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A note on acoustic turbulence
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We consider a three-dimensional acoustic field of an ideal gas in which all entropy
production is confined to weak shocks and show that similar scaling relations hold
for such a field as for forced Burgers turbulence, where the shock amplitude scales
as (εd)1/3 and the pth-order structure function scales as (εd)p/3r/d, ε being the mean
energy dissipation per unit mass, d the mean distance between the shocks and r the
separation distance. However, for the acoustic field, ε should be replaced by ε + χ ,
where χ is associated with entropy production due to heat conduction. In particular,
the third-order longitudinal structure function scales as 〈δu3

r 〉 =−C(ε + χ)r, where C
takes the value 12/5(γ +1) in the weak shock limit, γ = cp/cv being the ratio between
the specific heats at constant pressure and constant volume.

Key words: shock waves, turbulence theory, compressible turbulence

1. Introduction

A random acoustic field in which many modes are excited may be characterised
as acoustic turbulence. A long-standing problem in turbulence theory is to determine
the statistical properties of such a field. Two approaches have been developed to
tackle this problem. Zakharov & Sagdeev (1970) used weak turbulence theory to
derive an energy wavenumber spectrum of the form ∼k−3/2 in three dimensions.
This approach was criticised by Kadomtsev & Petviashvili (1973), who argued that
shocks will always develop in an acoustic field if the Reynolds number is sufficiently
large, and give rise to an energy spectrum of the form ∼k−2. Insightful discussions
on the arguments in favour of each of the two approaches are given by Falkovich
& Meyer (1996) and L’vov et al. (1997). In this note, we will not add to these
discussions. Instead, we will assume that there exists a regime in which nonlinearities
are sufficiently strong for shocks to form in such an abundance that virtually all
entropy production is confined to shocks, and yet sufficiently weak for the shocks to
be weak. The aim of the paper is to derive scaling relations for such a hypothetical
regime, which may be tested experimentally or numerically. Before doing this, it
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may be illustrative to consider forced Burgers turbulence as a simple example of
shock-dominated turbulence.

We consider statistically stationary solutions to Burgers equation (Burgers 1948),

∂u
∂t
+ u

∂u
∂x
= ν

∂2u
∂x2
+ f , (1.1)

in a domain with length L, where f is a random forcing with characteristic length
scale Lf and ν is the kinematic viscosity. Building on previous investigations it
can be shown that apart from ν the two other parameters characterising forced
Burgers turbulence are the mean energy dissipation rate per unit mass, ε, and the
mean distance between the shocks, d = L/n, where n is the number of shocks. We
define the pth-order velocity structure function as 〈|δu|p〉, where δu= u(x+ r)− u(x)
and 〈 〉 is the domain average. If p is an odd integer we can also define structure
functions without taking the absolute value of δu – for example, the third-order
structure function 〈δu3

〉. As shown by Bouchaud, Mezard & Parisi (1995), Weinan
et al. (1997) and Weinan & Eijnden (1999), structure functions of order p > 1 can
be calculated by only taking those increments into account for which the two points
x and x + r lie on different sides of a shock. If δx� r� d, where δx is the shock
width, the probability that a shock is crossed for an arbitrary increment is equal to
rn/L= r/d. The pth-order structure function can thus be calculated as

〈|δu|p〉 = 〈1up
〉s

r
d
, (1.2)

where 1u is the shock amplitude, taken to be positive by definition, and

〈1up
〉s =

1
n

n∑
i=1

1u p
i (1.3)

is the average over all shocks. The expression 1up should be read as (1u)p. For
simplicity, we omit the parentheses. The velocity increment δu is always negative over
a shock. The third-order structure function can thus be written as

〈δu3
〉 =−〈1u3

〉s
r
d
. (1.4)

It is straightforward to derive the Burgers equation analogue of ‘the four-fifths law’ of
Kolmogorov (1941a). Under the assumption of statistical homogeneity and stationarity
the following equation is easily derived:

∂

∂r
〈δu3
〉 =−12ε + 6ν

∂2

∂r2
〈δu2
〉 + 6〈δuδf 〉. (1.5)

After integration of (1.5) the two last terms can be neglected if δx� r� Lf , and we
obtain

〈δu3
〉 =−12εr, (1.6)

which was given by Weinan & Eijnden (1999) and Falkovich & Sreenivasan (2006).
Combining (1.4) and (1.6) we find

〈1u3
〉s = 12εd, (1.7)
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A note on acoustic turbulence

a relation which was derived by Weinan & Eijnden (1999). The pth-order structure
function can now be written as

〈|δu|p〉 =Kpε
p/3dp/3−1r, (1.8)

where
Kp = 12p/3 〈1up

〉s

〈1u3〉
p/3
s

(1.9)

are non-dimensional prefactors that can be calculated from the probability density
function of the shock amplitude 1u, if that is known. The kinetic energy spectrum can
be calculated as the Fourier transform of −〈δu2

〉/4. Using the theory of generalised
Fourier transforms (Lighthill 1959) we obtain

E(k)=
K2

2π
ε2/3d−1/3k−2. (1.10)

The k−2-spectrum was derived by Burgers (1948) in the one-dimensional case and
by Kuznetsov (2004) in the three-dimensional case, without including the parametric
dependence on ε and d. An interesting property of the expressions (1.8) and (1.10) is
that they are invariant under superposition of two fields, which follows from the fact
that both (1.2) and (1.4) fulfil this type of invariance. As discussed in Frisch (1995),
Landau (Landau & Lifshitz 1987) made the objection against Kolmogorov (1941b)
that structure functions cannot be universally dependent on ε and r, since such a law
would not be invariant under superposition of two fields. This objection cannot be
raised against (1.8) and (1.10), since the prefactors Kp will adjust in such a way that
this invariance is fulfilled.

Recently, Augier, Mohanan & Lindborg (2019) showed that similar scaling relations
are valid for two-dimensional shallow water wave turbulence as for forced Burgers
turbulence. For shallow water wave turbulence a distinction should be made between
structure functions involving increments of the longitudinal and transverse velocity
components, just as in the case of two- or three-dimensional incompressible turbulence.
Augier et al. (2019) showed that the ratio between the longitudinal and transverse
structure function of a particular order can be determined from the condition that the
velocity step at a shock is confined to the shock normal component. It was also shown
that the shock width scales as

δx∼
ν

(εd)1/3
. (1.11)

It can be argued that (1.11) also holds for Burgers turbulence. We will now consider
the case of three-dimensional shock-dominated acoustic turbulence

2. Scaling relations for shock-dominated acoustic turbulence

We consider an ideal three-dimensional homogeneous isotropic acoustic field in a
domain with volume V . We assume that the velocity field is irrotational and that
all entropy production in the field is confined to weak shocks, which we consider
as smooth surfaces whose total area we denote by A. Since it is assumed that the
shocks are weak we can also assume that they interact weakly (Apazidis & Eliasson
2018) and cross each other without strong reflections, just as weak shallow water wave
shocks (Augier et al. 2019). Their radius of curvature will therefore be larger than the
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characteristic distance between them. We define the linear mean distance between the
shocks as d≡L/n, where L is the length of a straight line segment passing through the
domain and n is the number of shocks that the segment crosses. By the assumptions
of isotropy and homogeneity, all segments of all straight lines will give the same
value of d, provided that sufficiently many shocks are crossed. A structure function
of a scalar flow variable can be calculated just as in the one-dimensional case, as the
average over a line segment of a moment of the increment – for example, the density
increment δρ=ρ(x+ r)−ρ(x), where r is the separation vector. The density structure
function of order p can thus be calculated as

〈|δρ|p〉l = 〈1ρ
p
〉s

r
d
, (2.1)

where 〈 〉l is the line average, 1ρ is the density step at a shock, which we take to be
positive by definition, and 〈 〉s is the average over all shocks that are crossed by the
segment.

A structure function can also be calculated as a domain average, which we denote
by 〈 〉, without any subscript. By only taking those increments into account for which
r crosses a shock, we find

〈|δρ|p〉 =
1
V

∫
V
|δρ|p dV =

1
V

∫
A
1ρpr cos θ dA, (2.2)

where θ is the angle between r and the shock normal unit vector, n, defined in such
a way that θ ∈ [−π/2, π/2]. By the assumption of isotropy θ can be regarded as a
random variable with probability density |sin θ |/2. We thus find

〈|δρ|p〉 = 〈cos θ〉θ 〈1ρp
〉A

rA
V
=

1
2
〈1ρp
〉A

rA
V
, (2.3)

where
〈1ρp
〉A =

1
A

∫
A
1ρp dA (2.4)

is the average over the total shock area and

〈 f (θ)〉θ =
1
2

∫ π/2

−π/2
|sin θ | f (θ) dθ. (2.5)

Evidently, the domain average (2.3) must be equal to the line average (2.1) and 〈1ρp
〉A

must be equal to 〈1ρp
〉s. Therefore, we must also have

V
A
=

1
2

d, (2.6)

a relation which will be used in the following. In this context it may be relevant to
point out that the corresponding relation for an isotropic field in two dimensions is
A/L = 2d/π, where A is the domain area and L is the total shock length. In an
anisotropic field the mean crossing distance, d, will be different for different lines.
A regular grid of squares with side a has A/L= a/2. A line which is aligned with
the grid has d= a, while a line at 45◦ angle to the grid (and not crossing the corners
of the squares) has d= a/

√
2.
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A note on acoustic turbulence

The velocity step at a shock, 1u, which we take to be positive by definition, is
confined to the shock normal component. A shock crossing velocity increment can
thus be resolved as δu= δurer+ δuθeθ , where δur=− cos θ1u, δuθ = sin θ1u, er= r/r
and eθ is orthogonal to both er and n× er. The structure function Smn= 〈|δur|

m
|δuθ |n〉

can be calculated as

Smn = 2〈|cos θ |m+1
|sin θ |n〉θ 〈1um+n

〉A
r
d
. (2.7)

If m and n are integers we can also calculate the structure function 〈δum
r δu

n
θ 〉, which

is equal to zero if n is odd, equal to Smn if both m and n are even and equal to −Smn
if m is odd and n is even, since δur is always negative over a shock (Augier et al.
2019). The second- and third-order structure functions are of particular interest:

〈δu2
r 〉 = 〈δu

2
θ 〉 =

1
2
〈1u2
〉A

r
d
, (2.8)

〈δu3
r 〉 =

3
2
〈δurδu2

θ 〉 =−
2
5
〈1u3
〉A

r
d
. (2.9)

The radial increment, δur, is, of course, nothing else than the longitudinal increment,
δuL, of standard incompressible turbulence theory (Frisch 1995). However, the
increment δuθ should not be confused with an arbitrary transverse increment δuT ,
since the subscript θ indicates a specific transverse direction in the vicinity of a
shock. To obtain 〈δum

L δu
n
T〉 one should multiply 〈δum

r δu
n
θ 〉 by

∫ 2π

0 sinnφ dφ/2π. For
example, 〈δu2

T〉 = 〈δu
2
θ 〉/2, and the first equality in (2.8) is therefore consistent with

〈δu2
L〉 =

d
dr
(r〈δu2

T〉), (2.10)

which holds for a three-dimensional irrotational isotropic velocity field (see appendix A).
From (2.9) we also get 〈δuLδu2

T〉 = 〈δu
3
L〉/3, which is only a kinematic consequence

of the shock structure, since – generally – there are two independent invariants of the
third-order tensor structure function of an irrotational isotropic field. This is shown
in appendix A.

Assuming that the shocks for most of their lifetime are in a quasistationary state
we can use the shock relations for an ideal gas together with the entropy equation
to relate 〈1u3

〉A to the mean entropy production over the shocks. For weak shocks,
the jump of a flow quantity can be expanded in terms of the shock strength, defined
as z = (p2 − p1)/p1, where p1 and p2 are the pressures before and after the shock,
respectively. The jumps in velocity, density, temperature and specific entropy can be
expanded as (Whitham 1970, p. 176)

1u
c1
=

z
γ
+O(z2), (2.11)

1ρ

ρ1
=

z
γ
+O(z2), (2.12)

1T
T1
=
γ − 1
γ

z+O(z2), (2.13)

1S
cv
=
γ 2
− 1

12γ 2
z3
+O(z4), (2.14)
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where c1 is the speed of sound before the shock and γ = cp/cv is the ratio of
the specific heats at constant pressure and constant volume. The jump in specific
entropy can also be calculated by integrating the entropy equation, which we write
in conservative form as

∂

∂t
(ρS)+∇ · (ρuS)=

k
T
∇

2T +
ε

T
, (2.15)

where k is the thermal conductivity and ε is the kinetic energy dissipation rate per
unit volume. In the frame of reference where the shock is at rest, the partial time
derivative can be neglected, since we assume that the shock is in a quasistationary
state. The advective term can be written as ∇ · (ρuS) = Q∂xS, where Q is the mass
flux per unit area over the shock measured in the rest frame of the shock and x is
the local shock normal coordinate. The equation can be integrated as (Whitham 1970,
p. 189)

1S=
1
Q

∫ δx

0

{
k

T2

(
∂T
∂xi

)2

+
ε

T

}
dx, (2.16)

where two terms including ∂xT evaluated at the boundaries of the shock have been
neglected. Since the Mach number is assumed to be close to unity, and density
fluctuations are assumed to be small, we can make the approximation Q ≈ ρ0c0,
where ρ0 and c0 are background reference values of the density and the speed of
sound, respectively, which we take as the mean values over the whole field. Using
c2
= γRT , where R is the ideal gas constant, replacing c by c0, ρ by ρ0, and averaging

over the total shock area, we obtain

〈1S〉A ≈
1
A

∫
A

∫ δx

0

Rγ
c3

0

{
κcp

T

(
∂T
∂xi

)2

+
ε

ρ0

}
dx dA, (2.17)

where κ = k/(ρcp) is the thermal diffusivity. Assuming that the entropy production
is confined to the shocks, the domain of integration can be extended to include the
whole field, and we get

〈1S〉A ≈
Rγ
c3

0
(ε + χ)

V
A
=

Rγ
c3

0
(ε + χ)

d
2
, (2.18)

where ε ≡ 〈ε/ρ0〉 is the mean kinetic energy dissipation rate per unit mass and

χ ≡ κcp

〈
1
T

(
∂T
∂xi

)2
〉
. (2.19)

We can now estimate 〈1u3
〉A to leading order in z by taking the cube of (2.11),

replacing c1 by c0, averaging over all shocks, and using (2.14) and (2.18),

〈1u3
〉A ≈

6
γ + 1

(ε + χ)d, (2.20)

which is analogous to relation (1.7) derived by Weinan & Eijnden (1999) for Burgers
turbulence. Inserting this expression into (2.9) we obtain

〈δu3
r 〉 =−C(ε + χ)r, (2.21)
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A note on acoustic turbulence

where C is a positive constant of the order of unity. In the weak shock limit we
obtain C = 12/5(γ + 1), giving C = 9/10 for a monatomic gas and C = 1 for a
diatomic gas. Equation (2.21) is similar to the ‘four-fifths law’, 〈δu3

r 〉 = −(4/5)εr,
(Kolmogorov 1941a) for incompressible turbulence and the corresponding law (1.6)
for Burgers turbulence (Weinan & Eijnden 1999; Falkovich & Sreenivasan 2006), with
the difference that ε is replaced by ε + χ .

From (2.20) we can conclude that the shock amplitude scales as 1u∼ (ε+χ)1/3d1/3

and that a structure function of order p> 1 scales as 〈|δur|
p
〉 ∼ (ε + χ)p/3dp/3−1r. The

structure functions 〈δu · δu〉 = 〈δu2
r 〉 + 〈δu

2
θ 〉 and 〈(c0δρ/ρ0)

2
〉 are of particular interest,

as are 〈δurδu · δu〉 and 〈δur(c0δρ/ρ0)
2
〉. Replacing the local density ρ1 with ρ0 in

(2.12) and the local speed of sound in (2.11) with c0 will only give rise to alterations
of O(z2) on the right-hand sides. To leading order in z we thus find

〈(c0δρ/ρ0)
2
〉 = 〈δu · δu〉 ∼ (ε + χ)2/3d−1/3r, (2.22)

〈δur(c0δρ/ρ0)
2
〉 = 〈δurδu · δu〉 =− 5

3 C(ε + χ)r, (2.23)

where the expression for 〈δur(c0δρ/ρ0)
2
〉 is similar to the Yaglom (1949) relation

for the third-order velocity–scalar structure function of incompressible turbulence.
The second-order velocity structure function is associated with kinetic energy and
the density structure function with the energy form which has been referred to
as ‘acoustic potential energy’ (Lighthill 1978, p. 13). These two forms of energy
are equipartitioned in a linear acoustic wave. Quite interestingly, to leading order
in z, equipartition also holds for a field of weak shocks, and if the third-order
structure functions are supposed to be associated with energy fluxes, the relation
(2.23) indicates that kinetic and potential energy fluxes are equipartitioned, just as in
shallow water wave turbulence (Augier et al. 2019). The kinetic and potential energy
spectra scale as

EK(k)= EP(k)∼ (ε + χ)2/3d−1/3k−2. (2.24)

The non-dimensional prefactors which we have omitted in (2.22) and (2.24) can
be expressed in such a way that they can be determined from the constant C
and the probability density function of 1u. Thereby, the expressions are invariant
under superposition of two fields, just as the corresponding expressions for Burgers
turbulence.

To compare the magnitudes of ε and χ , we can use (2.11) and (2.13) to estimate
both of them in terms of z:

ε ∼

(
4
3
ν + νb

)
c2

0

γ 2δxd
〈z2
〉A, (2.25)

χ ∼ κ
c2

0(γ − 1)
γ 2δxd

〈z2
〉A, (2.26)

where νb = µb/ρ0, with µb being the bulk viscosity. Defining a Prandtl number as
Pr ≡ (4ν/3 + νb)/κ , we see that χ ∼ ε if Pr ∼ 1. If this is the case, the shock
strength can be estimated as z∼ (εd)1/3/c0, the Mach number, M=

√
1+ (γ + 1)z/2γ ,

as M ∼ 1 + (εd)1/3/c0 and the shock width as in (1.11). The lifetime of a shock
can be estimated as τ ∼ δx2/ν ∼ ν/(εd)2/3 and the ratio between the partial time
derivative and the advective term in the entropy equation (2.15) can thus be estimated
as δx/τc0 ∼ (εd)1/3/c0, motivating the assumption of quasistationarity.
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3. Conclusions

We showed that similar scaling relations hold for an acoustic field that is dissipated
by weak shocks as for forced Burgers turbulence, with the difference that ε should
be replaced by ε + χ , where χ is associated with entropy production due to heat
conduction. In all likelihood, the ratio χ/ε is Prandtl-number-dependent and as long
as the Prandtl number is of the order of unity, χ is of the same order as ε. Apart
from γ , the third-order structure function of acoustic turbulence therefore depends on
two parameters – unlike Burgers turbulence, where there this is a single parameter
dependence. This is not very surprising. In the full equations, describing an acoustic
field, the pressure term is the agent of exchange between kinetic and internal energy,
and these two forms of energy are of equal importance. In the Burgers equation, on
the other hand, the pressure term is absent and internal energy is irrelevant. From
a principal point of view, the replacement of ε by ε + χ makes a big difference.
The third-order structure function laws of incompressible turbulence and Burgers
turbulence are connected with the notion of a constant energy flux through scales,
which is equal to ε. It remains a theoretical challenge to investigate in what way the
quantity ε + χ may be linked to an energy flux. From an experimental point of view
the replacement of ε by ε + χ is of less importance if Pr ∼ 1. Let us assume that
we set out to test the prediction of Kadomtsev & Petviashvili (1973) that an acoustic
field is always dissipated by shocks if the Reynolds number is sufficiently large, and
that we do this by generating a random acoustic field in a chamber with reflecting
walls, using loudspeakers whose total input power is P= 10−3 W kg−1. Let us further
assume that shocks are formed with a mean distance d= 0.1 m. In a stationary state,
we have ε = P, and given the relations derived in this paper we can estimate the
relative pressure change over a shock as z∼ 10−4, the Mach number as M∼ 1+ 10−4,
the shock velocity amplitude as 1u ∼ 5 cm s−1, the shock width as δx ∼ 0.5 mm
and the Reynolds number as Re=1ud/ν ∼ d/δx∼ 200� 1. Indeed, it would be an
experimental challenge to produce an image of a field of such weak shocks, but it
does not seem to be insurmountable. Likewise, the art of direct numerical simulations
has developed into a stage in which it would be feasible to test the prediction of
Kadomtsev & Petviashvili (1973) by making a full Navier–Stokes simulation of a
randomly forced acoustic field. It is the hope of the author that the present note will
stimulate research along these lines.
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Appendix A. Invariants of structure functions

In this appendix we derive relation (2.10) and show that there are two invariants of
the third-order tensor structure function of an isotropic irrotational velocity field. The
isotropic second-order structure function can be written as

〈δuiδuj〉 = eiej〈δu2
L〉 + sij〈δu2

T〉, (A 1)

where e= r/r and sij = δij − eiej. By isotropy, 〈δu2
L〉 and 〈δu2

T〉 are functions of r. By
applying the irrotational condition εijk∂j〈δukδul〉 = 0 and using ∂inj = sij/r we obtain

1
r
εilkek

(
〈δu2

L〉 −
d
dr
(r〈δu2

T〉)

)
= 0, (A 2)
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from which (2.10) follows. The third-order tensor structure function can be written as

〈δuiδujδuk〉 = 2(Dijk +Djki +Dkij), (A 3)

where Dijk = 〈uiuju′k〉. Unprimed and primed quantities indicate positions x and x+ r,
respectively. In (A 3) we have used that 〈u′iu

′

juk〉=−〈uiuju′k〉 by isotropy and 〈u′iu
′

ju
′

k〉=

〈uiujuk〉 by homogeneity. Since the velocity field is irrotational we can write Dijk =

〈∂iφ∂jφ∂
′

kφ
′
〉, where φ is the velocity potential. By homogeneity we have

Dijk =
∂Bij

∂rk
, (A 4)

where Bij = 〈∂iφ∂jφφ
′
〉. The irrotational condition εijk∂jDlmk = 0 is clearly fulfilled by

(A 4). By isotropy we can write Bij = eieja(r)+ sijb(r), where a(r) and b(r) are two
scalar functions. It is quite clear that a(r) and b(r) are generally independent of each
other since there is no further constraint on Bij. A little bit of algebra gives

〈δuLδuLδuL〉 = 6
da
dr
, (A 5)

〈δuLδuTδuT〉 = 2r2 d
dr

(
b
r2

)
+

4a
r
. (A 6)

We conclude that the third-order tensor structure function of an isotropic irrotational
field has two invariants.
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