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MINIMAL CONVEX USCOS AND MONOTONE 
OPERATORS ON SMALL SETS 

JONATHAN BORWEIN, SIMON FITZPATRICK 
AND PETÀR KENDEROV 

ABSTRACT. We generalize the generic single-valuedness and continuity of mono­
tone operators defined on open subsets of Banach spaces of class (S) and Asplund spaces 
to monotone operators defined on convex subsets of such spaces which may even fail to 
have non-support points. This yields differentiability theorems for convex Lipschitzian 
functions on such sets. From a result about minimal convex uscos which are densely 
single-valued we obtain generic differentiability results for certain Lipschitzian real-
valued functions. 

1. Introduction. Recently, Verona ([Ve], [V-V]), Noll ([Nol], [No2]) and Rainwa­
ter [Ra] have studied the differentiability properties of Lipschitzian convex functions on 
sets which may have empty interior. A convex subset C of a normed linear space E has 
normal cone Nc(x) at x G C, defined by 

Nc(x) := {>* G E* | (x\c - x) < 0 for all c G C}. 

The point x G C is a non-support point provided Nc(x) = { 0} . In Section 2 we prove re­
sults that generalize the generic single-valuedness and continuity of monotone operators 
on open subsets of Banach spaces E of class (S) and Asplund spaces to monotone oper­
ators defined and bw* upper semicontinuous on convex subsets of E which may have no 
non-support points. These results show single-valuedness or continuity modulo elements 
of the normal cone to the domain. We recall that the bounded weak* topology on E* is 
generated by the polars of compact subsets of E and coincides with the weak* topology 
on w* compact subsets of E*. However for our purposes it will be convenient to use a 
slightly different topology: we denote by bw* convergence of bounded nets in E*. 

In Section 3 we apply these results to Lipschitzian convex functions on such "small" 
convex sets and prove generic Gateaux or Fréchet differentiability (in a natural sense) of 
such functions. 

Since maximal monotone operators on open sets in Banach spaces and Clarke subgra­
dients of Lipschitzian functions are convex-valued weak* uscos (upper semicontinuous 
compact-valued mappings), we take the abbreviation one stage further and call a mul­
tivalued mapping T:X —> E* (more properly T: X —• 2E*) weak* cusco provided it has 
nonempty weak* compact convex values and is weak* upper semicontinuous. It is min­
imal weak* cusco provided it does not contain any other weak* cusco with the same 
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domain. In Section 4 we prove results about minimal weak* cusco mappings which are 
densely single-valued and apply these results to locally Lipschitzian real-valued func­
tions to generalize the generic differentiability results in [deB-F-G]. 

Preiss [Pr] has proved an intricate theorem more general than the following statement. 
[We denote the weak* closure of a set A by weak* A.] 

PREISS' THEOREM. Let Ebe a Banach space with an equivalent smooth norm or an 
Asplund space. Iff: U —> R is a locally Lipschitzian function on an open subset U of 
E thenf is Gateaux differentiate on a dense subset D of U and for x G U the Clarke 
subgradient off is 

df(x) = H weak* conv{ v/OO I y € D H B(x, e)}. 
£>0 

If E is an Asplund space then the same holds for D being the set of points of Fréchet 
differentiability off. 

The Fréchet property characterizes Asplund spaces. We turn Preiss' theorem into a 
definition and say a Banach space E is a Preiss space provided every locally Lipschitzian 
real valued function on an open subset U of E is Gateaux differentiable on a dense subset 
D of U such that the formula 

3/(JC) = p | weak*conv{v/OO \yeDH B(x,e)} 
e>0 

holds for all x G U. It is not known whether every Preiss space has an equivalent smooth 
norm. (Remark 4.12 added in revision provides a negative answer.) Nor is it known 
whether a Preiss space must be of class (S), where a Banach space E is of class (S) [St] 
provided every weak* usco from a Baire space into E* has a selection which is generically 
weak* continuous. This property is also described by saying the topological space ( F \ 
weak*) has type S. As will be seen later in this section, any Banach space E with rotund 
dual is of class (S), and is a Preiss space because the norm is smooth. Every Asplund 
space is a class (S) Preiss space. There are Fréchet normable, hence Asplund, spaces 
whose duals admit no rotund dual norm [Ph2 p. 90], consequently the same is true of 
class (S) Preiss spaces. See also Remark 4.12. 

Now we give some preliminary results. The first one shows the relationship between 
minimal weak* cuscos and minimal weak* uscos. For us a set is generic if it contains a 
dense G$ set and residual if it contains a countable intersection of dense open sets. The 
following basic result appears in Jokl [Jo]. 

THEOREM 1.1. IfT:X—+E* is weak* usco then T*(x) := weak* convT(x) defines a 
weak* cusco T*onX.IfT is minimal weak* usco then T* is minimal weak* cusco. 

This yields a characterization of spaces of class (S). 
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THEOREM 1.2. A Banach space E is of class (S) precisely if every minimal weak* 
cuscofrom a Baire space into E* is generically single-valued. 

PROOF. Suppose that this property holds for weak* cucsos and let T be a weak* 
usco from a Baire space X into E* and let Tm be a minimal weak* usco contained in T. 
By Theorem 1.1, 7^ is a minimal weak* cusco. 

Now 7^ is single-valued on generic subset G of X. Therefore Tm is single-valued on 
G and any selection a of Tm is weak* continuous at each point of G, showing that E is 
of class (S). 

On the other hand suppose E is of class (5). If T is a minimal weak* cusco into E* 
then for any minimal weak* usco S contained in T we have S*(x) — weak* conv S(x) is a 
minimal weak* cusco by Theorem 1.1 and thus S* = T and T is single-valued whenever 
S is. Thus if E is of class (S) and X is Baire then T is generically single-valued. • 

Now we show that any space with rotund dual is of class (S). 

THEOREM 1.3. Let E be a Banach space whose dual norm is strictly convex. Then E 
is of class (S). 

PROOF. Let T be a minimal weak* cusco from a Baire space X into E*. By Theo­
rem 1.2 it suffices to show T is generically single-valued. 

Define (f(x) := inf{||jc*|| | x* G T(x)}. Then <p is lower semicontinuous and so 
continuous at the points of some generic subset G of X. If x G G and JC*, y* G T(x) then it 
is not possible that || JC* || = ||v*|| = p(x)mdx* ^ /:forthen(jt*+v*)/2 G T(x) and has 
norm less than ip(x) by strict convexity, contradicting the definition of <p(x). So if T(x) 
is not a singleton there is y* G T(x) with ||y*|| > ip(x). Choose z G E with ||z|| = 1 and 
(y*,z) > <p(x). Then W := { w* G E* \ (w*,z) > (<?(*) + (y*,z))/2} is a weak* open 
half space w i t h / G W. Since ||w*|| > (</>(*) + ( / , z ) ) / 2 > <p(*) for each w* G Wwe 
see from continuity of <p at JC that there is an open set U containing x such that for each 
ueUwe have T(u)\ W ^ 0. We define 

ri(v) := 
T(v)\W ifveU 

\T(v) ifvEX\U. 

We see that T\ is a weak* cusco on X with T\ < T and T\(x) ^ T(JC). That contradicts 
minimality at T. m 

Next we note the extension procedure for Lipschitzian (convex) functions. 

PROPOSITION 1.4. Suppose f is a real-valued function on an open convex subset U 
of a normed linear space E and has Lipschitz constant L on U. Then 

/ (*) := inf{/O0 + L||*-;y|| \ y € U} 

defines an extension off to E which has Lipschitz constant L on E (and is convex iff 
is). m 

We will use the following form of Fort's theorem [Fo]. Since his terminology varies 
from what later became standard we indicate a proof. 
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THEOREM 1.5 (FORT). Let Xbea topological space and Y a separable metric space. 
IfT.X —> Y is a multivalued upper semicontinuous mapping then there is a residual 
subset G ofX such that T is lower semicontinuous at each point ofG. 

OUTLINE OF PROOF. Let { Un} be a countable closed base for the topology of Y and 
define G := flneN Gn where 

Gn := intr~\Un)U (x\T-\Un)). 

Then Gn is open and dense in X so that G is residual. It is routine to check that T is lower 
semicontinuous at each point of G. • 

Certain cusco mappings, for example maximal monotone operators on separable 
spaces, are single-valued except on sets with complements of "measure zero" in an ap­
propriate sense ([Ar], [Phi]). The following results show that general cuscos do not share 
such a property, as there are dense Ĝ  sets which have measure zero. 

LEMMA 1.6. Let X be a metric space and Gn a decreasing sequence of open subsets 
of X with dense intersection. Let f(x) := T%L\ 10~nsin(l/ d(x,X\Gn)) for x G G := 
flnGN Gn. Then 

(a) f is continuous on G and 
(b) no extension off to X is continuous at any point ofX\ G. 

PROOF, (a) Let JC G G and e > 0. Choose N e N so that 10_/v < e and let y e G. 
Then 

N 

n=\ n=N+\ 
\f(y)-f(x)\ < £ KT"| sin(l/d(x,X\Gn)) - s in ( l /d (y ,X\G n ) ) | + £ 2 10"n 

which is less than e if | y — x\ is small enough, 
(b) We let Af be the first integer such that x £ GN. 

Since G is dense for each 8 > 0 there are y,z E B(x,ë)n G with 

1(T"| sin(l/J(j,X\Gyv))-sin(l/J(z,X\Gyv))| > 10"". 

However 

OO CO 

£ \0-j\sm(l/d(y,X\Gj))-sm(l/d(z,X\Gj))\ < 2 £ 10^ < 1 0 ^ / 2 
j=N+\ j=N+\ 

and 

Ë lO^'l sin(l/d(y,X\Gj)) - sin(l/rf(z,X\G,))| - * 0 

as ë —• 0+ so that \f(y) -f(z)\ > \0~N/2 for some y,z G B(x,è)HG. Thus/ does not 
have an extension which is continuous at JC. • 
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THEOREM 1.7. Forf as in Lemma 1.6 define 

Tx:= lim inf f(y), lim sup f(y) 
.y-+xyeG y-^x,yeG 

for each x G X. Then T is a minimal cusco which is single-valued at x if and only if 

xeG. 

PROOF. It is easy to check that T : X —> R is a cusco. If T contains a cusco T\ then 

T\(y) must contain/(y) for each y G G as T(y) = {f(y)} for those points. It follows that 

T\x contains lim inff(y) and lim sup/0?) and by convexity of T\ (x) we have T(x) Ç T\ (x) 
y^x,y£G y-^x,y<EG 

as required. • 

2. Usco mappings on Baire spaces. We start with a general result about bw* -closed 

multivalued operators, that is, if {xa,x*a) is a net of points in the graph of the operator 

with (JC* ) bounded and xa —• x while x*a —+ x* weak* then (JC, x*) is also in the graph. 

THEOREM 2.1. Let X be a Baire topological space and E a normed linear space. 

Suppose T is a multivalued operator from X to E* with bw* closed graph. The following 

conditions are equivalent 

(a) X\ D(T) is nowhere dense in X. 

(b) D(T) is generic in X. 

(c) There is a dense subset G ofX and a locally bounded selection ofT\c-

(d) There is a countable disjoint collection { Un \ n G N } of open subsets ofx such 

that G := U { Un | n G N } is dense in X and on G the mapping T\ defined by 

(2.1) Tl(x):=T(x)nnBE*ifxeUn 

is weak* usco. 

PROOF. (a)=>(b) and (d)=>(c) are trivial. 

(b)=Kd): Let An := {x G X \ T(x) H nBE* ^ 0 } . Then D(T) = UneNAn and each 

An is closed (because the graph of T bw* closed). For each nonempty open subset U of 

X there is a nonempty open subset V of U and n G N such that Va Ç An (because X 

is Baire space). Let { V1 : 7 G T} be a maximal disjoint collection of open subsets 

of X with V Ç An(a) for some n(a) G N and let Un := U{ Va | n(cc) = n}. For 

contradiction, suppose G := Une^Un is not dense. Then some nonempty open subset U 

of X does not meet G, and some nonempty open subset V of U is contained in some An. 

Now { Va : oc G T} U { V} is a larger collection than our maximal one, a contradiction 

which shows that G is dense. It is clear that T\ as defined in (2.1) is weak* usco on G. 

(c)=>(a) If x G G there is an open neighbourhood U of x such that T\ ur\G has a bounded 

selection a. Now we claim that U Ç D(T). Indeed, if y G U and jca G £/Pl G are such 

that x« —̂  >̂  then a(xa) is a bounded net and so has a Z?w* cluster pointy*. Thus (y,y*) 

is in the bw*-closure of the graph of T, showing that y* G T(y) and then y G D(T) as 

required. 

Thus X\ D( r ) is nowhere dense in X. m 

If we impose suitable conditions on the normed space E we can deduce the existence 

of selections which are generically continuous. 
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THEOREM 2.2. Let X be a Baire topological space and E a normed space. Suppose 

T is a multivalued operator from XtoE* with D{T) generic in X and the graph ofTbw*-

closed. Then there are disjoint open subsets Uny n E N, ofX such that G := Urt(EN Un is 

dense in X, G Ç D(T), and there is a selection o ofT\o(T) such that \\a(x)\\ < nfor each 

x E Un and 

(a) if BE* has type S in its weak* topology then a is generically weak* continuous 

and 

(b) ifE is an Asplund space then a is generically norm continuous. 

PROOF. We deduce the existence of Un open, with G :— Un(EN Un dense in X and 

T\ := TO nBE* weak* usco on Un from Theorem 2.1. Now Sn defined by Sn(x) := 

~T(x) PI BE* is a weak* usco from the Baire space Un into BE*. Thus Sn has a selection 

/i„ which is generically weak* continuous in case (a); and generically norm continuous 

in case (b) (Rainwater [Ra], Proposition 5). Define a(x) := np,n(x) if x E Un and select 

any element of T(x) if x E D(T)\ G. Then a has the required properties. • 

COROLLARY 2.3 (Stegall [St]). A Banach space E is of class (S) if and only ifBE* is 

of type S in its weak* topology. m 

We note two particular cases in which Theorem 2.2 applies. 

REMARK 2.4. 

(a) If T is a weak* usco then T has weak* closed graph (hence bw* closed). This case 

was analysed for Asplund spaces by Jokl [Jo]. 

(b) If T is a maximal monotone operator on the normed linear space E then T has bw* 

closed graph. However an example is given in [Fi] of a maximal monotone on a 

Hilbert space whose graph is not closed in the product of the norm and bounded 

weak topologies. • 

For monotone operators defined on convex subsets of E we now investigate the con­

sequences of continuity of selections. 

LEMMA 2.5. Let T be a monotone operator on a Banach space E and let C be a 

convex subset of E. Suppose D is a dense subset of C and a is a selection of T\D. Let 

JC E D . 

(a) If a is weak* continuous atx then 

T(X)CCJ(X)+NC(X). 

(b) If a is norm continuous at x then for each e > 0 there is 6 > 0 such that if 

\\y — x\\ < 8 and y E C then 

T(y)ÇB[<T(x)9e]+Nc(y). 

PROOF, (a) Let JC* E T(X) and y E C. For each n E N let xn := x + (y - x)/ n and 

yn e D w i t h | | y n - * n | | < l/n2. 
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By monotonicity we have ( cr(yn) — JC*, yn — x) > 0, so 

(a(yn)-x\(y-x)/n) > (a(yn) -x\xn -yn) 

> -\W(yn)-x*\\ '\\xn-yn\\ > -\\v(yn)-x*\\/n2. 

Since cr(yn) converges weak* to CT(JC), { ||a(yn)||} is bounded (E being complete) and 
thus ((j(x)-x\y-x) > 0. That shows T(x) Ç a(x) + Nc(x). 

(b)Let£ > 0 be such that | |a(y)-a(x)| | <e whenever \\y-x\\ < 6.1f||y-jc|| <8 
and y* G T(y), suppose for contradiction that y* £ B[a(x), e] + Nc(y)- Then we can 
separate by a weak* continuous functional, that is, there is z G E with 

(y*-a(x),z) > sup(sBE* +Nc(y),z) 

= e||z|| +sup(Nc(y),z) 

which show that z G Nc(y)° = P(C — y) and (y* — cr(x),z) > e||z||. Therefore we can 
findc G C with (y* — a(x),c — y) > e\\c — y\\. 

Let xn G D with \\y + (c — y)jn — xn\ < 1/n2. Then (<J(JCW) — y*,xn — y) > 0 by 
monotonicity so that 

((T(xn)-y*,(c-y)/n) > (a(xn) - y*,y + (c - y)/n -xn) 

>-\W(xn)-y*\\.\\y + (c-y)/n-xn\\ 

>-\\°(Xn)-f\\ln2. 
Now for n large, ||x„ — JC|| < è so <r(x„) 6 B[a(x), e]. Thus 

e l k - ^ l l < {f-a(x),c-y) 

< l iminf((/ - a(xn),c-y) + \\a(xn) - a(x)\\ -\\c-y\\) 

<liminf(y* -a(xn),c-y) +e\\c-y\\ 
n—KX> 

< l i m i n f | | a ( x j - y * | | / n + £ | | c -y | | 
n—-KX) 

= £ | | c - y | | 

which is a contradiction, showing that T(y) Ç B[a(x), e] + Â cCv) as required. • 

THEOREM 2.6. Lef T be a monotone operator on a Banach space E with norm x bw* 
closed graph. Let C be a convex subset ofE which is a Baire space in its relative norm 
topology. IfD(T) H C is generic in C then there are disjoint relatively open subsets Un, 
n G N, of C with U := U„ € N^« dense in C and a selection a of T\cno{T) such that 
|| a || <non Uny Un Q D(T) and 

(a) ifE is of class (S) then there is a generic subset GofC such that for each x G G, 
a is weak* continuous at x and T(x) Ç a(x) + Nc(x); while 

(b) ifE is an Asplund space there is a generic subset GofC such that for each x G G, 
a is norm continuous at x and for each e > 0 there is 8 = 8 (x, e) > 0 so that 
T(y) Q B[a(x), e] + Nc(y) whenever \\y — x\\ < 8 and y G C. 

PROOF. TO get the generically continuous selection use Theorem 2.2. Now 
Lemma 2.5 shows that T(x) Ç a(x)+Nc(x) in case (a) and that T(y) Ç B[a(x), e]+Nc(y) 
in case (b). • 
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REMARKS 2.7. 

(1) Any S > 0 such that a(B(x,8 )) C B[a(x),e] will do in (b). 
(2) If Nc(x) — { 0} , that is, if JC is a non-support point of C, then (a) becomes T(x) — 

{a(x)}. 
(3) Furthermore, the non-support points, N(C), of C form a Gs convex subset of C 

[Ph3], so if there are non-support points of C then T is single-valued on a generic 
subset of N(C) in case (a) and T\N(Q is norm continuous on a generic subset of 
N(C) in case (b). 

(4) Maximal monotone operators and subdifferentials of convex functions satisfy the 
bw* closed graph condition. • 

Now we turn our attention to separable normed linear spaces. These are of class S, 
but we get generic results that are stronger than those available in nonseparable spaces. 

THEOREM 2.8. Let Cbea convex subset of a separable normed linear space E which 
is a Baire space in the relative norm topology. Then for x in a generic subset of C we 
have Nc(x) = (C - JC)1. 

PROOF. Let T(x) = Nc(x) n BE* for each JC G C. Then T is norm-weak* upper 
semicontinuous and BE* is compact, separable and metrizable in the weak* topology. By 
Fort's Theorem 1.5, T is weak* lower semicontinuous on a generic subset G of C. 

If x G G let j * , z* G T(x). Then we claim y* — z* G (C —jc)1. Otherwise there is c G C 
sothat (y* — z*,c—x) ^ 0 and we may assume (y* — z*,c—JC) > 0. Ifxf := x-\-t(c — x) 
and JC* G T(xt) then (JC* - y\c - x) > 0. Thus x* £ W := {z* G BE* \ (z\c-x) < 
( y*, c — JC) . However T(JC) Pi W ̂  0 and W is weak* open. That contradicts weak* lower 
semicontinuity of T. 

Thus if JC G G and y*, z\ G Nc(x) we can take A > 0 so that y* := Ay* and z* := A z* 
are in BE* and then A (y* - zf) G (C - JC)-1. Thus for JC G G, iVcW Ç (C - JC)-1. But we 
always have (C — JC)X Ç NC(X). m 

Now for monotone operators on such a set C we don't need closedness of the graph 
and get a stronger conclusion than that of Theorem 2.6(a). 

THEOREM 2.9. Let Ebea separable Banach space and C a convex subset ofE which 
is a Baire space in its relative norm topology. Suppose T is a monotone operator from C 
into E* with D(T) generic in C. Then for x in a generic subset of C 

T(x) - T(x) Ç (C - C)x. 

PROOF. Let S be the norm xbw* closure of T. Then S is monotone and by The­
orem 2.6 (as E is of class (S)) there are disjoint relatively open subsets Un of C with 
Uw(EN^n dense in C and a selection a of S\o(S)nc with ||<T(JC)|| < n for all x G Un, 
Un Ç D(S) and a generic set G in C so that S(x) Ç a(jc) + Nc(jc) for all JC G G. By 
Theorem 2.8 there is a generic set H in C so that Nc(x) = (C — JC)X for all JC G //. Thus 
for all JC G G D / / we have 

W Ç a W + l C - i ) 1 
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so that 
S(x) - S(x) Ç (C - x)1 

and in particular T(x) — T(x) Ç (C—x)1 for all x in the generic sebset GHHofC, which 
completes the proof. • 

3. Convex Lipschitzian functions. In this section we apply the result of Section 2 
to the monotone operator df where/ is a convex Lipschitzian function on C. The results 
we obtain hold even when the closed affine span of C is less than all of E, otherwise they 
are similar to those in [Nol] and [V-V]. We start with an example to show the need for 
some Lipschitz assumption. 

EXAMPLE 3.1. Let C be the positive cone in £2 and 

« \ - \ SUPN exp(-rcx„) x G C 
JW'~ i+00 xgC. 

Then 
(a) / is lower semicontinuous and convex on C; 
(b) If xn := tj n where t > 0 then/(jc) = e~* ; 
(c)/(C) = (0,1]; 
(d) f{x) = 1 on the dense subset D := { y G C | some yn = 0} of C. 
(e) Hence/ is not continuous on C; 
(f) If x e D and JC„ = 0 then (-00, -n]6n Ç df(x); 
(g) If x EC/D = NiQ and/(;c) = e~nx« then -ne~nx"6n G 3/(JC); 

(h) If x e C/D and fix) > e~nx» for all n then df(x) = 0; 
(i) Hence 3/(JC) = 0 on a dense subset of C. 
(j) Thus df densely nonempty does not imply df generically nonempty. • 

If / is a convex function on a convex subset C of E we say x* £ E* is a Gateaux 
derivative off at JC G C provided for every c G C 

/ (x + , ( c - * ) ) - / ( * ) 
lim — = (x ,c — x). 
f->0+ f 

We say x* is a Fréchet derivative off at JC provided 

lim * c ) - ^ > - < f c - * > = 0 . 
cec\{4 l |C A|1 

THEOREM 3.2. L̂ f E be a Banach space of class (5) and let C be aGt convex subset 
ofE. lff\ C —> R î  locally Lipschitzian convex on C then there is a dense G& subset G 
ofC such thatf has a Gateaux derivative at each point ofG. 

PROOF. Let Tix) : = dfix) (which can be seen to be nonempty using Proposition 1.4) 
for all x G C. Then T has norm xbw* closed graph and Theorem 2.6(a) yields a selection 
a of T such that Tix) Ç <J(JC) + Ncix) for x in a generic subset G of C. We will show 
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that a(x) is a Gateaux derivative for/ at x E G. Now let c E C, and for 0 < t < 1 let 
x* E T(x + t(c — JC)). Then/(jc + t(c — JC)) —f(x) < (JC*, c — x)t and if JC* is any weak* 

cluster point of JC* at t —> 0+ we have limf_+o+ (/(JC + r(c — JC)) —/(JC) ) jt < ( JC*, c — x). 

However, O"(JC) E T(JC) = df(x) so that 

( a(x), c -x) < lim (/"(JC + t(c - JC)) —/(JC) ] jt. 

Also (JC*,C —JC) = (a(x),c— x) + ( / , c — JC) for s o m e / E Nc W so that {x*, c — JC) < 

( a (JC), c — JC) . Thus ( a (JC), C — JC) = linv-+o+ (/(* + t(c — JC)) — /(JC) j /f as required. • 

THEOREM 3.3. Let E be an Asplund space and let C be a convex G$ subset ofE. For 
each locally Lipschitzian convex function f: C —• R there is a generic subset G of C 
such thatf has a Fréchet derivative at each point ofG. 

PROOF. Let T := 3/, whose graph is norm xbw* closed in C x E*. By Theo­
rem 2.6(b), there is a selection o of T and a generic subset G of C such that for each 
JC E G and e > 0 there is 6 =è(x,e)so that T(y) Ç B[a(x), e] + Nc(y) whenever y eC 
has || JC — y\\ < 8. We will show that CT(JC) is a Fréchet derivative for/ at x E G. Indeed 
if e and 5 are as above and y E C has || JC — ;y|| < è then 

0 < / W - / W - ( a ( j c ) , y - x ) 

<<a00 -a (x ) ,> ; - j c ) < e | | j , - * | | . -

PROPOSITION 3.4. Le/ C be a convex subset of a normed space E andf: C —> R 
convex am/ locally Lipschitzian. If D is a dense subset of C and r(x) E df(x)for each 
x E D and ifr is locally bounded on C then 

f+(x\ c — x) < lim sup(r(y), c — x) 

yED 

for each x and c in C. 

PROOF. Let JC, C E C, n E N and choose yn E D such that \\yn — x — (c — x)/ n\\ < 
l/n2 .Then 

n\f(x + (c - JC)/ /i) - / ( J C ) ] < n[f(y„) - / ( J C ) ] + n[f (* + (c - JC)/ n) - / (y n ) ] 

< n[/*(y„) - / (* ) ] + nL\\yn - x - (c - x)/n\\ 

for large n, where/ has Lipschitz constant L on some neighbourhood of JC. Thus for large 
n we have 

n\f(x+(c-x)/n)-f(x)] < n(r{yn\yn -x) + Ljn 

= (r(yn),c-x) +n(T(yn),yn -x-(c-x)/n) + Ljn 

< (r(>n),c-jc) +M/n + L/n 
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where ||r|| < Mon some neighbourhood of JC. Thus 

fl(x9 c-x)= lim n\f(x + (c - x)jn) -f(x)] 
n—Kx> r v ' J 

< lim {r{yn),c-x) 
n—KX) 

< lim sup( r (y), c — x) 

yeD 

as required. • 
Define for x G C and a locally Lipschitzian convex/ on C, Df(x) := fle>o bw*c\{y* \ 

y* is a Gateaux derivative off at j G C and \\y — x\\ < e}. Let Lf(x) denote the local 
Lipschitz constant off at x. 

THEOREM 3.5. Let C be a convex Gs subset of a Banach space E of class (S) and let 
f be a locally Lipschitzian convex function on C. Then for allx, c G C 

/+(*, c — x) — sup{ (**, c — x) | x* e Df(x)} 

= sup{ ( x \ c - x) I JC* G Df(x), \\x* || < Lf(x)}, 

and 
df(x) = Â c (•*) + ŵ aÂ:* conv D/(JC) 

= Nc(x) + wa/:* conv Df(x) D B[0, L/(JC)]. 

If E is an Asplund space then the statements hold with Fréchet derivatives replacing 
Gateaux derivatives in the definition of D/(x). 

PROOF. We have y* G df(y) whenever y* is a Gateaux derivative off at y G C so 
that Df(x) Ç df(x) for all JC G C by bw* closedness of the graph of df. It follows that 

Df(x) + tfc(*) Ç d/ to + Nc(x) = df(x) 

and since df(x) is weak* closed and convex 

Nc(x) + weak* convD/(jc) Ç 3/(JC). 

Then 
/;(x, c-x) = sup{ (JC*, c - x) I x* G df(x)} 

> sup{ (JC*, c - JC) I JC* G Df(x)} 

> sup{ (JC*, c - JC) I JC* G Df(x\ ||JC* || < L/(JC)} . 

Now suppose u G C and let e > 0. Let g be a convex function on E with Lipschitz 
constant < Lf(u) + e and g\ U = f\ U on some neighbourhood ^/ of JC, by Proposition 1.4. 
Then Dg(u) is nonempty (as £ is a weak Asplund space or an Asplund space) there is 
w* G £>/(«) with || w*|| < L/(u) + e. Take a weak* cluster point r(w) of u*£ as e —+ 0+ and 
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note that r(u) G Df(u) Pi #[0, Lf(u)] / 0. Let x and c belong to C. Then Proposition 3.4 
shows that as r(w) G 3/(w) 

fl(x, c — x) < lim sup( r (jy), c — x) 

yec 

< sup{ (JC*, c-x)) \x* E Df(x\ ||;c*|| < L/(JC)} 

< sup{ ( JC*, c-x) | JC* G D/(;t)} 

< / ; ( J C , C - J C ) 

as above. Thus equality holds throughout. 
Now if there is JC* G 3/(JC) not in Nc(x)+ weak* conv(D/(jc) D fl[o,Lf (*)]), then 

using the separation theorem we can find c G C such that/+(jc, c — JC) > (JC*,C — 
JC) > sup{ (y*,c — JC) I v* G D/(JC), ||v*|| < Lf(x)} which contradicts/{(x;c — x) — 
sup{(v*,c-jc) I / GD/(JC), 11/11 <Lf(x)}. m 

REMARK 3.6. If JC is a non-support point of C then NC(JC) = { 0} and every element 
jc*ofD/(jc)has||jc*|| < L/(JC). 

4. Convex weak* usco mappings. We say an usco Q. from a topological space X 
into (£*,weak*) is a weak* cusco provided £l(x) is always a convex set. We say a weak* 
cusco £2 is thin provided Q. is minimal among the weak* cusco mappings and Q(JC) is a 
singleton for JC belonging to a dense subset of X. 

THEOREM 4.1. Let X be a topological space and E a Banach space. IfH.X-^l^ 
is locally bounded and D(H) is dense in X then 

S(x) := Pl{ weak* con\H(V) : V is a neighbourhood of x} 

defines a weak* cusco on X. 

PROOF. Since H is locally bounded and D(H) is dense we have some neighbour­
hood U of JC such that weak* convH(U) is weak* compact, and H( V) nonempty for every 
neighbourhood V of JC. Thus 5(JC) is weak* compact convex. To see that S is weak* upper 
semicontinuous let W be a weak* open set containing S(x). Then for some open neigh­
bourhood V of JC we have weak* conv H(V) Ç Wy as S(x) is the intersection of weak* 
compact sets of this form. Thus for y G V we have S(y) Ç weak* conv H\V) Ç Was 
required. • 

COROLLARY 4.2. IfT:X —• E* is locally bounded and weak* cusco and a is a se­
lection ofT\o where D is a dense subset ofX then 

Sa(x) := H{ weak* conv &(V)\ V is a neighbourhoodofx} 

is a weak* cusco contained in T.IfT is single-valued on the dense set D then 

TD(X) := PI { weak* conv T(V D D ) | V is a neighbourhood ofx} 

is the minimal weak* cusco inside T. 

PROOF. The first statement is obvious. For the second statement suppose H is a 
weak* cusco inside T. Then H\D — T\D — a so that H contains Sa = TD m 
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THEOREM 4.3. Let T:X —• E* be a locally bounded weak* cusco. The following 
statements are equivalent. 

(1) T is thin. 

(2) For every dense subset D ofX on which T is single-valued we have T — T&, and 
there is such a dense set. 

(3) For some dense subset D ofX on which T is single-valued we have T = Tp. 

PROOF. We have (1) implies (2) by Corollary 4.2 and (2) implies (3) trivially. Now 
suppose (3). By Corollary 4.2 TD is a minimal weak* cusco and we are supposing T = To, 
so T is minimal and densely single-valued as required. • 

Without single-valuedness, we have the following characterization of minimal weak* 
cusco mappings. 

PROPOSITION 4.4. A locally bounded weak* cusco T from Xto E* is a minimal cusco 
if and only ifT— Sa for every selection a ofT restricted to a dense subset Da ofX. 

PROOF. If T is minimal then Corollary 4.2 shows that T — Sa. On the other hand 
suppose T — Sa for every such selection a and let T\ be a minimal weak* cusco contained 
in T. Then for any selection a of T\ (with Da — X) we have T = Sa. But Corollary 4.2 
shows Sa CT\. Thus T — T\. m 

One reason for considering weak* cusco mappings is that monotone operators on open 
sets are weak* cusco if and only if maximal monotone. Precisely : 

PROPOSITION 4.5 [PH2, V-V]. Let U be an open subset of a normed linear space 
E and T:E —• E* monotone with D(T) = U.IfT is weak* cusco then T is maximal 
monotone on U. 

PROOF. This is Lemma 7.7 in [Ph2]. • 

COROLLARY 4.6. For T monotone on an open subset U of a Banach space E the 
following are equivalent. 

(1) T is maximal monotone on U. 

(2) T is weak* cusco on U. 

(3) T is minimal weak* cusco on U. 

PROOF. [Ph2]. • 

Also every locally Lipschitzian function/: U —-> R yields a weak* cusco df from U 
to E*. It is natural to look for conditions which imply that df is thin, especially if E is 
Asplund or of class (S) because then/ will be generically Fréchet or Gateaux differen-
tiable. Recall that/ is pseudo-regular on U if the Clarke derivatej/0^; h)] and the upper 
Dini derivate \f'+(x\ h)] agree for x in U. 

THEOREM 4.7. Suppose f is a locally Lipschitzian, real valued function which is 
densely Gateaux differentiable and is pseudo-regular (in the sense that the Clarke and 
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upper Dini derivatives agree) on an open subset U of a normed linear space E. Then df 
is thin on U. 

PROOF. Let 

T(x) :— n {weak* conv{ Vf(y) | y G V} I V is a neighbourhood of JC} 

so that T(x) C df(x) for all JC G U. If V/(JC) exists then, by pseudo regularity, df(x) = 
{ V/(JC)} = T(x) so we see that T is minimal weak* cusco by Theorem 4.3, and that df 
is densely single-valued. Suppose df is not thin; then T(x) ^ df(x) for some x G U. Thus 
there are h G E and e > 0 such that/°(jc; /z) > £ + sup( T(x), h). 

Since/ is pseudo-regularf'+{x\ h) = /°(JC; h) so there are tn —> 0+ with 

(A* + f„/z) - / W ) / rn > sup( T(x\ h) + 3 ^ / 4 . 

By the one-dimensional mean value theorem for Lipschitzian functions there are sn G 
]0, tn[ such that the two-sided directional derivative f{x + snh\ h) exists and 

f(x + snh;h) >f(x + tnh) -f{x)Itn-e/4. 

Thus/(jc + snh;h) > sup(T(x),h) + e/2. In particular f+(x + snh\-h) < - e / 2 -
sup( T(JC), /i) and since/ is pseudo regular, f°(x + snh : —h) < —e/2 — sup( T(x), h). Let 
un —̂  0 such that V/(jc+sn/i+wn) exists and ( Vf(x+snh+un), —h) < f°(x+snh; —h)+e / 4. 
Then ( Vf(x+snh + un), exists and ( Vf(x + snh + un), —h) <f°(x+snh\ —h) + e/ 4. Then 
( V/(JC + 5n/z + un), h) > e + sup( T(JC), /z) which contradicts the definition of T. m 

COROLLARY 4.8. If E is a Banach space of class (S) andf is a locally Lipschitzian, 
real-valued function which is pseudo-regular and densely Gateaux differentiahle on an 
open subset U thenf is strictly Gateaux differentiable on a generic subset of U. 

PROOF. By Theorem 4.7, df is minimal weak* cusco so that df is generically single-
valued because E has class (S). m 

Iff is pseudo-regular then/ is strictly Gateaux differentiable whenever it is Gateaux 
differentiable. An even weaker property is that/ is strictly Gateaux differentiable when­
ever it is Fréchet differentiable. The following result generalizes Theorem 2.3 of [deB-
F-G]. 

THEOREM 4.9. Let Ebe a Preiss space of class (S) (an Asplund space) and letf be a 
locally Lipschitzian real-valued function on an open subset U ofE. Iff is strictly Gateaux 
differentiable whenever it is Gateaux (Fréchet) differentiable then f is strictly Gateaux 
(strictly Fréchet) differentiable on a generic subset of U. 

PROOF. Since £ is a Preiss (Asplund) space we have/ is Gateaux (Frechet) differ­
entiable on a dense subset D of U and 

df(x)= fl weak*conv{V/(y) |yeA| |y-^l l < ^ } -
£>0 
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Since df(y) = { Vf (y)} whenever y e D by strict Gateaux differentiability off at these 
points, Theorem 4.3 shows that df is minimal on U. Since E is of class (5) ( Asplund) it fol­
lows that df is generically single-valued (single-valued and norm upper-semicontinuous) 
on U, and generic strict differentiability follows. • 

If we apply Theorem 4.3 to maximal monotone operators, which are minimal weak* 
cusco by Proposition 4.5, then we obtain the following result. 

COROLLARY 4.10. If T is a maximal monotone operator on an open subset U of a 
class (S) space E then T is thin and for any dense subset DofUon which T is single-
valued and every x G U we have 

Tx = f| weak* conv T(B(X9 e)DD). m 
£>0 

In particular we could take T = df for/ convex continuous on U. One class of non-
convex functions for which our results apply are distance functions on spaces with uni­
formly Gateaux differentiable norms. 

THEOREM 4.11. Let E be a Banach space whose norm is uniformly Gateaux differ­
entiable andf(x) = dist(x, K) for a nonempty closed subset K ofE. Then df is thin on 
E\ K and for any dense subset D ofE on which f is Gateaux differentiable andx £ E\K 
we have 

df{x) = f| weak* c o n v ( Vf(y) | v £ D H B(x, e)}. 
£>0 

PROOF. The norm of E* is strictly convex [Day, p. 148] so that E has class (S) by 
Theorem 1.3. From [B-F-G, p. 522] we see that/ is pseudo-regular. Now Theorem 4.7 
shows df is thin and Theorem 4.3 shows the formula for df(x). m 

In [deB-F-G] this result is proved for D the set of all Gateaux differentiability points. 
In [Bo] the application of minimal cuscos to Clarke subgradients and to differentiability 
of Lipschitz functions is taken considerably further. 

REMARK 4.12. Since this paper was originally submitted, Phelps, Preiss and 
Namioka [PPN] have extended Theorem 1.3. They show, by much deeper arguments, 
that every Gateaux renormable space is class (S). In contrast, Hay don [Ha] has exhibited 
Asplund spaces with no equivalent Gateaux differentiable norm. 

REFERENCES 

[Ar] N. Aronszajn, Differentiability of Lipschitzian mappings between Banach spaces, Studia Math. 57(1976), 
149-190. 

[B-F] Jon Borwein and Simon Fitzpatrick, Local boundedness of monotone operators under minimal hypothe­
ses, Bull. Austral. Math. Soc. 39(1988), 439-441. 

[B-F-G] J. M. Borwein, S. P. Fitzpatrick and J. R. Giles, The differentiability of real functions on normed linear 
spaces using generalized subgradients, J. M. A. A. 128(1987), 512-534. 

[Bo] J. M. Borwein, Minimal cuscos and subgradients of Lipschitz functions, in Fixed Point Theory and its 
Applications, J-B. Bâillon nad M. Thera eds., Pitman lecture notes in Mathematics, Longman, Essex, 1991. 

https://doi.org/10.4153/CJM-1991-028-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1991-028-5


476 J. BORWEIN, S. F1TZPATRICK AND P. KENDEROV 

[deB-F-G] G. de Barra, Simon Fitzpatrick and J. R. Giles, On generic differentiability of locally Lipschitzian 
functions on Banach space, Proc. C. M. A., ANU 20(1989), 39-49. 

[Day] MahlonM. Day, Normed Linear Spaces. 3rd éd., Springer-Verlag, New York, 1973. 
[Fi] A subdifferential whose graph is not norm xbw closed. (Preprint 1991) 
[Fo] M. K. Fort, Jr., Category theorems, Fund, Math. 42(1955), 276-288. 
[Ha] R. Haydon, "A counterexample to several questions about scattered compact spaces, Bull. London Math. 

Soc. (In Press) 
[Jo] Ludek Jokl, Minimal convex-valued weak* usco correspondences and the Radon-Nikody m property, Com­

ment. Math. Univ. Carol. (28)2(1987), 353-376. 
[Nol] Dominicus Noll, Generic Gatêaux-differentiability of convex functions on small sets, J. of Math Anal. 

and its Applications 147(1990), 531-544. 
[No2] , Generic Fréchet- differentiability of convex functions on small sets, Arch. Math. 54(1990), 

487^492. 
[Phi] R. R. Phelps, Gaussian null sets and differentiability ofLipschitz mappings on Banach spaces, Pacific 

J. Math. 77(1978), 523-531. 
[Ph2] , Convex Functions, Monotone Operators and Differentiability. Lecture Notes in Mathematics 

No. 1364, Springer-Verlag, New York, 1989. 
[Ph3] , Some topological properties of support points of convex sets, Israel J. Math. 13(1972), 327-336. 
[Pr] David Preiss, Differentiability of Lipschitz functions on Banach spaces, J. Funct. Analysis. (To Appear) 
[PPN] D. Preiss, R. R. Phelps and I. Namioka, Smooth Banach spaces, weak Asplund spaces, and monotone 

or usco mappings. (Preprint, 1989). 
[Ra] J. Rainwater, Yet more on the differentiability of convex functions, Proc. Amer. Math. Soc. 103(1988), 

773-778. 
[Ro] R. T. Rockafellar, Local boundedness of nonlinear monotone operators, Mich. Math. J. 16(1969), 397-

407. 
[St] C. Stegall, A class of topological spaces and differentiation of functions betweeen Banach spaces, in Proc. 

Conf. on Vector Measures and Integral Representations, Vorlesungen aus dem Fachbereich Math., Heft 10, 
W. Ruess éd., Essen, 1983. 

[Ve] Maria Elena Verona, More on the differentiability of convex functions, Proc. Amer. Math. Soc. 103( 1988), 
137-140. 

[V-V] Andrei and Maria Elena Verona, Locally efficient monotone operators, Proc. Amer. Math. Soc. 109 
(1990), 195-204. 

Dalhousie University 
Halifax, NS B3H 3J5 

Department of Auckland 
University of Auckland 
38 Princess Street 
Aukland, New Zealand 

University of Sophia 
Department of Mathematics 
Anton Ivanov. Str. 
5. Sophia 1126 
Bulgaria 

https://doi.org/10.4153/CJM-1991-028-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1991-028-5

