability�(1). Since all the components in Sω(X1)
and S ′

ω(Y1) are activated with probability exp
(−O

(
ω(n)9

))
, the overall success probability of the

coupling will be exp
(−O

(
ω(n)9

))
.

Now, let x1, x2, . . . , xm be the sizes of the components of X1 that are not in Sω(X1) (in increas-
ing order). Let Â(X1) be the random variable corresponding to the number of active vertices from
these components. Observe that Â(X1) is the sum ofm independent random variables, where the
j-th variable in the sum is equal to xj with probability 1/q, and it is 0 otherwise. We claim that
sequence x1, x2, . . . , xm satisfies all the conditions in Theorem 5.1.

First, note that since the number of isolated vertices in X1 is �(n),m= �(n) and consequently
xm =O

(
m2/3ω(m)−1), ∑m

i=1 x2i = R̃ω(X1)=O
(
m4/3ω(m)−1/2) and xi = 1 for all i≤ ρm, where

ρ ∈ (0, 1) is independent of m. Moreover, since Nk(X1,ω)= �
(
ω(n)3·2k−1

)
for all k≥ 1 such that

n2/3ω(n)−2k → ∞,

|{i : xi ∈ Ik(ω)}| = �
(
ω(m)3·2k−1

)
.

Since N0(X1,ω)= �
(
ω(n)3/2

)
, we also have∑m

i=1
x2i ≥N0(X1,ω) · ϑ2n4/3

4ω(n)2
= �

(
m4/3ω(m)−1/2) .

Let μX =E
[
Â(X1)

]= q−1∑m
i=1 xi and let

σ 2
X =Var

(
Â(X1)

)= q−1(1− q−1) m∑
i=1

x2i = �
(
m4/3ω(m)−1/2).

Hence, Theorem 5.1 implies that P
[
Â(X1)= a

]= �
(
σ−1
X

)
for any a ∈ [μX − σX ,μX + σX].

Similarly, we get P
[
Â(Y1)= a

]= �
(
σ−1
Y
)
for any a ∈ [μY − σY ,μY + σY ], with Â(Y1),μY and σY

defined analogously for Y1. Note that μX − μY =O
(
n2/3ω(n)−6) and σX , σY = �

(
n2/3ω(n)−1/4).

Without loss of generality, suppose σX < σY . Then for any a ∈ [μX − σX/2,μY + σX/2] and
d =O

(
n2/3ω(n)−6), we have
min

{
P
[
Â(X1)= a

]
, P
[
Â(Y1)= a− d

]}=min
{
�
(
σ−1
X

)
,�
(
σ−1
Y

)}
= �

(
σ−1
Y

)
.

Hence, there exists a coupling P of Â(X1) and Â(Y1) so that P
[
Â(X1)= a, Â(Y1)= a− d

]=
�
(
σ−1
Y
)
for all a ∈ [μX − σX/2,μY + σX/2]. Therefore, there is a coupling of Â(X1) and Â(Y1)

such that

P
[
Â(X1)− Â(Y1)= d

]= �(σX/σY) = �(1).
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Putting all these together, we deduce that A(X1)=A(Y1) with probability exp
(−O

(
ω(n)9

))
.

If this is the case, the edge re-sampling step is coupled bijectively (as described above) so that
Sω(X2)= Sω(Y2).

It remains for us to guarantee the additional desired structural properties of X2 and Y2, which
follow straightforwardly from the random graph estimates stated in Section 3. First note that by
Hoeffding’s inequality, with probability �(1),∣∣∣∣A(X1)− n

q
− (q− 1)‖Sω(X1)‖

q

∣∣∣∣=O
(
n2/3

)
.

Hence, in the percolation sub-step the active subgraph is replaced by F ∼
G
(
A(X1), 1+λA(X1)−1/3

A(X1)

)
, where |λ| =O(ω(n)) with probability �(1) since ‖Sω(X1)‖ =

O
(
n2/3ω(n)

)
. Conditioning on this event, since the components of F contribute to both X2

and Y2, Corollary 3.12 implies that w.h.p. N̂k(2,ω(n)) = �
(
ω(n)3·2k−1) for all k≥ 1 such that

n2/3ω(n)−2k → ∞. Moreover, from Lemma 3.2 we obtain that I(X2)= �(n) w.h.p. From
Lemma 3.4 and Markov’s inequality, we obtain that R2(X2)=O

(
n4/3

)
with probability at least

99/100 and from Lemma 3.10 that R̃ω(X2)=O
(
n4/3ω(n)−1/2) also with probability at least

99/100. All these bounds apply also to the analogous quantities for Y2 with the same respective
probabilities.

Finally, we derive the bound for L1(X2) and L1(Y2). First, notice L1(F) is stochastically domi-
nated by L1(F′), where F′ ∼G

(
A(X1), 1+|λ|A(X1)−1/3

A(X1)

)
. Under the assumption that |λ| =O(ω(n)),

if |λ| → ∞, then Corollary 3.6 implies that L1(F′)=O(|λ|A(X1)2/3)=O
(
n2/3ω(n)

)
w.h.p.; oth-

erwise, |λ| =O(1) and by Lemma 3.9 and Markov’s inequality, L1(F′)=O
(
n2/3

)
with probability

at least 99/100. Thus, L1(F)=O
(
n2/3ω(n)

)
with probability at least 99/100. We also know that

the largest inactivated component in X1 has size less than n2/3ω(n)−1, so L1(X2)=O
(
n2/3ω(n)

)
with probability at least 99/100. The same holds for Y2. Therefore, by a union bound, all these
properties hold simultaneously for both X2 and Y2 with probability �(1), as claimed. �

5.3 Re-contracting largest component: proof of Lemma 2.10
In Section 5.2, we designed a coupling argument to ensure that the largest components of both
configurations have the same size. For this, we needed to relax our constraint on the size of the
largest component of the configurations. In this section we prove Lemma 2.10, which ensures that
after O(logω(n)) steps the largest components of each configuration have size O

(
n2/3

)
again.

The following lemma is the core of the proof Lemma 2.10 and it may be viewed as a gen-
eralisation of the coupling from the proof of Lemma 2.9 using the local limit theorem from
Section 5.2.

We recall some notation from the proof sketch. Given two random-cluster configurations Xt
and Yt , Wt is maximal matching between the components of Xt and Yt that only matches com-
ponents of equal size to each other. We useM(Xt),M(Yt) for the components inWt from Xt , Yt ,
respectively, D(Xt), D(Yt) for the complements of M(Xt), M(Yt), and Zt =∑C∈D(Xt)∪D(Yt) |C|2.
For an increasing positive function g and each integer k≥ 1, define N̂k(t, g) := N̂k(Xt , Yt , g) as the
number of matched pairs inWt whose component sizes are in the interval

Ik(g)=
[

ϑn2/3

2g(n)2k
,
ϑn2/3

g(n)2k

]
,

where ϑ > 0 is a fixed large constant (independent of n).
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Lemma 5.2. There exists a coupling of the activation sub-step of the CMdynamics such that A(Xt)=
A(Yt) with at least �

(
1

ω(n)

)
probability, provided Xt and Yt are random-cluster configurations

satisfying

1. Sω(Xt)= Sω(Yt);

2. Zt =O
(

n4/3
ω(n)1/2

)
;

3. N̂k(Xt , Yt ,ω(n))= �
(
ω(n)3·2k−1

)
for all k≥ 1 such that n2/3ω(n)−2k → ∞;

4. I(Xt), I(Yt)= �(n).

Proof. The activation coupling has two parts. First we use the maximal matching Wt to couple
the activation of a subset of the components in M(Xt) and M(Yt). Specifically, let � be defined
as in Theorem 5.1; for all k ∈ [1, �], we exclude �

(
ω(n)3·2k−1) pairs of components of size in the

interval Ik(ω) and we exclude �(n) pairs of matched isolated vertices. (These components exist
by Assumptions 3 and 4.) All other pairs of components matched by Wt are jointly activated (or
not). Hence, the number of vertices activated from Xt in this first part of the coupling is the same
as that from Yt .

Let C(Xt) and C(Yt) denote the sets containing the components in Xt and components in Yt
not considered to be activated in the first step of the coupling. This includes all the components
fromD(Xt) andD(Yt), and all the components fromM(Xt) andM(Yt) excluded in the first part of
the coupling. Let A′(Xt) and A′(Yt) denote the number of activated vertices from C(Xt) and C(Yt)
respectively. The second part is a coupling of the activation sub-step in a way such that

P
[
A′(Xt)=A′(Yt)

]= �
(
ω(n)−1).

Let mx := |C(Xt)| = �(n), and similarly for my := |C(Yt)|. Let C1 ≤ · · · ≤ Cmx (resp., C′
1 ≤

· · · ≤ C′my) be sizes of components in C(Xt) (resp., C(Yt)) in ascending order. For all i≤mx, let
Xi be a random variable that equals to Ci with probability 1/q and 0 otherwise, which corre-
sponds to the number of activated vertices from ith component in C(Xt). Note that X1, . . . ,Xmx
are independent. We check that X1, . . . ,Xmx satisfy all other conditions of Theorem 5.1.

Assumption Sω(Xt)= Sω(Yt) and the first part of the activation ensure that

Cmx ≤ Bω =O
(
n2/3ω(n)−1)=O

(
m2/3

x ω(mx)−1) .
Observe also that there exists a constant ρ such that Ci = 1 for i≤ ρmx and |{i : Ci ∈ Ik(ω)}| =
�
(
ω(n)3·2k−1

)
for 1≤ k≤ �; lastly, from assumption Zt =O

(
n4/3

ω(n)1/2

)
, we obtain

mx∑
i=1

C2i ≤ Zt +O(ρmx)+
�∑

k=1

ϑn4/3

ω(n)2k+1 ·O
(
ω(n)3·2k−1

)

=O

(
m4/3

x√
ω(mx)

)
+O

(
�∑

k=1

m4/3
x

ω(mx)2k−1

)

=O

(
m4/3

x√
ω(mx)

)
+O

(
�∑

k=1

m4/3
x

ω(mx)k

)

=O

(
m4/3

x√
ω(mx)

)
+O

(
m4/3

x
ω(mx)

)
=O

(
m4/3

x√
ω(mx)

)
. (10)
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Therefore, if μx =E
[∑mx

i=1 Xi
]
and σ 2

x =Var
(∑mx

i=1 Xi
)
, Theorem 5.1 implies that for any x ∈

[μx − σx,μx + σx],

P
[
A′(Xt)= x

]= P

[ mx∑
i=1

Xi = x

]
= 1√

2πσx
exp
(

− (x− μx)2

2σ 2
x

)
+ o
(

1
σx

)
= �

(
1
σx

)
.

Similarly, we get that P
[
A′(Yt)= y

]= �(σ−1
y ) for any y ∈ [μy − σy,μy + σy], with μy and

σy defined analogously. Without loss of generality, suppose σy ≤ σx. Since μx = μy, for x ∈[
μx − σy,μx + σy

]
, we obtain

min
{
P
[
A′(Xt)= x

]
, P
[
A′(Yt)= x

]}= �

(
1
σx

)
.

Hence, we can couple (A′(Xt),A′(Yt)) so that P[A′(Xt)=A′(Yt)= x]= �(σ−1
x ) for all x ∈ [μx −

σy,μx + σy]. Consequently, under this coupling,

P
[
A′(Xt)=A′(Yt)

]= �

(
σy

σx

)
.

Since X1, . . . ,Xmx are independent, σ 2
x = �

(∑mx
i=1 C2i

)
, and similarly σ 2

y = �
(∑my

i=1 C′2
i

)
.

Hence, inequality (10) gives an upper bound for σ 2
x ; meanwhile, a lower bound for σ 2

y can be
obtained by counting components in the largest interval:

my∑
i=1

C′2
i ≥

∑
i : C′ i∈I1(ω)

C′2
i ≥ Bn4/3

ω(n)4
· �(ω(n)3)= �

(
n4/3

ω(n)

)
.

Therefore,

P
[
A′(Xt)=A′(Yt)

]= �

(
n2/3

ω(n)1/2
· ω(mx)1/4

m2/3
x

)
= �

(
1

ω(n)

)
,

as desired. �
We are now ready to prove Lemma 2.10.

Proof of Lemma 2.10. Let C1 be a suitable constant that we choose later. We wish to maintain the
following properties for all t ≤ T := C1 logω(n):

1. Sω(Xt)= Sω(Yt);

2. Zt =O
(

n4/3
ω(n)1/2

)
;

3. N̂k(Xt , Yt ,ω(n))= �
(
ω(n)3·2k−1

)
for all k≥ 1 such that n2/3ω(n)−2k → ∞;

4. I(Xt), I(Yt)= �(n);
5. R2(Xt),R2(Yt)=O

(
n4/3

)
;

6. L1(Xt)≤ αtL1(X0), L1(Yt)≤ αtL1(Y0) for some constant α independent of t.

By assumption, X0 and Y0 satisfy these properties. Suppose that Xt and Yt satisfy these prop-
erties at step t ≤ T. We show that there exists a one-step coupling of the CM dynamics such that
Xt+1 and Yt+1 preserve all six properties with probability �

(
ω(n)−1).

We provide the high-level ideas of the proof first. We will crucially exploit the coupling from
Lemma 5.2. AssumingA(Xt)=A(Yt), properties 1 and 2 hold immediately at t + 1, and properties
3 and 4 can be shown by a ‘standard’ approach used throughout the paper. In addition, we reuse
simple arguments from previous stages to guarantee properties 5 and 6.
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Consider first the activation sub-step. By Lemma 5.2, A(Xt)=A(Yt) with probability at least
�(ω(n)−1). If the number of vertices in the percolation is the same in both copies, we can cou-
ple the edge re-sampling so that the updated part of the configuration is identical in both copies.
In other words, all new components created in this step are automatically contained in the com-
ponent matching Wt+1; this includes all new components whose sizes are greater than Bω. Since
none of the new components contributes to Zt+1, we obtain Zt+1 ≤ Zt =O

(
n4/3

ω(n)1/2

)
. Therefore,

A(Xt)=A(Yt) immediately implies properties 1 and 2 at time t + 1.
With probability 1/q, the largest components of Xt and Yt are activated simultaneously.

Suppose that this is the case. By Hoeffding’s inequality, for constant K > 0, we have

P
[|A(Xt)−E [A(Xt)]| ≥Kn2/3

]≤ exp
(

−K2n4/3

R2(Xt)

)
.

Property 5 and the observation that E [A(Xt)]= L1(Xt)+ n−L1(Xt)
q imply that

P

[∣∣∣∣A(Xt)− L1(Xt)− n− L1(Xt)
q

∣∣∣∣≥Kn2/3
]

=O(1).

By noting that L1(Y0), L1(X0)≤ n2/3ω(n), property 6 implies that

P

[
A(Xt) · qn ≤ 1+ (q− 1)ω(n)+Kq

n1/3

]
= �(1). (11)

We denote A(Xt)=A(Yt) by m. By inequality (11), with at least constant probability, the ran-
dom graph for both chains is H ∼G

(
m, 1+λm−1/3

m

)
, where λ ≤ ω(m). Let us assume that is the

case. Corollary 3.12 ensures that there exists a constant b> 0 such that, with probability at least
1−O

(
ω(n)−3), Nk(H,ω(n))≥ bω(n)3·2k−1 for all k≥ 1 such that n2/3ω(n)−2k → ∞. Since com-

ponents in H are simultaneously added to both Xt+1 and Yt+1, property 3 is satisfied. Moreover,
Lemma 3.2 implies that with high probability �(n) isolated vertices are added to Xt+1 and Yt+1,
and thus property 4 is satisfied at time t + 1.

In addition, Lemma 3.4 and Markov’s inequality imply that there exists a constant C2 such
that

P
[
R2(Xt+1)= C2n4/3

]≥ 99
100

;

By Lemma 4.3, there exists α < 1 such that with at least probability 99/100

L1(Xt+1)≤max{αL1(Xt), L2(Xt)},
where α is independent of t and n. Potentially, property 6 may not hold when αL1(Xt)<
L1(Xt+1)≤ L2(Xt)=O

(
n2/3

)
, but then we stop at this point. (We will argue that in this case all

the desired properties are also established shortly.) Hence, we suppose otherwise and establish
properties 5 and 6 for Xt+1. Similar bounds hold for Yt+1.

By a union bound,Xt+1 and Yt+1 have all six properties with probability at least 92/100, assum-
ing the activation sub-step satisfies all the desired properties, and thus overall with probability
�
(
ω(n)−1). Inductively, the probability that XT and YT satisfy the six properties is

O(ω(n))−C1 logω(n) = exp
(
logO(ω(n))−C1 logω(n)

)
= exp

(−O
(
(logω(n))2

))
.

Suppose XT and YT have the six properties. By choosing C1 > 1/ log 1
α
, properties 5 and 6

imply

R1(XT)= L1(XT)2 +R2(XT)≤
(
αC1 logω(n)n2/3ω(n)

)2 +O
(
n4/3

)=O
(
n4/3

)
,
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andR1(YT)=O
(
n4/3

)
. While the lemma almost follows from these properties, notice that prop-

erty 3 does not match the desired bounds on the components in the lemma statement. To fix this
issue, we perform one additional step of the coupling.

Consider the activation sub-step at T. Assume again A(XT)=A(YT) =:m′. By Hoeffding’s
inequality, for some constant K ′, we obtain

P

[∣∣∣m′ · q
n

− 1
∣∣∣> K ′

n1/3

]
= P

[∣∣∣∣m′ − n
q

∣∣∣∣>K ′n2/3
]

≤ exp

(
−K ′2n4/3

R1(XT)

)
=O(1). (12)

Let λ′ := (m′qn−1 − 1) ·m′1/3. Inequality (12) implies with at least constant probability the
random graph in the percolation step isH′ ∼G

(
m′, 1+λ′m′−1/3

m′
)
, where λ′ ≤K ′ andm′ ∈ (n/2q, n).

If so, Corollary 3.12 ensures with high probability N̂k(XT+1, YT+1,ω(n)1/2)= �
(
ω(n)3·2k−2

)
for

all k≥ 1 such that n2/3ω(n)−2k−1 → ∞.
By the preceding argument, with �(ω(n)−1) probability, the six properties are still valid at

step T + 1, so the proof is complete. We note that if we had to stop earlier because property 6
did not hold, we perform one extra step (as above) to ensure that N̂k

(
XT+1, YT+1,ω(n)1/2

)=
�
(
ω(n)3·2k−2

)
for all k≥ 1 such that n2/3ω(n)−2k−1 → ∞. �

5.4 A four-phase analysis using randomwalks couplings: proof of Lemma 2.11
We introduce first some notation that will be useful in the proof of Lemma 2.11. Let S(X0)= ∅,
and given S(Xt), S(Xt+1) is obtained as follows:

i. S(Xt+1)= S(Xt);
ii. every component in S(Xt) activated by the CMdynamics at time t is removed from S(Xt+1);

and
iii. the largest new component (breaking ties arbitrarily) is added to S(Xt+1).

Let C(Xt) denote the set of connected components of Xt and note that S(Xt) is a subset of C(Xt);
we use |S(Xt)| to denote the total number of vertices of the components in S(Xt). Finally, let

Q(Xt)=
∑

C∈C(Xt)\S(Xt)
|C|2.

In the proof of Lemma 2.11, we use the following lemmas.

Lemma 5.3. Let r be an increasing positive function such that r(n)= o(n1/15) and let c> 0
be a sufficiently large constant. Suppose |S(Xt)| ≤ ctn2/3r(n), Q(Xt)≤ tn4/3r(n)+O

(
n4/3

)
and

t ≤ r(n)/ log r(n). Then, with probability at least 1−O
(
r(n)−1), |S(Xt+1)| ≤ c(t + 1)n2/3r(n) and

Q(Xt+1)≤ (t + 1)n4/3r(n)+O
(
n4/3

)
.

Lemma 5.4. Let f be a positive function such that f (n)= o
(
n1/3

)
. Suppose a configuration Xt satisfies

R1(Xt)=O
(
n4/3f (n)2(logf (n))−1). Let m denote the number of activated vertices in this step, and

λ := (mq/n− 1) ·m1/3. With probability 1−O
(
f (n)−1), m ∈ (n/2q, n) and |λ| ≤ f (n).

Lemma 5.5. Let g and h be two increasing positive functions of n. Assume g(n)= o(n1/6). Let Xt
and Yt be two random-cluster configuration such that N̂k(Xt , Yt , g)≥ bg(n)3·2k−1 for some fixed
constant b> 0 independent of n and for all k≥ 1 such that n2/3g(n)−2k → ∞. Assume also that
Zt ≤ Cn4/3h(n)−1 for some constant C > 0. Lastly, assume I(Xt), I(Yt)= �(n). Then for every
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positive function η there exists a coupling for the activation sub-step of the components of Xt and
Yt such that

P[A(Xt)=A(Yt)]≥ 1− 4e−2η(n) −
√
g(n)η(n)
h(n)

− δ

g(n)
,

for some constant δ > 0 independent of n.

The proofs of these lemmas are given in Section 5.4.1. In particular, as mentioned, to prove
Lemma 5.5 we use a precise estimate on the maximum of a random walk on Z with steps of
different sizes (see Theorem 5.7).

Proof of Lemma 2.11. The coupling has four phases: in phase 1 we will consider
O(log log log log n) steps of the coupling, O(log log log n) steps in phase 2, O(log log n) steps in
phase 3 and phase 4 consists of O(log n) steps.

We will keep track of the random variables R1(Xt),R1(Yt), I(Xt), I(Yt), Zt and N̂k(t, g) for a
function g we shall carefully choose for each phase, and use these random variables to derive
bounds on the probability of various events.

Phase 1. We set g1(n)= ω(n)1/2 and h1(n)=K2ω(n)1/2 where K > 0 is a constant we choose.
Let a1 := 1− 1

2q and let T1 := −12 loga1 (log log log n), and we fix t < T1. Suppose we have

R1(Xt)+R1(Yt)≤ C1n4/3, I(Xt), I(Yt)= �(n), and N̂k(t, g1)= �
(
g1(n)3·2

k−1
)
for all k≥ 1 such

that n2/3g1(n)−2k → ∞, where C1 > 0 is a large constant that we choose later.
By Lemma 5.5, for a sufficiently large constant K > 0, we obtain a coupling for the activation

of Xt and Yt such that the same number of vertices are activated in Xt and Yt , with probability at
least

1− 4e−2K −
√

Kω(n)1/2
K2ω(n)1/2

− δ

ω(n)1/2
≥ 1− 1

16q2
.

By Lemma 5.4, A(Xt) ∈ (n/2q, n) and λ := (A(Xt)q/n− 1) ·A(Xt)1/3 =O(1) with probability at
least 1− 1

16q2 . It follows a union bound that A(Xt)=A(Yt), A(Xt) ∈ (n/2q, n) and λ =O(1) with
probability 1− 1

8q2 . We call this eventH1
t .

LetD′
t denote the inactivated components inD(Xt)∪D(Yt) at the step t, andM′

t the inactivated
components inM(Xt)∪M(Xt). Observe that

E

[∑
C∈D′

t
|C|2
]

=
(
1− 1

q

)∑
C∈D(Xt)∪D(Yt) |C|2 =

(
1− 1

q

)
Zt .

Similarly,

E

[∑
C∈M′

t
|C|2
]

=
(
1− 1

q

)∑
C∈M(Xt)∪M(Yt)

|C|2 =
(
1− 1

q

)
(R1(Xt)+R1(Yt)− Zt) .

Hence, by Markov’s inequality and independence between activation of components in D′
t and

components inM′
t , with probability at least 1/4q2, the activation sub-step is such that∑

C∈D′
t
|C|2 ≤

(
1− 1

2q

)
Zt ,

and ∑
C∈M′

t
|C|2 ≤

(
1− 1

2q

)
(R1(Xt)+R1(Yt)− Zt) .
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We denote this event by H2
t . By a union bound, H1

t and H2
t happen simultaneously with

probability 1/8q2.
Suppose all these events indeed happen; then we couple the percolation step so that the com-

ponents newly generated in both copies are exactly identical, and we claim that all of the following
holds with at least constant probability:

1. R1(Xt+1)+R1(Yt+1)≤ C1n4/3;
2. Zt+1 ≤ a1Zt ;
3. I(Xt+1), I(Yt+1)= �(n);

4. N̂k(t + 1, g1)= �
(
g1(n)3·2

k−1
)
for all k≥ 1 such that n2/3g1(n)−2k → ∞.

First, note that Zt+1 can not possibly increase because the matchingWt+1 can only grow under
the coupling if indeed A(Xt)=A(Yt). Observe that only the inactivated components in Xt and Yt
would contribute to Zt+1, so

Zt+1 =
∑

C∈D′
t
|C|2 ≤ a1Zt .

Next, we establish the properties 3 and 4. For this, notice that the percolation step is dis-
tributed as a H ∼ G

(
A(Xt), 1+λA(Xt)−1/3

A(Xt)

)
random graph. Corollary 3.12 implies Nk(H, g1)=

�
(
g1(n)3·2

k−1
)
for all k≥ 1 such that n2/3g1(n)−2k → ∞, with probability at least 1−O

(
g1(n)−3).

Moreover, Lemma 3.2 implies that with high probability I(H)= �(n). Since the percolation step
is coupled, this implies that both Xt+1 and Yt+1 will have all the components in H, so we have
N̂k(t + 1, g1)= �

(
g1(n)3·2

k−1
)
for all k≥ 1 such that n2/3g1(n)−2k → ∞, and I(Xt+1), I(Yt+1)=

�(n), w.h.p.
Finally, assuming that |λ| =O(1), by Lemma 3.9 and Markov’s inequality, there exists C2 > 0

such that E [R1(H)]= C2n4/3 with probability at least 99/100. Then

R1(Xt+1)+R1(Yt+1)=
∑

C∈D′
t
|C|2 +

∑
C∈M′

t
|C|2 +R1(H)

≤ a1 (R1(Xt)+R1(Yt)) + C2n4/3 ≤ a1C1n4/3 + C2n4/3 ≤ C1n4/3,

for large enough C1. A union bound implies that all four properties hold with at least constant
probability � > 0.

Thus, the probability that at each step of update all four properties can be maintained
throughout Phase 1 is at least

�T1 = �
−12 loga1 (log log log n) = (log log log n)−12 log� (a1) .

If property 2 holds at the end of Phase 1, we have

ZT1 =O
(

n4/3

h1(n)
· aT11

)
=O

(
n4/3

h1(n)
· a−12 loga1 (log log log n)

1

)
=O

(
n4/3

(log log log n)12

)
.

To facilitate discussions in Phase 2, we show that the two copies of chains satisfy one
additional property at the end of Phase 1. In particular, there exist a lower bound for the
number of components in a different set of intervals. We consider the last percolation step in
Phase 1. Then, Corollary 3.12 with g2(n) :=

(
log log log n · log log log log n)2 implies N̂k(T1, g2)=

�
(
g2(n)3·2

k−1
)
for all k≥ 1 such that n2/3g2(n)−2k → ∞, with high probability.
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Recall S(X) andQ(X) defined at the beginning of Section 5.4. In Phase 2, 3 and 4, a new element
of the argument is to also control the behaviour S(Xt) and Q(Xt). We provide a general result that
will be used in the analysis of the three phases:

Claim 5.6. Given positive increasing functions T, g, h and r that tend to infinity and satisfy

1. g(n)= o(n1/6);
2. T = o(g);
3. r(n)= o(n1/15);
4. T(n)2 · r(n)2 ≤ g(n)2/ log g(n);
5. T(n)≤ r(n)/ log r(n);
6. g(n) log g(n)≤ h(n)1/3.

and random-cluster configurations X0, Y0 satisfying

1. Z0 =O
(
n4/3
h(n)

)
;

2. |S(X0)|, |S(Y0)| ≤ n2/3r(n);
3. Q(X0),Q(Y0)=O(n4/3r(n));
4. I(X0), I(Y0)= �(n);

5. N̂k(0, g)= �
(
g(n)3·2k−1

)
for all k≥ 1 such that n2/3g(n)−2k → ∞.

There exists a coupling of CM steps such that after T = T(n) steps, with �(1) probability,

1. ZT =O
(

n4/3
aT(n)

)
;

2. |S(XT)|, |S(YT)| =O(n2/3r(n)T(n));
3. Q(XT),Q(YT)=O(n4/3r(n)T(n));
4. I(XT), I(YT)= �(n);

5. If a function g′ satisfies g′ ≥ g and g′(n)= o
(
n1/3

)
, then N̂k(T, g′)= �

(
g′(n)3·2k−1

)
for all

k≥ 1 such that n2/3g′(n)−2k → ∞.

Proof of this claim is provided later in Section 5.4.1.
Phase 2. Let a= q/(q− 1). For Phase 2, we set g2(n)=

(
log log log n · log log log log n)2,

g3(n)= (log log n · log log log n)2, h2(n)=
(
log log log n

)12, r2(n)= 13 loga log log n ·
log loga log log n and T2 = T1 + 12 loga log log n. Notice these functions satisfy the conditions of
Claim 5.6:

1. g2(n)= o(n1/6);
2. T2 − T1 = o(g2(n));
3. r2(n)= o(n1/15);
4. (T2 − T1)2r2(n)2 ≤ 106(loga log log n)4( log loga log log n)2 ≤ g2(n)2/ log g2(n);
5. T2 − T1 = 12 loga log log n≤ r2(n)/ log r2(n);

6. g2(n)/ log g2(n)≤
(
log log log n

)4 = h2(n)1/3.

Suppose that we have all the desired properties from Phase 1, so at the beginning of Phase 2 we
have:
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1. ZT1 =O
(

n4/3
(log log log n)12

)
=O

(
n4/3
h2(n)

)
;

2. S(XT1 )≤
√
R1(XT1 )≤ n2/3r2(n), S(YT1 )=

√
R1(YT1 )≤ n2/3r2(n);

3. I(XT1 )= �(n), I(YT1 )= �(n);
4. Q(XT1 )≤ R1(XT1 )=O

(
n4/3

)
, Q(YT1 )≤ R1(YT1 )=O

(
n4/3

)
;

5. N̂k(T1, g2)= �
(
g2(n)3·2

k−1
)
for all k≥ 1 such that n2/3g2(n)−2k → ∞.

Claim 5.6 implies there exists a coupling such that with �(1) probability

1. ZT2 =O
(

n4/3
(log log n)12

)
;

2. |S(XT2 )| ≤ n2/3r2(n) loga log log n, |S(YT2 )| ≤ n2/3r2(n) loga log log n;
3. Q(YT2 )=O(n4/3r2(n) loga log log n), Q(XT2 )=O(n4/3r2(n) loga log log n);
4. I(XT2 )= �(n), I(YT2 )= �(n);

5. N̂k(T2, g3)= �(g3(n)3·2
k−1 ) for all k≥ 1 such that n2/3g3(n)−2k → ∞.

Phase 3. Suppose the coupling in Phase 2 succeeds.
For Phase 3, we set the functions as g3(n)=

(
log log n · log log log n)2, g4(n)= (log n ·

log log n)2, h3(n)=
(
log log n

)12, r3(n)= 20 loga log n · log loga log n and T3 = T2 + 10 loga log n.
Claim 5.6 implies there exists a coupling such that with �(1) probability

1. ZT3 =O
(

n4/3
(log n)10

)
;

2. |S(XT3 )| =O(n2/3r3(n) loga log n), |S(YT3 )| =O(n2/3r3(n) loga log n);
3. Q(XT3 )=O(n4/3r3(n) loga log n), Q(YT3 )=O(n2/3r3(n) loga log n);
4. I(XT3 )= �(n), I(YT3 )= �(n),

5. N̂k(T3, g4)= �(g4(n)3·2
k−1 ) for all k≥ 1 such that n2/3g4(n)−2k → ∞.

Phase 4. Suppose the coupling in Phase 3 succeeds. Let C2 be a constant greater than 4/3.
We set g4(n)=

(
log n · log log n)2, h4(n)= (log n)10, r4(n)= 2C2 loga n · log loga n and T4 = T3 +

C2 loga n. Claim 5.6 implies there exists a coupling such that with �(1) probability ZT4 < 1. Since
ZT4 is a non-negative integer value random variable, P[ZT4 < 1]= P[ZT4 = 0].When ZT4 = 0,XT4
and YT4 have the same component structure.

Therefore, if the coupling in every phase succeeds, XT4 and YT4 have the same compo-
nent structure. The probability that coupling in Phase 1 succeeds is

(
log log log n

)−O(log�(1/a1)).
Conditional on the success of their previous phases, couplings in Phase 2, 3 and 4 succeed
respectively with at least constant probability. Thus, the entire coupling succeeds with probability

(
log log log n

)−O
(
log�(1/a1)

)
· �(1) · �(1) · �(1)=

(
1

log log log n

)β

,

where β is a positive constant.

5.4.1 Proof of lemmas used in Section 5.4

Proof of Claim 5.6. We will show that given the following properties at any time t ≤ T(n), we can
maintain them at time t + 1 with probability at least 1−O(g(n)−1)−O(r(n)−1):

1. Zt =O
(
n4/3
h(n)

)
;

2. |S(Xt)|, |S(Yt)| ≤ C3tn2/3r(n) for a constant C3 > 0;
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3. Q(Xt),Q(Yt)≤ tn4/3r(n)+O
(
n4/3

)
;

4. I(Xt), I(Yt)= �(n);
5. N̂k(t, g)= �(g(n)3·2k−1) for all k≥ 1 such that n2/3g(n)−2k → ∞.

By assumption, t ≤ T(n)≤ r(n)/ log r(n). According to Lemma 5.3, Xt+1 and Yt+1 retain
properties 2 and 3 with probability at least 1−O(r(n)−1).

Given properties 1, 4 and 5, Lemma 5.5 (with η = log g(n)/2) implies that there exist a constant
δ > 0 and a coupling for the activation sub-step of Xt and Yt

P [A(Xt)=A(Yt)]≥ 1− 4e− log g(n) −
√
g(n) log g(n)

2h(n)
− δ

g(n)

= 1−O
(

1
h(n)1/3

)
−O

(
1

g(n)

)
= 1−O

(
1

g(n)

)
.

Note that condition g(n) log g(n)≤ h(n)1/3 is used to deduce the inequality above. Suppose
A(Xt)=A(Yt); we couple components generated in the percolation step and preclude the growth
of Zt . Hence, Zt+1 ≤ Zt =O

(
n4/3
h(n)

)
, and property 1 holds immediately.

Recall that R1(X)=Q(X)+ |S(X)|2. Properties 2 and 3 imply that R1(Xt)=O(t2n4/3r(n)2)
and R1(Yt)=O(t2n4/3r(n)2). Since t < T(n) and T(n)2 · r(n)2 ≤ g(n)2/ log g(n), we can upper
boundR1(Xt) andR1(Yt) by

O
(
n4/3 (T(n) · r(n))2)=O

(
n4/3g(n)2

log g(n)

)
.

We establish properties 4 and 5 with a similar argument as the one used in Phase 1.
Let Ht ∼G(A(Xt), n/q). Due to Lemma 5.4 (with f = g) and Corollary 3.12 with probabil-

ity at least 1−O(g(n)−1), Nk(Ht , g)= �(g(n)3·2k−1) for all k≥ 1 such that n2/3g(n)−2k → ∞.
In addition, I(Ht)= �(n) with probability 1−O(n−1) by Lemma 3.2. Since the coupling adds
components in Ht to both Xt+1 and Yt+1, properties 4 and 5 are maintained at time t + 1, with
probability at least 1−O(g(n)−1).

A union bound concludes that at time t + 1 we can maintain all five properties with probability
at least 1−O(g(n)−1)−O(r(n)−1). Hence, the probability that XT(n) and YT(n) still satisfy the
listed 5 properties above is[

1−O
(

1
g(n)

)
−O

(
1

r(n)

)]T(n)
= 1− o(1).

It remains for us to show the bound for ZT and that for a given function g′ satisfying g′ ≥ g and
g′(n)= o

(
n1/3

)
, then N̂k(T, g′)= �

(
g′(n)3·2k−1

)
for all k≥ 1 such that n2/3g′(n)−2k → ∞.

Conditioned on A(Xt)=A(Yt) for every activation sub-step in this phase, a bound for ZT can
be obtained through a first moment method. On expectation Zt contract by a factor of 1

a = 1− 1
q

each step. Thus, we can recursively compute the expectation of E[ZT]:

E[ZT]=E[E[ZT | ZT−1]]= 1
a

·E[ZT−1]= ...=
(
1
a

)T
E[Z0]=O

((
1
a

)T
· n

4/3

h(n)

)
. (13)

It follows fromMarkov’s inequality that with at least constant probability

ZT =O
(
n4/3

aT(n)

)
.
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Finally, in the last percolation step in this phase, Corollary 3.12 guarantees that with high prob-
ability N̂k(T, g′)= �(g′(n)3·2k−1 ) for all k≥ 1 such that n2/3g′(n)−2k → ∞. The claim follows from
a union bound. �
Proof of Lemma 5.3. We establish first the bound for |S(Xt+1)|. Suppose s vertices are activated
from S(Xt). By assumption

Q(Xt)≤ tn4/3r(n)+O
(
n4/3

)≤ 2n4/3r(n)2

log r(n)
,

for sufficiently large n. Hence, Hoeffding’s inequality implies that

A(Xt)≤ s+ n− |S(Xt)|
q

+ n2/3r(n)≤ n
q

+ (q− 1)s
q

+ n2/3r(n),

with probability at least 1−O(r(n)−1).
We consider two cases. First suppose that δ(q− 1)s/q≥ n2/3r(n), where δ > 0 is a sufficiently

small constant we choose later. Then,

A(Xt)≤ n
q

+ (1+ δ)(q− 1)s
q

=:M.

The largest new component corresponds to the largest component of a G(A(Xt), q/n) random
graph. Let N be the size of that component, and let NM be the size of the largest component of
a G
(
M, 1+ε

M
)
random graph, where ε = qM/n− 1. By Fact 3.1, N is stochastically dominated by

NM . Then by Corollary 3.6 there exists a constant c> 0 such that

P [N > (2+ ρ)εM]≤ P[NM > (2+ ρ)εM]=O(e−cε3M), (14)

for any ρ < 1/10. Now,

εM = (1+ δ)(q− 1)s
n

(
n
q

+ (1+ δ)(q− 1)s
q

)
= (1+ δ)(q− 1)s

q
+O

(
s2

n

)
≤ (1+ δ)(q− 1)s

q
+O(n1/3r(n)4),

≤ (1+ 2δ)(q− 1)s
q

, (15)

where for the second to last inequality we use that s≤ |S(Xt)| =O(n2/3r(n)2), and the last
inequality follows from the assumptions δ(q−1)s

q ≥ n2/3r(n) and r(n)= o
(
n1/15

)
. Also, since s=

O(n2/3r(n)2) and r(n)= o
(
n1/15

)
,

ε3M =
[
(1+ δ)(q− 1)s

n

]3 (n
q

+ (1+ δ)(q− 1)s
q

)
= �

(
s3

n2
+ s4

n3

)
= �(r(n)3). (16)

Hence, (14), (15) and (16) imply

P

[
N ≥ (2+ ρ)(1+ 2δ)(q− 1)s

q

]
= e−�(r(n)3).

Since q< 2, for sufficiently small ρ and δ

(2+ ρ)(1+ 2δ)(q− 1)
q

< 1.
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Therefore, N ≤ s with probability 1− exp (−�(r(n)3)). If this is the case, then |S(Xt+1)| ≤ |S(Xt)|
and so by a union bound |S(Xt+1)| ≤ c(t + 1)n2/3r(n) with probability at least 1−O(r(n)−1).

For the second case we assume δ(q−1)s
q < n2/3r(n) and proceed in similar fashion. In this case,

Hoeffding’s inequality implies with probability at least 1−O(r(n)−1),

A(Xt)≤ n
q

+ (1+ 1/δ)n2/3r(n) =:M′.

The size of the largest new component, denoted N′, is stochastically dominated by the size of the
largest component of a G(M′, 1+ε′

M′ ) random graph, with ε′ = qM′/n− 1. Now, since we assume
r(n)= o

(
n1/15

)
,

ε′M′ ≤ q(1+ 1/δ)r(n)
n1/3

[
n
q

+ (1+ 1/δ)n2/3r(n)
]

= (1+ 1/δ)n2/3r(n)+O(n1/3r(n)2)≤ c
3
n2/3r(n),

where the last inequality holds for large n and a sufficiently large constant c. Moreover,(
ε′)3 M′ = �

(
r(n)3

n

[
n
q

+ n2/3r(n)
])

= �(r(n)3).

Hence,

P
[
N′ ≥ cn2/3r(n)

]≤ P

[
N′ ≥ (2+ ρ)cn2/3r(n)

3

]
≤ P

[
N′ ≥ (2+ ρ)ε′M′] ,

where ρ < 1/10, and by Corollary 3.6

P
[
N′ ≥ (2+ ρ)ε′M′]= e−�((ε′)3M′) = e−�(r(n)3).

Since, |S(Xt+1)| ≤ |S(Xt)| +N′, a union bound implies that |S(Xt+1)| ≤ c(t + 1)n2/3r(n) with
probability at least 1−O(r(n)−1) as desired.

Finally, to boundQ(Xt+1) we observe that if C1, . . . , Ck are all the new components in order of
their sizes, then by Lemma 3.4 and Markov’s inequality:

P

⎡⎣∑
j≥2

|Cj|2 ≥ n4/3r(n)

⎤⎦=O(r(n)−1).

Thus, Q(Xt+1)≤Q(Xt)+ n4/3r(n)≤ (t + 1)n4/3r(n) with probability at least 1−O(r(n)−1) as
claimed. The lemma follows from a union bound. �
Proof of Lemma 5.4. SinceR1(Xt)=O

(
n4/3f (n)2(logf (n))−1), by Hoeffding’s inequality

A(Xt) ∈
[
n− n2/3f (n)

q
,
n+ n2/3f (n)

q

]
=: J,

with probability at least 1−O(f (n)−1). The new connected components in Xt+1 correspond to
those of a G(A(Xt), 1+ε

A(Xt) ) random graph, where ε =A(Xt)q/n− 1. If A(Xt) ∈ J, then

−n−1/3f (n)≤ ε ≤ n−1/3f (n). (17)

Since A(Xt) ∈ J we can also define m := A(Xt)= θn for θ ∈ (1/2q, 1), and λ := εm1/3, so we
may rewrite (16) as

−f (n)≤ −θ1/3f (n)≤ λ ≤ θ1/3f (n)≤ f (n),
and the lemma follows. �
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An important tool used in the proof of Lemma 5.5 is the following coupling on a (lazy)
symmetric random walk on Z; its proof is given in Appendix B.

Theorem 5.7. Let A> 0 and let A≤ c1, c2, . . . , cm ≤ 2A be positive integers. Let r ∈ (0, 1/2] and
consider the sequences of random variables X1, . . . , Xm and Y1, . . . , Ym where for each i= 1, . . . ,m:
Xi = ci with probability r; Xi = −ci with probability r; Xi = 0 otherwise and Yi has the same dis-
tribution as Xi. Let X =∑m

i=1 Xi and Y =∑m
i=1 Yi. Then for any d > 0, there exist a constant

δ := δ(r)> 0 and a coupling of X and Y such that

P[d + 2A≥ X − Y ≥ d]≥ 1− δ(d +A)
A
√
m

.

We note that Theorem 5.7 is a generalisation of the following more standard fact which will
also be useful to us.

Lemma 5.8 ([4], Lemma 2.18). Let X and Y be binomial random variables with parameters m and
r, where r ∈ (0, 1) is a constant. Then, for any integer y> 0, there exists a coupling (X, Y) such that
for a suitable constant γ = γ (r)> 0,

P[X − Y = y]≥ 1− γ y√
m
.

Proof of Lemma 5.5. For ease of notation let Ik = Ik(g) and N̂k = N̂k(t, g) for each k≥ 1. Also
recall the notationsWt ,M(X) and D(X) defined in Section 2.2. Let Î(Xt) and Î(Yt) be the isolated
vertices inWt from Xt and Yt , respectively.

Let k∗ := mink{k ∈Z:g(n)2k ≥ ϑn1/3}. The activation of the non-trivial components in M(Xt)
and M(Yt) whose sizes are not in {1} ∪ I1 ∪ · · · ∪ Ik∗ is coupled using the matching Wt . That is,
c ∈M(Xt) andWt(c) ∈M(Yt) are activated simultaneously with probability 1/q. The components
inD(Xt) andD(Yt) are activated independently. After independently activating these components,
the number of active vertices from each copy is not necessarily the same. The idea is to couple the
activation of the remaining components inM(Xt) andM(Yt) in way that corrects this difference.

Let A0(Xt) and A0(Yt) be number of active vertices from Xt and Yt , respectively, after the acti-
vation of the components from D(Xt) and D(Yt). Observe that E[A0(Xt)]=E[A0(Yt)] =:μ and
that by Hoeffding’s inequality, for any η(n)> 0

P

[
|A0(Xt)− μ| ≥√η(n)Zt

]
≤ 2e−2η(n).

Recall Zt ≤ Cn4/3
h(n) . Hence, with probability at least 1− 4 exp(−2η(n)),

d0 := |A0(Xt)−A0(Yt)| ≤ 2
√

η(n)Zt ≤ 2
√
Cη(n)n2/3√
h(n)

.

We first couple the activation of the components in I1, then in I2 and so on up to Ik∗ . Without
loss of generality, suppose that d0 =A0(Yt)−A0(Xt). If d0 ≤ ϑn2/3

g(n)2 , we simply couple the com-

ponents with sizes in I1 using the matching Wt . Suppose otherwise that d0 > ϑn2/3
g(n)2 . Let A1(Xt)

and A1(Yt) be random variables corresponding to the numbers of active vertices fromM(Xt) and
M(Yt) with sizes in I1 respectively. By assumption N̂1 ≥ bg(n)3. Hence, Theorem 5.7 implies that
for δ = δ(q)> 0, there exists a coupling for the activation of the components inM(Xt) andM(Yt)
with sizes in I1 such that

d0 ≥A1(Xt)−A1(Yt)≥ d0 − ϑn2/3

g(n)2
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with probability at least

1−
δ
(
d0 − ϑn2/3

2g(n)2

)
ϑn2/3
2g(n)2

√
bg(n)3

≥ 1− δd0
ϑn2/3
2g(n)2

√
bg(n)3

≥ 1− 4δ
√
Cη(n)g(n)

ϑ
√
bh(n)

≥ 1−
√

η(n)g(n)
h(n)

,

where the last inequality holds for ϑ large enough. Let d1 := (A0(Yt)−A0(Xt)) +
(A1(Yt)−A1(Xt)). If the coupling succeeds, we have 0≤ d1 ≤ ϑn2/3

g(n)2 . Thus, we have shown

that d1 ≤ ϑn2/3
g(n)2 with probability at least

(
1− 4e−2η(n)

) (
1−

√
η(n)g(n)
h(n)

)
≥ 1− 4e−2η(n) −

√
η(n)g(n)
h(n)

.

Now, let dk be the difference in the number of active vertices after activating the components in
Ik. Suppose that dk ≤ ϑn2/3

g(n)2k
, for k≤ k∗. By assumption, N̂k+1 ≥ bg(n)3·2k . Thus, using Theorem 5.7

again we get that there exists a coupling for the activation of the components in Ik+1 such that

P

[
dk+1 ≤ ϑn2/3

g(n)2k+1

∣∣∣∣∣ dk ≤ ϑn2/3

g(n)2k

]
≥ 1− δdk

ϑn2/3
2g(n)2k+1

√
bg(n)3·2k

≥ 1− 2δ√
bg(n)2k−1 .

Therefore, there is a coupling of the activation components in I2, I3, . . . , Ik∗ such that

P

[
dk∗ ≤ n1/3

∣∣∣∣ d1 ≤ ϑn2/3

g(n)2

]
≥

k∗∏
k=2

(
1− δ′

g(n)2k−1

)
,

where δ′ = 2δ/
√
b. Note that for a suitable constant δ′′ > 0, we have

k∗∏
k≥2

(
1− δ′

g(n)2k−1

)
= exp

⎛⎝ k∗∑
k≥1

ln

(
1− δ′

g(n)2k

)⎞⎠≥ exp

⎛⎝−δ′′
k∗∑
k≥1

1
g(n)2k

⎞⎠ ,

and since
k∗∑
k≥1

1
g(n)2k

≤
∞∑
k≥1

1
g(n)2k

≤
∞∑
k≥1

1
g(n)k

≤ 1
g(n)2 − g(n)

,

we get

k∗∏
k=2

(
1− δ′

g(n)2k−1

)
≥ exp

(
− δ′′

g(n)2 − g(n)

)
≥ 1− δ′′

g(n)2 − g(n)
.

Finally, we couple Î(Xt) and Î(Yt) to fix dk∗ . By assumption I(Xt), I(Yt)= �(n), so m :=
|Î(Xt)| = |Î(Yt)| = �(n). Let AI(Xt) and AI(Yt) denote the total number of activated isolated ver-
tices from Î(Xt) and Î(Yt) respectively. We activate all isolated vertices independently, so AI(Xt)
and AI(Yt) can be seen as two binomial random variables with the same parameters m and 1/q.
Lemma 5.8 gives a coupling for binomial random variables such that for r ≤ n1/3,

P [AI(Xt)−AI(Yt)= r]≥ 1−O
(

1
n1/6

)
= 1− o

(
1

g(n)

)
.
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Therefore,

P [A(Xt)=A(Yt)]≥ 1− 4e−2η(n) −
√

η(n)g(n)
h(n)

−O
(

1
g(n)

)
,

as claimed. �

6. Newmixing time for the Glauber dynamics via comparison
In this section, we establish a comparison inequality between the mixing times of the CM dynam-
ics and of the heat-bath Glauber dynamics for the random-cluster model for a general graph
G= (V , E). The Glauber dynamics is defined as follows. Given a random-cluster configuration
At , one step of this chain is given by:

i. pick an edge e ∈ E uniformly at random;
ii. replace the current configuration At by At ∪ {e} with probability

μG,p,q(At ∪ {e})
μG,p,q(At ∪ {e})+ μG,p,q(At \ {e}) ;

iii. else replace At by At \ {e}.
It is immediate from its definition this chain is reversible with respect to μ = μG,p,q and thus
converges to it.

The following comparison inequality was proved in [7]:

gap−1(GD)≤O(m logm) · gap−1(CM), (18)

where m denotes the number of edges in G, and gap(CM), gap(GD) the spectral gaps of the tran-
sition matrices of the CM and Glauber dynamics, respectively. The standard connection between
the spectral gap and the mixing time (see, e.g., Theorem 12.3 in [23]) yields

τGDmix ≤O(m logm) · τCMmix · logμ−1
min, (19)

where μmin =minA∈� μ(A) with � denoting the set of random-cluster configurations on G. In
some cases, such as in themean-fieldmodel with p= �(n−1), logμ−1

min = �(m logm), and a factor
of O(m2(logm)2) is thus lost in the comparison. We provide here an improved version of this
inequality.

Theorem 6.1. For any q> 1 and any p ∈ (0, 1), the mixing time of Glauber dynamics for the
random-cluster model on a graph G with n vertices and m edges satisfies

τGDmix ≤O
(
mn log n+ pm2 log n · log 1

min{p, 1− p}
)

· τCMmix .

We note that in the mean-field model, where m= �(n2) and we take p= ζ/n with ζ =O(1),
this theorem yields that τGDmix =O(n3(log n)2) · τCMmix , which establishes Theorem 1.2 from the intro-
duction and improves by a factor of O(n) the best previously known bound for the Glauber
dynamics on the complete graph.

To prove Theorem 6.1 we use the following standard fact.

Theorem 6.2. Let P be a Markov chain on state space � with stationary distribution π . Suppose
there exist a subset of states �0 ⊆ � and a time T, such that for any t ≥ T and any x ∈ � we have
Pt(x, � \ �0)≤ 1

16 . Then

τPmix =O
(
T + gap−1(P) log (8π−1

0 )
)
, (20)

where π0 := minω∈�0 π(ω).
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Note that π0 is the minimum probability of any configuration on �0. Without the additional
assumptions in the theorem, the best possible bound involves a factor of πmin =minA∈� π(A)
instead. We remark that there are related conditions under which (20) holds; we choose the
condition that Pt(x, � \ �0)≤ 1

16 for every x and every t ≥ T for convenience.
We can now provide the proof of Theorem 6.1.

Proof of Theorem 6.1. First note that if p= �(1), it suffices to prove that

τGDmix =O
(
mn log n+m2 log n log

1
min{p, 1− p}

)
· τCMmix .

This follows from (19) and the fact that

μmin ≥ min{p, 1− p}m
qn−1

since the partition function for the random-cluster model on G satisfies ZG ≤ qn (see, e.g.,
Theorem 3.60 in [19]).

Thus, we may assume p≤ 1/100. From (18) and the standard relationship between the spectral
gap and the mixing time (see, e.g., Theorem 12.4 in [23]) we obtain:

gap−1(GD)≤ τCMmix ·O(m log n). (21)

Let P denote the transition matrix of the Glauber dynamics. In order to apply Theorem 6.2, we
have to find a suitable subset of states �0 ⊆ � and a suitable time T so that Pt(A,� \ �0)≤ 1

16 ,
for every A ∈ � and every t ≥ T.

We let �0 = {A⊆ E:|A| ≤ 100mp} and T = Cm logm for a sufficiently large constant C > 0.
When an edge is selected for update by the Glauber dynamics, it is set to be open with probability
p/(p+ q(1− p)) if it is a ‘cut edge’ or with probability p if it is not; recall that we say an edge
e is open if the edge is present in the random-cluster configuration. Therefore, since p≥ p/(p+
q(1− p)) when q> 1, after every edge has been updated at least once the number of open edges in
any configuration is stochastically dominated by the number of edges in a G(n, p) random graph.
By the coupon collector bound, every edge has been updated at least once at time T w.h.p. for
large enough C. Moreover, if all edges are indeed updated by time T, the number of open edges
in Xt at any time t ≥ T is at most 100 m p with probability at least 19/20 by Markov’s inequality.
Therefore, the Glauber dynamics satisfies condition in Theorem 6.2 for these choices of T and�0.

It remains for us to estimate π0. Let πm denote the probability of the configuration where all
the edges are open; then,

πm = pmq
ZG

≥ pm

qn−1 , (22)

where the inequality follows from the fact that ZG ≤ qn. Moreover, since 1− p> p when p≤
1/100, then π0 ≥ qp100mp(1− p)m−100mp/ZG and so

π0
πm

≥ qp100mp(1− p)m−100mp

pmq
=
(
1− p
p

)m−100mp
. (23)

Using (22), (23) and the fact that p≤ 1/100, we obtain:

log
1
π0

= log
1

πm
+ log

πm
π0

≤ (n− 1) log q+m log p−1 − (m− 100mp) log
1− p
p

= 100mp log p−1 +m(1− 100p) log
1

1− p
+O(n)

≤ 100mp log p−1 + mp(1− 100p)
1− p

+O(n)=O
(
n+mp

(
logp−1)).
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Therefore, from (21) and Theorem 6.2 we obtain:

τGDmix ≤O(m logm)+ τCMmix ·O(m log n) ·O(n+mp
(
logp−1))

=O(m log n · (n+mp log p−1)) · τCMmix ,

as claimed. �
For the sake of completeness, we conclude this section with a proof of Theorem 6.2.

Proof of Theorem 6.2. For x ∈ � and t ≥ T, we have

‖Pt(x, ·)− π(·)‖TV =
∑

y∈�:Pt(x,y)>π(y)

Pt(x, y)− π(y)

≤
∑

y∈�0:Pt(x,y)>π(y)

π(y)
∣∣∣∣1− Pt(x, y)

π(y)

∣∣∣∣+ ∑
y/∈�0:Pt(x,y)>π(y)

Pt(x, y)
∣∣∣∣1− π(y)

Pt(x, y)

∣∣∣∣
≤ π(�0) max

y∈�0

∣∣∣∣1− Pt(x, y)
π(y)

∣∣∣∣+ Pt(x, � \ �0)

≤max
y∈�0

∣∣∣∣1− Pt(x, y)
π(y)

∣∣∣∣+ 1
16

,

where the last inequality follows from the theorem assumption for t ≥ T.
For any y ∈ �, we have

∣∣∣∣1− Pt(x, y)
π(y)

∣∣∣∣≤ e−gap(P)·t√
π(x)π(y)

;

see inequality (12.11) in [23]. Hence, for any x ∈ �0 we have

‖Pt(x, ·)− π(·)‖TV ≤max
y∈�0

e−gap(P)·t√
π(x)π(y)

+ 1
16

≤ e−gap(P)·t

π0
+ 1

16
. (24)

Letting τPmix(x)=min
{
t ≥ 0:‖Pt(x, ·)− π(·)‖TV ≤ 1/4

}
, we deduce from (24) that for x ∈ �0

τPmix(x)≤max
{
T, gap−1(P) log

8
π0

}
. (25)

Since τPmix =maxx∈� τmix(x), it remains for us to provide a bound for τmix(x) when x ∈ � \ �0.
Consider two copies {Xt}, {Yt} of the chain P. For t > T let P be the coupling of Xt , Yt such that
the two copies evolve independently up to time T and if XT = x′ and YT = y′ for some x′, y′ ∈ �0
then the optimal coupling is used so that

P[Xt �= Yt | XT = x′, YT = y′]= ‖Pt−T(x′, ·)− Pt−T(y′, ·)‖TV;

recall that the existence of an optimal coupling is guaranteed by the coupling lemma (see, e.g.,
Proposition 4.7 in [23]). Then, for any x, y ∈ �
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P[Xt �= Yt | X0 = x, Y0 = y]
≤ P[XT /∈ �0 | X0 = x]+ P[YT /∈ �0 | Y0 = y]+ max

x′,y′∈�0
P[Xt �= Yt | XT = x′, YT = y′]

≤ max
x′,y′∈�0

P[Xt �= Yt | XT = x′, YT = y′]+ 1
8

≤ max
x′,y′∈�0

‖Pt−T(x′, ·)− Pt−T(y′, ·)‖TV + 1
8

≤ 2 max
x′∈�0

‖Pt−T(x′, ·)− π(·)‖TV + 1
8
,

where the last inequality follows from the triangle inequality. Now,

max
x∈�

‖Pt(x, ·)− π(·)‖TV ≤ max
x,y∈�

P[Xt �= Yt | X0 = x, Y0 = y]≤ 2 max
x′∈�0

‖Pt−T(x′, ·)

− π(·)‖TV + 1
8

≤ 5
8
.

provided t ≥ T +maxz∈�0 τPmix(z). Using a standard boosting argument (see (4.36) in [23]) and
(25) we deduce that τPmix =O

(
T + gap−1(P) log 8

π0

)
as claimed. �
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Appendix A. Proof of the local limit theorem
In this appendix, we prove Theorem 5.1. First, we introduce some notation. For a random vari-
able X and d ∈R, let H(X, d)=E[〈X∗d〉2], where 〈·〉 denotes distance to the closest integer
and X∗ is a symmetrised version of X, that is, X∗ = X − X′ where X′ is an i.i.d. copy of X. Let
Hm = infd∈[ 14 , 12 ]

∑m
i=1 H(Xi, d). The following local limit theorem is due to Mukhin [28] (all

limits are taken asm→ ∞).

Theorem A.1 ([28], Theorem 1). Suppose that the sequence Sm−μm
σm

converges in distribution to a
standard normal random variable and that σm → ∞. If Hm → ∞ and there exists α > 0 such that
∀u ∈ [H1/4

m , σm
]
we have

∑
i:ci≤u c2i ≥ αuσm, then the local limit theorem holds.

Next, we show how to derive Theorem 5.1 from TheoremA.1. The proof involves the following
two lemmas.

Lemma A.2. For the random variables satisfying the conditions from Theorem 5.1, σm → ∞ and
Sm−μm

σm
converges in distribution to a standard normal random variable.

Proof. Observe that

σ 2
m = r(1− r)

m∑
i=1

c2i ≥ r(1− r)
∑
i:ci∈I1

c2i = �

(
m4/3

g(m)4
· g(m)3

)
= �

(
m4/3

g(m)

)
→ ∞,

and also

1
σ 3
m

m∑
i=1

E[|Xi −E[Xi]|3]= 1
σ 3
m

m∑
i=1

r(1− r)c3i ≤ σ 2
mcm
σ 3
m

=O
(
cm
σm

)

=O
(

m2/3g(m)−1

m2/3g(m)−1/2

)
=O

(
g(m)−1/2)→ 0.

Hence, the random variables {Xi} satisfy Lyapunov’s central limit theorem conditions (see, e.g.,
[13]), and so Sm−μm

σm
converges in distribution to a standard normal random variable. �

LemmaA.3. Suppose c1, . . . , cm satisfy the conditions from Theorem 5.1. For any u satisfying σm ≥
u≥ 1,

∑
j:cj≤u c2j ≥ uσm/r(1− r).
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Proof. We have σ 2
m = r(1− r)

∑m
i=1 c2i =O

(
m4/3√
g(m)

)
. We consider three cases. First, if m1/4 ≤

u≤ cm =O
(
m2/3g(m)−1), there exists a largest integer k ∈ [0, �) such that u=O

(
ϑm2/3

g(m)2k

)
, where

� > 0 is the smallest integer such thatm2/3g(m)−2� = o
(
m1/4). Then,∑

i:ci≤u
c2i ≥

∑
i:ci∈Ik+1

c2i ≥ ϑ2m4/3

4g(m)2k+2 g(m)3·2k = ϑ2m4/3

4g(m)2k
� uσm;

by � we mean that uσm is of lower order with respect to ϑ2m4/3

4g(m)2k
. Now, when σm ≥ u≥ cm, we

have ∑
i:ci≤u

c2i =
m∑
i=1

c2i = σ 2
m

r(1− r)
≥ uσm

r(1− r)
.

Finally, if 1≤ u≤m1/4, uσm is sublinear and so∑
i:ci≤u

c2i ≥
ρm∑
i=1

c2i = ρm�m1/4σm ≥ uσm,

as claimed. �
Proof of Theorem 5.1. We check that the Xi’s satisfy the conditions from Theorem A.1.
Lemma A.2 implies σm → ∞ and Sm−μm

σm
→N(0, 1); by Lemma A.3 we also have that for any

u satisfying σm ≥ u≥ 1,
∑

j:cj≤u c2j ≥ uσm/r(1− r). It remains to show that Hm → ∞.
Now, for i≤ ρm, observe that the value of X∗

i equals to 1 with probability r(1− r), equals to−1
with probability r(1− r) and equals to 0 otherwise. Then for 1/4≤ d ≤ 1/2, 〈X∗

i d〉2 evaluates to
d2 with probability 2r(1− r), and 0 otherwise. Therefore, for i≤ ρm and 1/4≤ d ≤ 1/2 we have
that E[〈X∗

i d〉2]= 2r(1− r)d2. Thus,

Hm = inf
1
4≤d≤ 1

2

m∑
i=1

H(Xi, d)≥ inf
1
4≤d≤ 1

2

�ρm�∑
i=1

H(Xi, d)= inf
1
4≤d≤ 1

2

�ρm�∑
i=1

2r(1− r)d2 = �(m)→ ∞.

Since we have shown that the Xi’s satisfy all the conditions from Theorem A.1, the result
follows. �

For completeness, we also derive Theorem 5.1 from first principles (i.e., without using
Mukhin’s result [28]) in Appendix D.

Appendix B. Proofs of randomwalk couplings
Another important tool in our proofs are couplings based on the evolutions of certain random
walks. In this section we consider a (lazy) symmetric random walk (Sk) on Z with bounded step
size, and the first result we present is an estimate onMk =max{S1, . . . , Sk} which is based on the
well-known reflection principle (see, e.g., Chapter 2.7 in [22]).

Lemma B.1. Let A> 0 and let A≤ c1, c2, . . . , cn ≤ 4A be positive integers. Let r ∈ (0, 1/2] and
consider the sequence of random variables X1, . . . , Xn where for each i= 1, . . . , n: Xi = ci with
probability r; Xi = −ci with probability r; and Xi = 0 otherwise. Let Sk =∑k

i=1 Xi and Mk =
max{S1, . . . , Sk}. Then, for any y≥ 0

P[Mn ≥ y]≥ 2P[Sn ≥ y+ 8A+ 1].
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Proof. First, note that

P[Mn ≥ y]=
4An∑
k=y

P[Mn ≥ y, Sn = k]+
y−1∑

k=−4An
P[Mn ≥ y, Sn = k]

= P[Sn ≥ y]+
y−1∑

k=−4An
P[Mn ≥ y, Sn = k]. (B.1)

IfMn ≥ y, letWn be the value of the random walk {Si} the first time its value was at least y. Then,

P[Mn ≥ y, Sn = k]=
y+4A−1∑
b=y

P[Mn ≥ y, Sn = k,Wn = b]

=
y+4A−1∑
b=y

P[Mn ≥ y, Sn = 2b− k,Wn = b]

=
y+4A−1∑
b=y

P[Sn = 2b− k,Wn = b],

where in the second equality we used the fact that the random walk is symmetric and the last one
follows from the fact that 2b− k≥ y. Plugging this into (B.1), we get

P[Mn ≥ y]= P[Sn ≥ y]+
y+4A−1∑
b=y

y−1∑
k=−4An

P[Sn = 2b− k,Wn = b]

= P[Sn ≥ y]+
y+4A−1∑
b=y

4An∑
k=2b−y+1

P[Sn = k,Wn = b]

= P[Sn ≥ y]+
y+4A−1∑
b=y

P[Sn ≥ 2b− y+ 1,Wn = b]

≥ P[Sn ≥ y]+
y+4A−1∑
b=y

P[Sn ≥ y+ 8A+ 1,Wn = b],

since b< y+ 4A. Finally, observe that
y+4A−1∑
b=y

P[Sn ≥ y+ 8A+ 1,Wn = b]= P[Sn ≥ y+ 8A+ 1]

and so
P[Mn ≥ y]≥ P[Sn ≥ y]+ P[Sn ≥ y+ 8A+ 1]≥ 2P[Sn ≥ y+ 8A+ 1],

as desired. �
We can now prove Theorem 5.7.

Proof of Theorem 5.7. Set δ = 10√
r . Let Dk =∑k

i=1 (Xi − Yi) for each k ∈ {1, . . . ,m}. We con-
struct a coupling for (X, Y) by coupling each

(
Xk, Yk

)
as follows:
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1. If Dk < d, sample Xk+1 and Yk+1 independently.
2. If Dk ≥ d, set Xk+1 = Yk+1.

Observe that if Dk ≥ d for any k≤m, then d + 2A≥ X − Y ≥ d. Therefore,

P[d + 2A≥ X − Y ≥ d]≥ P[Mm ≥ d],

where Mm =max{D0, ...,Dm}. Note that {Dk} behaves like a (lazy) symmetric random walk until
the first time τ it is at least d; after that {Dk} stays put.

Let
{
D′
k
}
denote such random walk which does not stop after τ , andM′

m := max
{
D′
0, ...,D′

m
}
.

Notice

P[Mm ≥ d]= P
[
M′

m ≥ d
]
.

Since the step size of
{
D′
k
}
is at least A and at most 4A, by Lemma B.1 for any d ≥ 0

P
[
M′

m ≥ d
]≥ 2P

[
D′
m ≥ d + 8A+ 1

]
.

Let σ 2 =∑m
i=1 E[(Xi − Yi)2]= 4r

∑m
i=1 c2i and ρ =∑m

i=1 E[|Xi − Yi|3]= 4r(1+ 2r)
∑m

i=1 c3i . By
the Berry–Esséen theorem for independent (but not necessarily identical) random variables (see,
e.g., [3]), we get that for any y ∈R∣∣P[D′

m > yσ
]− P[N > y]

∣∣≤ cρ
σ 3 ≤ 2cA

σ
,

where N is a standard normal random variable, and c ∈ [0.4, 0.6] is an absolute constant. Then,

P
[
D′
m > yσ

]≥ P[N > y]− 2cA
σ

. (B.2)

Notice σ ≥ 2A
√
rm. If d + 8A≥ σ , the theorem holds vacuously since

1− δ(d +A)
A
√
m

= 1− 10(d +A)
A
√
rm

< 1− d + 8A
A
√
rm

≤ 1− σ

A
√
rm

≤ 1− 2< 0.

If d + 8A< σ , since it can be checked via a Taylor’s expansion that 2P[N > y]≥ 1−
√

2
π
y for

y< 1, we get from (B.2)

P[Mm ≥ d]≥ 2P
[
D′
m > d + 8A

]≥ 2P
[
N >

d + 8A
σ

]
− 4cA

σ

≥ 1−
√
2/π(d + 8A)

σ
− 4cA

σ

≥ 1− 9(d +A)
σ

≥ 1− δ(d +A)
A
√
m

,

as claimed. �

Appendix C. Random graphs estimates
In this section, we provide proofs of lemmas which do not appear in the literature.

Recall G∼G
(
n, 1+λn−1/3

n

)
, where λ = λ(n) may depend on n. Both of Lemmas 3.10 and 3.11

are proved using the following precise estimates on the moments of the number of trees of a given
size in G. We note that similar estimates can be found in the literature (see, e.g., [29, 1]); a proof
is included for completeness.
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Claim C.1. Let tk be the number of trees of size k in G. Suppose there exists a positive increasing
function g such that g(n)→ ∞, |λ| ≤ g(n) and i, j, k≤ n2/3

g(n)2 . If i, j, k→ ∞ as n→ ∞, then:

i. E[tk]= �
(

n
k5/2

)
;

ii. Var(tk)≤E[tk]+ (1+o(1))λn2/3
2πk3 ;

iii. For i �= j, Cov(ti, tj)≤ (1+o(1))λn2/3
2π i3/2j3/2 .

To prove Lemma 3.10, we also use the following result.

Lemma C.2. Suppose ε3n→ ∞ and ε = o(1). Then w.h.p. the largest component of G∼G
(
n, 1+ε

n
)

is the only component of G which contains more than one cycle. Also, w.h.p. the number of vertices
contained in the unicyclic components of G is less than g(n)ε−2 for any function g(n)→ ∞.

Proof. An equivalent result was established in [26] for the G(n, M) model, in which exactly M
edges are chosen independently at random from the set of all

(n
2
)
possible edges (see Theorem 7 in

[26]). The result follows from the asymptotic equivalence between theG(n, p) andG(n,M) models
whenM = (n2)p (see, e.g., Proposition 1.12 in [21]). �
Proof of Lemma 3.10. Let us fix α > 0 and consider first the case when |λ| is large. If λ < 0 and
|λ| = �

(
h(n)1/2

)
, then Lemma 3.7 implies that

E

[∑
j:Lj(G)≤Bh

Lj(G)2
]

≤E[R1(G)]=O
( n
λn−1/3

)
=O

(
n4/3

h(n)1/2

)
.

Similarly, if λ > 0 and λ = �
(
h(n)1/2

)
, then Lemma 3.8 implies thatE[R2(G)]=O

(
n4/3h(n)−1/2).

We may assume L1(G)≤ Bh since otherwise the size of the largest component does not contribute
to the sum. Then,

E

[∑
j:Lj(G)≤Bh

Lj(G)2
]

≤E[R2(G)]+ B2h =O
(

n4/3

h(n)1/2

)
.

Hence, if |λ| = �
(
h(n)−1/2), the result follows fromMarkov’s inequality.

Suppose next |λ| ≤ √
h(n). Let tk be the number of trees of size k in G and let TBh be the set of

trees of size at most Bh in G. By Claim C.1.i,

E

[∑
τ∈TBh

|τ |2
]

=
Bh∑
k=1

k2E[tk]=O
(
nh(n)2

)+ Bh∑
k=�h(n)�

k2E[tk]

=O
(
nh(n)2

)+O(n)
Bh∑

k=�h(n)�

1
k1/2

=O
(

n4/3

h(n)1/2

)
. (C.1)

By Markov’s inequality, we get that
∑

τ∈TBh |τ |2 ≤An4/3h(n)−1/2 with probability at least γ , for
any desired γ > 0 for a suitable constant A=A(γ )> 0.

All that is left to prove is that the contribution from complex (non-tree) components is small.
When |λ| =O(1), this follows immediately from the fact that the expected number of complex
components is O(1) (see, e.g., Lemma 2.1 in [27]). Then, if CBh is the set of complex components
in G of size at most Bh, we have

E

[∑
C∈CBh

|C|2
]

=O
(

n4/3

h(n)2

)
E
[∣∣CBh∣∣]=O

(
n4/3

h(n)2

)
,

and the result follows again fromMarkov’s inequality and a union bound.
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Finally, when
√
h(n)≥ |λ| → ∞, Lemma C.2 implies that w.h.p. there is no multicyclic com-

ponent except the largest component and that the number of vertices in unicyclic components is
bounded by n2/3g(n)/λ2, for any function g(n)→ ∞. Hence, w.h.p.,∑

C∈CBh
|C| ≤ n2/3g(n)

λ2
+ Bh.

Setting g(n)= λ2, it follows that w.h.p.∑
C∈CBh

|C|2 ≤ Bh
(
n2/3g(n)

λ2
+ Bh

)
≤ n4/3

h(n)
.

This, combined with (C.1), Markov’s inequality and a union bound yields the result. �
Proof of Lemma 3.11. Let TB be number of trees in G with size in the interval [B,2B]; then |SB| ≥
TB. By Chebyshev’s inequality for a> 0:

P[TB ≤E[TB]− aσ ]≤ 1
a2

,

where σ 2 =Var(TB). By Claim C.1.i,

E[TB]=
2B∑
k=B

E[Tk]≥ c1n
B3/2

for a suitable constant c1 > 0. Now,

Var(TB)=
2B∑
k=B

Var(tk)+
∑

j�=i:j,i∈[B,2B]
Cov(ti, tj).

By Claims C.1.i and C.1.ii,
2B∑
k=B

Var(tk)≤
2B∑
k=B

E[tk]+
2B∑
k=B

(1+ o(1))λn2/3

2πk3
=O

( n
B3/2

)
+O

( |λ|n2/3
B2

)
=O

( n
B3/2

)
,

where in the last equality we used the assumption that λ = o
(
n1/3

)
. Similarly, by Claim C.1.iii∑

j�=i:j,i∈[B,2B]
Cov(ti, tj)≤

∑
j�=i:j,i∈[B,2B]

(1+ o(1))λn2/3

2π i3/2j3/2
≤ (1+ o(1))|λ|n2/3

2πB
=O

( n
B3/2

)
,

where the last inequality follows from the assumption that B≤ n2/3
g(n)2 . Hence, for a suitable constant

c2 > 0

Var(TB)≤ c2n
B3/2

and taking a= c1n
2B3/2σ we get

P

[
|SB| ≤ c1n

2B3/2
]
≤ P

[
TB ≤ c1n

2B3/2
]
≤
(
2B3/2σ
c1n

)2
≤ 4c2B3/2

c21n
,

as desired. �
Proof Corollary 3.12. Lemma 3.11 implies that for a suitable constant b> 0

P

[
Nk(Xt+1, g)< bg(n)3·2k−1

]
=O

(
g(n)−3·2k−1

)
,
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for any k≥ 1 such that g(n)2k = o(m2/3). Observe that∑
k≥1

1
g(n)3·2k−1 ≤

∑
i≥1

1
g(n)3i

=O
(
g(n)−3).

Hence, a union bound over k, that is, over the intervals Ik(g), implies that, with probabil-
ity at least 1−O

(
g(n)−3), Nk(Xt+1, g)≥ bg(n)3·2k−1 for all k≥ 1 such that n2/3g(n)−2k → ∞, as

claimed.

Proof of Claim C.1. Let c= 1+ λn−1/3. The following combinatorial identity follows immedi-
ately from the fact that there are exactly kk−2 trees of size k.

E[tk]=
(
n
k

)
kk−2

( c
n

)k−1 (
1− c

n

)k(n−k)+(k2)−k+1
.

Using the Taylor expansion for ln (1− x) and the fact that k= o
(
n2/3

)
, we get

n!
(n− k)! = nk

k−1∏
i=1

(
1− i

n

)
= nk exp

(
− k2

2n
− k3

6n2
+ o(1)

)
. (C.2)

Similarly, ( c
n

)k−1 = 1
nk−1 exp

(
λk
n1/3

− λ2k
2n2/3

+ o(1)
)
,(

1− c
n

)k(n−k)+(k2)−k+1 = exp
(

−k− λk
n1/3

+ k2

2n
+ λk2

2n4/3
+ o(1)

)
.

Since k→ ∞, Stirling’s approximation gives

kk−2

k! = (1+ o(1))ek√
2πk5/2

. (C.3)

Putting all these bounds together, we get

E[tk]= (1+ o(1))n√
2πk5/2

exp
(

− λ2k
2n2/3

+ λk2

2n4/3
− k3

6n2

)
= �

( n
k5/2

)
, (C.4)

where in the last inequality we used the assumptions that |λ| ≤ g(n) and k≤ n2/3
g(n)2 . This establishes

part (i).
For part (ii) we proceed in similar fashion, starting instead from the following combinatorial

identity:

E[tk(tk − 1)]= n!
k!k!(n− 2k)! (k

k−2)2
( c
n

)2k−2 (
1− c

n

)m
,

where m= 2
(k
2
)− 2(k− 1)+ k2 + 2k(n− 2k) (see, e.g., [29]). Using the Taylor expansion for

ln (1− x), we get

n!
(n− 2k)! = n2k exp

(
−2k2

n
− 4k3

3n2
+ o(1)

)
,( c

n

)2k−2 = 1
n2k−2 exp

(
2λk
n1/3

− λ2k
n2/3

+ o(1)
)
,(

1− c
n

)m = exp
(

−2k+ 2k2

n
− 2λk

n1/3
+ 2λk2

n4/3
+ o(1)

)
.
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These three bounds together with (C.3) imply

E[tk(tk − 1)]= (1+ o(1))n2

2πk5
exp
(

− 4k3

3n2
− λ2k

n2/3
+ 2λk2

n4/3

)
.

From (C.4), we get

E[tk]2 = (1+ o(1))n2

2πk5
exp
(

− λ2k
n2/3

+ λk2

n4/3
− k3

3n2

)
.

Hence,

Var(tk)=E[tk]+ (1+ o(1))n2

2πk5
exp
(

− λ2k
n2/3

+ λk2

n4/3
− k3

3n2

) [
exp
(

λk2

n4/3
− k3

n2

)
− 1
]

=E[tk]+ (1+ o(1))n2

2πk5

[
exp
(

λk2

n4/3
− k3

n2

)
− 1
]

≤E[tk]+ (1+ o(1))n2

2πk5

[
exp
(

λk2

n4/3

)
− 1
]

≤E[tk]+ (1+ o(1))λn2/3

2πk3
,

where in the second equality we used the assumptions that |λ| ≤ g(n) and k≤ n2/3
g(n)2 and for the last

inequality we used the Taylor expansion for ex. This completes the proof of part (ii).
For part (iii), let � = i+ j. When i �= j we have the following combinatorial identity (see, e.g.,

[29]):

E[titj]= n!
i!j!(n− �)! i

i−2jj−2
( c
n

)�−2 (
1− c

n

)m′
,

where m′ = ( i2)− (i− 1)+ ( j2)− (j− 1)+ ij+ �(n− �). Using Taylor expansions and Stirling’s
approximation as in the previous two parts, we get

E[titj]= (1+ o(1))n2

2π i5/2j5/2
exp
(

− �3

6n2
− λ2�

2n2/3
+ λ�2

2n4/3

)
.

Moreover, from (C.4) we have

E[ti]E[tj]= (1+ o(1))n2

2π i5/2j5/2
exp

(
− λ2�

2n2/3
+ λ

(
i2 + j2

)
2n4/3

− i3 + j3

6n2
+ o(1)

)
,

and so

Cov(ti, tj)=E[titj]−E[ti]E[tj]

= (1+ o(1))n2

2π i5/2j5/2
exp
(

− �3

6n2
− λ2�

2n2/3
+ λ�2

2n4/3

) [
1− exp

(
− λij
n4/3

+ ij�
2n2

)]
= (1+ o(1))n2

2π i5/2j5/2

[
1− exp

(
− λij
n4/3

+ ij(i+ j)
2n2

)]
≤ (1+ o(1))λn2/3

2π i3/2j3/2
,

where in the third equality we used the assumptions that |λ| ≤ g(n) and i, j≤ n2/3
g(n)2 and the last

inequality follows from the Taylor expansion for ex. �
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Appendix D. The second proof of the local limit theorem
In this appendix, we provide an alternative proof of Theorem 5.1 that does not use Theorem A.1.

Proof of Theorem 5.1. Let �(·) denote the probability density function of a standard normal
distribution. We will show for any fixed a ∈R,∣∣∣∣P [Sm − μm

σm
= a
]

− �(a)
σm

∣∣∣∣= o
(

1
σm

)
, (D.1)

which is equivalent to (9).
Let φ(t) denote the characteristic function for the random variable (Sm − μm)/σm. By applying

the inversion formula (see Theorem 3.3.14 and Exercise 3.3.2 in [13]),

�(a)= 1
2π

∫ ∞

−∞
e−itae−t2/2dt,

and

P

[
Sm − μm

σm
= a
]

= 1
2πσm

∫ πσm

−πσm
e−itaφ(t)dt.

Hence, the left hand side of (D.1) can be bounded from above by

1
2πσm

[∫ πσm

−πσm

∣∣∣∣e−ita
(

φ(t)− e−
t2
2

)∣∣∣∣ dt + 2
∫ ∞

πσm
e−

t2
2 dt
]
.

Since |e−ita| ≤ 1, it suffices to show that for all ε > 0 there existsM > 0 such that ifm>M then∫ πσm

−πσm

∣∣∣∣φ(t)− e−
t2
2

∣∣∣∣ dt + 2
∫ ∞

πσm
e−

t2
2 dt ≤ ε. (D.2)

We can bound from above the left hand side of (D.2) by:∫ A

−A

∣∣∣∣φ(t)− e−
t2
2

∣∣∣∣ dt + 2
∫ σm/2

A
|φ(t)| dt + 2

∫ πσm

σm/2
|φ(t)| dt + 2

∫ ∞

A
e−

t2
2 dt. (D.3)

The division depends on some constant A that we will choose soon.We proceed to bound integral
terms in (D.3) independently.

LemmaA.2 implies that Sm−μm
σm

converges in distribution to a standard normal. Combined with

the continuity theorem (see Theorem 3.3.17 in [13]), we get that φ(t)→ e− t2
2 as m→ ∞. The

dominated convergence theorem (see Theorem 1.5.8 in [13]) hence implies that for any A< ∞
the first integral of (D.3) converges to 0. We selectM large enough so that the integral is less than
ε/4.

The last integral of (D.3) is the standard normal tail that goes to 0 exponentially fast as A
increases (see e.g., Proposition 2.1.2 in [32]). Therefore, we are able to select A large enough so
that each tail has probability mass less than ε/8.

To bound the remaining two terms we use the properties of the characteristic function φ(t). By
definition and the independence between Xi’s,

φ(t)=E

[
exp
(
it · Sm − μm

σm

)]
= exp

(
− itμm

σm

) m∏
j=1

φj(t),

where φj(t) denotes the characteristic function of Xj/σm. Since exp
(− itμm

σm

)
always has modulo 1,

|φ(t)| ≤∏m
j=1|φj(t)|.
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We proceed to bound the third integral of (D.3). Note that |φj(t)| ≤ 1 for all j and t.
Therefore,

|φ(t)| ≤
m∏
j=1

|φj(t)| ≤
∏
j≤ρm

|φj(t)|.

Notice that the Xj’s for j≤ ρm are Bernoulli random variables. By periodicity (see Theorem 3.5.2
in [13]), |φj(t)| equals to 1 only when t equals to the multiples of 2πσm. For t ∈ [σm/2, σmπ],
|φj(t)| is bounded away from 1, and there exists a constant η < 1 such that |φj(t)| ≤ η. Hence,
|φ(t)| ≤ ηρm. By choosingM to be sufficiently large, we may bound the integral form>M:∫ πσm

σm/2
|φ(t)| dt ≤

∫ πσm

σm/2
ηρmdt ≤ πσmηρm ≤mηρm ≤ ε

8
.

Finally, we bound the second integral of (D.3). By the definition of Xj, we have

φj(t)= reit·
cj

σm + (1− r)= r ·
(
cos

cjt
σm

+ i · sin cjt
σm

)
+ 1− r,

where the last identity uses Euler’ formula. Take the modulo of both sides,

|φj(t)| =
√
r2 sin2

cjt
σm

+
(
r
cjt
σm

+ 1− r
)2

=
√
r2 sin2

cjt
σm

+ r2 cos2
cjt
σm

+ (1− r)2 + 2r(1− r) cos
cjt
σm

=
√
r2 + (1− r)2 + 2r(1− r) cos

cjt
σm

=
√
1− 2r(1− r)

(
1− cos

cjt
σm

)
= 1− r(1− r)

(
1− cos

cjt
σm

)
− 1

2
r2(1− r)2

(
1− cos

cjt
σm

)2
− . . . ,

where the last equality corresponds to the Taylor expansion for
√
1+ y when |y| ≤ 1. We can also

Taylor expand cos cjt
σm

as

1− c2j t2

2σ 2
m

+ c4j t4

4!σ 4
m

− c6j t6

6!σ 6
m

+ . . .

Observe that if cjt
σm

< 1, then we can bound cos cjt
σm

from above by 1− c2j t
2

4σ 2
m
. Furthermore, if we keep

only the first order term from the expansion for |φj(t)|, we have

|φj(t)| ≤ 1− r(1− r)
c2j t2

4σ 2
m

≤ exp

(
−r(1− r)

c2j t2

4σ 2
m

)
. (D.4)

Note that (D.4) only holds if cjt < σm. However, if we fix σm then for every t ∈ [A, σm/2], there
always exists a real number u(t)≥ 1 such that u(t)t < σm ≤ 2u(t)t, which implies for all cj ≤ u(t),
(D.4) can be established. Now we aggregate all |φj(t)| for which we could claim (D.4).

|φ(t)| ≤
∏

j:cj≤u(t)
|φj(t)| ≤ exp

⎛⎝−r(1− r)
∑

j:cj≤u(t)

c2j t2

4σ 2
m

⎞⎠ . (D.5)
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Without loss of generality, we assume A> 1. Consequently, u(t)≤ σm. Lemma A.3 implies for
σm ≥ u(t)≥ 1,

∑
j:cj≤u(t) c2j ≥ u(t)σm/r(1− r). Plugging this inequality into (D.5), we obtain

|φ(t)| ≤ exp
(

−u(t)σmt2

4σ 2
m

)
= exp

(
− t
8

· 2u(t)t
σm

)
≤ exp

(
− t
8

)
.

Therefore, for sufficiently large A,∫ σm/2

A
|φ(t)| dt ≤

∫ ∞

A
exp
(

− t
8

)
dt ≤ e−A/8

8
≤ ε

8
.

Thus we established (D.2) and the proof is complete. �
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