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Abstract

We compute the spaces of sections of powers of the determinant line bundle on the spherical Schubert subvarieties

of the Beilinson–Drinfeld affine Grassmannians. The answer is given in terms of global Demazure modules over

the current Lie algebra.

1. Introduction

Let g be a simple complex Lie algebra. To simplify the notation, in the introduction we assume that g is

simply laced. We drop this restriction in the main body of the paper.

The central objects of the algebraic representation theory of g are finite-dimensional irreducible

representations +_ of g labelled by the dominant integral weights _ ∈ %+. The geometric objects

responsible for these representations are the flag varieties. In particular, flag varieties are naturally

embedded into projectivisations of irreducible g-modules, and the celebrated Borel–Weil theorem states

that finite-dimensional gmodules are realised as (dual) spaces of sections of line bundles on flag varieties

(see, e.g., [Fu, Kum2]). These properties are still valid after passing to the Demazure submodules inside

+_ and to the Schubert subvarieties in flag varieties.

In this paper we are interested in the representation theory (algebraic and geometric) of two natural

infinite-dimensional analogues of the Lie algebra g – the current algebra g[C] = g ⊗ C[C] and the

(untwisted) affine Kac–Moody Lie algebra ĝ with the natural embedding g[C] ⊂ ĝ. The ĝ-analogues of

the g-modules +_ are (infinite-dimensional) integrable highest-weight representations !(Λ) [Kac]. The

central element of ĝ acts on !(Λ) by a constant called the level of representation. In particular, there are

finitely many level 1 integrable modules !(Λ8), 8 = 0, . . . , <, where !(Λ0) is the basic representation.

In this paper we will only consider modules !(ℓΛ8) for ℓ ∈ Z>0. The projectivisation P(!(Λ8)) contains

a partial affine flag variety Gr(Λ8) as the closure of the orbit of the highest-weight line with respect to

the action of the affine Kac–Moody group [Kum2]. The disjoint union ⊔<
8=0

Gr(Λ8) is isomorphic to the

affine Grassmannian Gr for the adjoint Lie group of the Lie algebra g.

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative

Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in

any medium, provided the original work is properly cited.

https://doi.org/10.1017/fms.2021.36 Published online by Cambridge University Press

doi:10.1017/fms.2021.36
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fms.2021.36&domain=pdf
https://doi.org/10.1017/fms.2021.36


2 Ilya Dumanski et al.

The Demazure submodules in integrable representations !(Λ) are labelled by the elements of the

extended affine Weyl group. We will only consider the g[C]-invariant Demazure modules inside !(ℓΛ8)

(note that in general a Demazure module is only acted upon by the Iwahori subalgebra that is strictly

contained in the current algebra). In particular, the g[C]-invariant Demazure modules �1,_ inside the

level 1 integrable representations are labelled by the dominant integral weights _. We denote by �ℓ,_,

ℓ ≥ 1, the level ℓ affine Demazure modules contained in the ℓth tensor power of the level 1 module �1,_.

The projectivised Demazure module P(�1,_) contains the spherical Schubert variety Gr_ as the orbit

closure of the current group action. Thanks to the embedding Gr_ ⊂ P(�1,_), the Schubert varieties

are equipped with ample line bundle L, such that the dual space of sections of L⊗ℓ is isomorphic to

�ℓ,_ for any ℓ. The line bundle L on a Schubert variety can be also obtained as the restriction of the

determinant line bundle on the affine Grassmannian (see [Kum2, Z2]).

The current algebra g[C] possesses a remarkable family of cyclic finite-dimensional modules ,_
called the local Weyl modules (see [CL, CP, FL2, KN, Naoi]). In particular, as a g-module, ,_ is

isomorphic to the tensor product of fundamental local Weyl modules, where the number of factors of

the form,l is exactly the coefficient of l in the decomposition of _. We note that in the simply laced

case one has an isomorphism,_ ≃ �1,_. The global Weyl modulesW_ are infinite-dimensional cyclic

representations of g[C] (see [BF1, CFK, CI, FeMa1, Kato1]). One of the most important properties

of the global Weyl modules is the existence of free action of the commutative highest-weight algebra

A_, commuting with the g[C]-action. In particular, one obtains a family of (finite-dimensional) g[C]-

modules, labelled by the closed points in Spec(A_), obtained as fibres of W_ with respect to A_; the

local Weyl module is the fibre at the origin.

A generalisation of this picture was suggested in [DF]. The authors introduced a family of cyclic

(infinite-dimensional) global Demazure modules D
(
ℓ, _

)
– denoted there as '(�ℓ,_1

, . . . , �ℓ,_: ) –

corresponding to a collection of dominant integral nonzero weights _ ∈ %:+ and an integer ℓ > 0; in

particular, if all _8 are fundamental and ℓ = 1, then one gets back the global Weyl module (this is

no longer true in the case that is not simply laced). The global Demazure modules arise naturally in

connection with the study of the projective arc spaces (see [Mu1, Mu2, Nash]). The modulesD
(
ℓ, _

)
are

acted upon by a commutative (highest-weight) algebra A
(
_
)
= A(_1, . . . , _: ) whose action commutes

with the g[C] action (see [BCES, EGL, KMSV, SV] for examples of similar algebras). The spectrum

Spec
(
A

(
_
) )

is the closure of a stratum of the diagonal stratification of a coloured configuration space

of the affine line (see section 3.1 for precise definitions). In particular, a closed point c ∈ A: defines the

closed point of the same name in Spec
(
A

(
_
) )

. For a point c ∈ Spec
(
A

(
_
) )

, we denote by D
(
ℓ, _

)
c

the

fibre of the global Demazure module at c. Our first theorem is as follows:

Theorem 1.1.

(a) Assume that _8 ≠ 0 for all 8. One has an isomorphism of g[C]-modules

D
(
ℓ, _

)
0
≃ �ℓ,_1+···+_: .

(b) Set _ ∈ %:+ , ` ∈ %
;
+. If c ∈ A: and d ∈ A; have no common entries, then the following factorisation

property (an isomorphism of g[C]-modules) holds:

D

(
ℓ, _ ⊔ `

)
(c,d)
≃ D

(
ℓ, _

)
c
⊗ D

(
ℓ, `

)
d
.

(c) The global Demazure module D
(
ℓ, _

)
is free over A

(
_
)
.

(d) The direct sum of A
(
_
)
-dual modules

⊕
ℓ≥0 D

(
ℓ, _

)∨
carries a natural structure of A

(
_
)
-algebra.

The properties of the global Demazure modules collected in Theorem 1.1 are parallel to the properties

of the Beilinson–Drinfeld spherical Schubert varieties over the affine line. The main goal of this paper

is to describe this relation explicitly. More precisely, we
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◦ identify the projective spectrum of the algebra
⊕

ℓ≥0 D
(
ℓ, _

)∨
with the partially symmetrised BD

spherical Schubert varieties;

◦ embed symmetrised BD spherical Schubert varieties into the projectivisation of the vector bundle

D
(
ℓ, _

)
obtained as the localisation of the (free) A

(
_
)
-module D

(
ℓ, _

)
; and

◦ identify the dual sections of the determinant line bundle on symmetrised BD spherical Schubert

varieties with global Demazure modules.

Let us state our results in more detail. Recall that the Beilinson–Drinfeld Grassmannians (BD
Grassmannians for short) are global versions of the affine Grassmannians [BD1, BD2, FBZ, Z2] defined

over the powers of an algebraic curve -; in this paper we consider only the case - = A1 and denote

the corresponding BD Grassmannians by GrA: (see, e.g., [BKK, CK, CW, Kam, MVy] for various

applications in geometric representation theory). The Grassmannians GrA: are ind-varieties over the

configuration space A: , and the ind-structure is provided by the BD spherical Schubert varieties Gr_,

labelled by :-tuples of dominant coweights _ = (_1, . . . , _: ) ∈ %
:
+ . A group scheme G(:) over A: –

the global analogue of the current group � (C[[C]]) – acts on GrA: fibrewise, and the BD spherical

Schubert varieties are the closures of orbits of G(:) in the generic fibre of GrA: ; we note that the same

group scheme acts on P
(
D

(
ℓ, _

) )
. The fibres of the projection Gr_ → A: are products of the spherical

Schubert subvarieties of the affine Grassmannian (this is a manifestation of the crucial factorisation

property of the BD Grassmannians).

BD Grassmannians carry the ample determinant line bundle L; we keep the same notation for the

restriction of this line bundle to the BD spherical Schubert varieties. The space of sections�0
(
Gr_,L⊗ℓ

)

is naturally a g[C] −C
[
A:

]
-bimodule (we note that the higher cohomology �>0

(
Gr_,L⊗ℓ

)
vanishes).

However, as a module over the current algebra, it is not cyclic and hence hard to describe. In order to

resolve this problem we consider a partially symmetrised version Gr(_) of the BD spherical Schubert

varieties (see section 3 for a precise definition). The variety Gr(_) is equipped with a natural projection

onto Spec
(
A

(
_
) )

, and the determinant line bundle descends to the symmetrised BD spherical Schubert

varieties. We prove the following theorem:

Theorem 1.2. For all ℓ ≥ 1 and _ = (_1, . . . , _: ) ∈ %
:
+ , such that all _8 are nonzero, one has the

following:

(a) a G(:)-equivariant embedding

Gr(_) ⊂ P
(
D

(
ℓ, _

) )
;

(b) an isomorphism of Spec
(
A

(
_
) )

-schemes

Gr(_) ≃ Proj

(⊕

ℓ≥0

D
(
ℓ, _

)∨
)

;

(c) an isomorphism of g[C] −A
(
_
)
-bimodules

�0
(
Gr(_) ,L⊗ℓ

)
≃ D

(
ℓ, _

)∨
;

(d) an isomorphism of g[C] − C
[
A:

]
-bimodules

�0
(
Gr_,L⊗ℓ

)
≃ D

(
ℓ, _

)∨
⊗
A(_) C

[
A:

]
,

where "∨ stands for the A
(
_
)
-dual to an A

(
_
)
-module " .

Let us close with the following remark. In the main body of the paper, we denote the weights and roots

of g by checked letters (like _∨ and U∨) and reserve nonchecked notation for the dual data (coroots and

https://doi.org/10.1017/fms.2021.36 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.36


4 Ilya Dumanski et al.

coweights). The reason is that the central role in our paper is played by the spherical Schubert varieties

in the affine (Beilinson–Drinfeld) Grassmannians. These varieties are naturally labelled by coweights

(rather than weights), which explains our choice of notation. Note that in the ADE case all the checks

can be removed without any harm. Also, in the simply laced case, if _1, . . . , _: are all fundamental, and

_ = _1 + · · · + _: , the global Demazure modules D
(
1, _

)
are nothing but the global Weyl modulesW_.

However, if g is not simply laced, there is no such coincidence anymore. That is why we choose to call

D
(
ℓ, _

)
global Demazure modules rather than higher-level global Weyl modules.

Our paper is organised as follows. In section 2 we collect notation and recall main definitions. In

section 3 we introduce the symmetrised version of the Beilinson–Drinfeld Grassmannians and Schubert

varieties over the spectrum of the highest-weight algebras. In section 4 we study the properties of the

global Demazure modules; in particular, we prove that they are free over the highest-weight algebras. In

section 5 we compute the spaces of sections of the powers of the determinant line bundle on BD Schubert

varieties. In Appendix A, we discuss a connection between global modules and the associativity of the

fusion product. We also collect the key objects of the paper in Appendix B.

2. Generalities

We start by describing the notation for the key objects of the paper.

2.1. Classical objects

Let g be a simple Lie algebra over C. The corresponding simply connected (resp., adjoint) complex

Lie group will be denoted �sc
(
resp., �ad

)
. Let g = n+ ⊕ h ⊕ n− be the Cartan decomposition and let

A = dim h be the rank of g. We denote by l∨
1
, . . . , l∨A the fundamental weights of g and by U∨

1
, . . . , U∨A its

simple roots. Let %∨ =
⊕A

8=1 Zl
∨

8 be the weight lattice of�sc containing the root lattice&∨ =
⊕A

8=1 ZU
∨

8

(which coincides with the weight lattice of �ad). Let %∨+ =
⊕A

8=1 Z≥0l
∨

8 ⊂ %
∨ be the set of dominant

integral weights. Given _∨ =
∑A
8=1 <8l

∨

8 ∈ %
∨
+ , we set |_∨ | =

∑A
8=1 <8 .

For a weight _∨ ∈ %∨+ , let+_∨ be the highest-weight _∨ irreducible g-module; in particular, the highest-

weight vector of +_∨ is of the h weight _∨ and is killed by n+. Let, be the (finite) Weyl group of g with

the longest element F0. In particular, the lowest-weight vector in +_∨ is of weight F0_
∨.

We denote by % = %ad (resp., & = %sc) the coweight lattice of �ad (resp., of �sc). Thus we have

perfect pairings %ad × &
∨ → Z, %sc × %

∨ → Z. The minimal invariant integral bilinear form on %sc

(such that the square length of a short coroot is 2) gives rise to a linear map ] : %sc → &∨. It extends by

linearity to the same-named map %sc ⊂ %ad
]
−→ &∨ ⊗Z Q, and ](%ad) ⊂ %

∨ ⊂ &∨ ⊗Z Q. The resulting

map % = %ad → %∨ will be also denoted by ]. In the simply laced case, ] : %→ %∨ is an isomorphism.

The fundamental coweights in % are denoted l1, . . . , lA ; the simple coroots in % are denoted by

U1, . . . UA . We set %+ =
⊕A

8=1 Z≥0l8 ⊂ %.

2.2. Current algebra modules

Let g[C] = g ⊗ C[C] be the current algebra of g. In what follows we consider graded g[C]-modules " –

that is, " =
⊕

8≥0 "8 , g ⊗ C
: : "8 → "8+: . If all "8 are finite-dimensional, then the graded character

ch@ (") is a generating function
∑
8≥0 @

8ch"8 of the characters of the g ⊗ 1-modules.

A module " is called cyclic if it is generated by a single vector. The cyclic product of two cyclic

g[C]-modules "1 and "2 with fixed cyclic vectors F1 ∈ "1 and F2 ∈ "2 is defined as

"1 ⊙ "2 = U(g[C]).F1 ⊗ F2 ⊂ "1 ⊗ "2.

For a collection of pairwise distinct complex numbers 21, . . . , 2= and cyclic graded g[C]-modules

"1, . . . , "=, the module "1 (21) ⊗ · · · ⊗ "= (2=) is known to be cyclic, with the cyclic vector being

the tensor product of cyclic vectors of "8 . Here a g[C]-module "8 (28) is defined to be isomorphic

https://doi.org/10.1017/fms.2021.36 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.36


Forum of Mathematics, Sigma 5

to "8 as a vector space, and the action of the current algebra on it is twisted by the automorphism

G ⊗ C8 ↦→ G ⊗ (C − 2)8 . We note that if one starts with graded cyclic modules "8 , the tensor product⊗=

8=1 "8 (28) is not graded in general. The fusion product (graded tensor product) "1 ∗ · · · ∗ ": is

defined as the associated graded of
⊗=

8=1 "8 (28) with respect to the filtration induced by the action of

the (C-degree graded) universal enveloping algebra U(g[C]) on the tensor product of cyclic vectors of

"8 [FeLo].

LetW_∨ and,_∨ be the global and local Weyl modules of highest weight _∨ over the Lie algebra g[C]

(see [CP, CL, FL2, Kato1, Naoi]). Let �_ be the level 1 affine Demazure module with highest weight

](_); in particular, for simply laced algebras ] is an isomorphism and , ] (_) ≃ �_ for any coweight _.

For _ ∈ %+ we denoteW ] (_) (resp.,, ] (_) ) simply byW_ (resp.,,_).

For ℓ ∈ Z>0 we denote by �ℓ,_ the level ℓ affine Demazure module with highest weight ℓ](_) (see

section 2.3 for details).

Let "1, . . . , ": be graded cyclic g[C]-modules with cyclic vectors F8 of dominant nonzero weights

such that Ch[C] annihilates their cyclic vectors. Then we define the global module [DF]

'("1, . . . , ": ) = "1 [C] ⊙ · · · ⊙ ": [C],

where "8 [C] is defined as a module isomorphic to "8 ⊗ C[C] as a vector space with the action of g[C]

given by

GC; .E ⊗ C: =

;∑

9=0

(−1);− 9
(
;

9

) (
GC 9 .E

)
⊗ C;+:− 9 (2.1)

for ;, : ∈ Z≥0, G ∈ g, E ∈ "8 .

Remark 2.1. The analogous formula used in [DF, FeMa2] has no sign (−1);− 9 . We introduce it here

in order to match the formulas in the Beilinson–Drinfeld setup, where the minus sign pops up via the

change of coordinates C ↦→ C−G. This sign change obviously produces no harm (simply changing C ↦→ −C

in the current algebra parametrisation).

Remark 2.2. The modules '("1, . . . , ": ) do depend on the choice of the cyclic vectors F8 of "8 .

The global module '("1, . . . , ": ) admits the right action of U(h[C]), which commutes with the

g[C]-action. The highest-weight algebra is defined as a quotient of U(h[C]) by the annihilator of the

cyclic vector ⊗:
8=1
F8 of '("1, . . . , ": ). It turns out that the highest-weight algebra depends only on

the weights of cyclic vectors F8 of "8 (not on a particular choice of modules). If the weight of F8 is

](_8), then we denote the highest-weight algebra of '("1, . . . , ": ) by A(_1, . . . , _: ). We will use a

shorthand notation A
(
_
)
= A(_1, . . . , _: ), where _ = (_1, . . . , _: ).

Since the weight ](_8) subspace of a module "8 [C] is isomorphic to a polynomial algebra in one vari-

able, the algebra A
(
_
)

is naturally embedded into
⊗:

8=1 A(_8) ≃ C[I1, . . . , I: ]. More precisely, A
(
_
)

is isomorphic to the subalgebra of the polynomial algebra C[I1, . . . , I: ] generated by the polynomials

〈](_1), ℎ〉I
;
1 + 〈](_2), ℎ〉I

;
2 + · · · + 〈](_: ), ℎ〉I

;
: , ; ≥ 1, ℎ ∈ h.

Indeed, for ℎ ∈ h and ; > 0, equation (2.1) gives

ℎC; . ⊗:8=1 F8 =

:∑

8=1

⊗8−1
9=1F8 ⊗

〈
]
(
_ 9

)
, ℎ

〉
F 9 C

; ⊗:9=8+1 F 9 .

In particular, if all _8 are fundamental coweights, <8 = #
{
9 : _ 9 = l8

}
and _ =

∑:
9=1 _ 9 =

∑A
8=1 <8l8 ,

then

A
(
_
)
� C[I1, . . . , I: ]

(<1
×···×(<A =: A_.
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We note the following:

◦ A(_1, . . . , _: ) ≃ A(ℓ_1, . . . , ℓ_: ) for any ℓ ∈ N.

◦ If g is simply laced, all weights _1, . . . , _: are fundamental and _ =
∑:
8=1 _8 , then

'(�_1
, . . . , �_: ) ≃W_.

If all the coweights_8 are fundamental and they sum up to_, then we denote byDℓ,_ (global Demazure

module) the module '(�ℓ,_1
, . . . , �ℓ,_: ). In particular, for simply laced g one has D1,_ ≃W_.

If all the coweights _8 are fundamental, then the algebra A(_1, . . . , _: ) acts freely on

'(�_1
, . . . , �_: ) and the fibre at the origin of the global Demazure module is isomorphic to the fusion

product �_1
∗ · · · ∗�_: ≃ �_1+···+_: . The higher-level analogue still holds with fundamental _8 replaced

by ℓ_8 [DF].

As we will prove in Proposition 4.9, for arbitrary dominant coweights _1, . . . , _: , the module

'(�ℓ,_1
, . . . , �ℓ,_: ) is free over A(_1, . . . , _: ). We use the notation

D
(
ℓ, _

)
= '(�ℓ,_1

, . . . , �ℓ,_: ).

Remark 2.3. We note that Dℓ,_ = D(ℓ, l1, . . . , l1︸       ︷︷       ︸
<1

, . . . , lA , . . . , lA︸       ︷︷       ︸
<A

) for a coweight _ =
∑A
9=1 < 9l 9 .

In what follows we will need the following A
(
_
)
-analogue of the cyclic power. Namely, let

'("1, . . . , ": ) ⊙A(_) · · · ⊙A(_) '("1, . . . , ": )
︸                                                             ︷︷                                                             ︸

ℓ

be the U(g[C])-span of the ℓth tensor power of the cyclic (highest-weight) vector of '("1, . . . , ": )

inside the ℓth tensor power over A
(
_
)

of the module '("1, . . . , ": ). We denote this cyclic tensor

power by '("1, . . . , ": )
⊙ℓ

A(_)
. This object will be important in Proposition 4.3.

2.3. Affine Lie algebras and Demazure modules

The details on the material in this subsection can be found in [Kac, Kum2].

Let ĝ = g ⊗ C
[
C, C−1

]
⊕ C ⊕ C3 be the untwisted affine Kac–Moody Lie algebra attached to g.

Here  is central element and 3 is the (negated) degree operator (i.e.,
[
3, G ⊗ C8

]
= −8G ⊗ C8). The

algebra ĝ enjoys the Cartan decomposition ĝ = n0+ ⊕ h0 ⊕ n0−, where h0 = h ⊗ 1 ⊕ C ⊕ C3 and

n0+ = g ⊗ CC[C] ⊕ n+ ⊗ 1. We denote by b0 = h0 ⊕ n0+ the Iwahori subalgebra.

Let Λ∨
0

be the level 1 basic integrable weight of ĝ (in particular, Λ∨
0
(h ⊗ 1) = 0). We also denote

by Λ∨8 , 8 = 0, . . . , <, the set of all integrable level 1 weights of ĝ and by !
(
Λ∨8

)
the corresponding

highest-weight ĝ-modules. In particular, the number < of the level 1 modules is equal to the cardinality

of %/& ≃ c1

(
�ad

)
.

Let Gr
(
Λ∨8

)
⊂ P

(
!

(
Λ∨8

) )
, 8 = 0, . . . , <, be the partial affine flag varieties corresponding to maximal

parabolic subgroups of the affine Kac–Moody group �̂sc – that is, Gr
(
Λ∨8

)
≃ �̂sc/%8 , where %8 is the

stabiliser of the highest-weight line in P
(
!

(
Λ∨8

) )
. By the very definition, each Gr

(
Λ∨8

)
is equipped with

the very ample line bundle L – the pullback of O(1) from P
(
!

(
Λ∨8

) )
– and one has the affine analog of

the Borel–Weil theorem

�0
(
Gr

(
Λ∨8

)
,L⊗ℓ

)∗
≃ !

(
ℓΛ∨8

)
, ℓ ≥ 1,

where !
(
ℓΛ∨8

)
is the weight ℓΛ∨8 integrable (level ℓ) ĝ-module and the superscript asterisk denotes the

restricted dual space.
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Remark 2.4. The union ⊔<
8=0

Gr
(
Λ∨8

)
is isomorphic to the affine Grassmannian of �ad (see later for

details).

Let ,0 = , ⋉ % be the extended affine Weyl group (recall that % is the coweight lattice of �ad).

Then for any _ ∈ %+ there exists an element F_ ∈ ,
0 such that the h-weight of F_Λ

∨
0

is equal to

F0](_). Let Λ∨8 be the unique integrable level 1 weight such that F_Λ
∨
0
− Λ∨8 belongs to the root lattice

of g. Let DF0 ] (_) ∈ !
(
Λ∨8

)
be a weight F0](_) vector. We define the Demazure module �1,_ ⊂ !

(
Λ∨8

)

as the U(b0) span of the vector DF0 ] (_) . An important property of the Demazure modules �1,_ is that

they are invariant with respect to the whole current algebra g[C] ⊃ b0. In particular, �1,_ contains the

irreducible g-module +] (_) as the U(n+) span of DF0 ] (_) .

The level ℓ Demazure module �ℓ,_ is defined as the U(b0) span of the vector D⊗ℓ
F0 ] (_)

. By definition,

�ℓ,_ is a subspace of !
(
Λ∨8

) ⊗ℓ
. However, it is easy to see that

�ℓ,_ ⊂ !
(
ℓΛ∨8

)
⊂ !

(
Λ∨8

) ⊗ℓ
.

By definition, one gets a natural structure of algebra on the space �∗
•,_

=
⊕

ℓ≥0 �
∗
ℓ,_

generated by the

degree 1 component �∗
1,_

(we set �0,_ = C).

We define a spherical Schubert variety Gr_ as the closure of the �sc (O)-orbit of the line containing

the lowest-weight vector DF0 ] (_) (here O = C[[C]]). Then Gr_ is embedded as a closed subscheme into

the projectivisation P(�1,_) of the Demazure module �1,_ (see, e.g., [Ma, Chapter X, Théorème 2.O]

or [Kum1]). Moreover, Gr_ is also embedded as a closed subscheme into the projectivisation of an

arbitrary-level Demazure module �ℓ,_ as the closure of the lowest-weight line.

Remark 2.5. Let C_ ∈ Gr_ ⊂ P(�1,_) be the point corresponding to the weight ](_) line. Then Gr_ is

the closure of the �sc(O)-orbit of C_.

The embedding Gr_ ⊂ P(�1,_) endows Gr_ with a very ample line bundle L, the pullback of O(1).

The line bundleL is a generator of the Picard group of Gr_, and one has the isomorphism ofg[C]-modules

�0
(
Gr_,L⊗ℓ

)∗
≃ �ℓ,_ for all ℓ ≥ 1.

We obtain a presentation of Gr_ as the projective spectrum of the algebra of dual Demazure modules –

that is, Gr_ ≃ Proj
(⊕

ℓ≥0 �
∗
ℓ,_

)
.

We have

Gr
(
Λ∨8

)
=

⋃

_:Λ∨
8
− ] (_) ∈&∨+Λ∨

0

Gr_.

Also, Gr_ ⊂ Gr` if and only if ` − _ ∈
⊕A

9=1 Z≥0U 9 .

2.4. Affine Grassmannians

The affine Grassmannian of �ad is Gr := Gr�ad = �ad (K)/�ad(O), where K = C((C)) is the Laurent-

series ring and O = C[[C]] is the Taylor-series ring. The following properties of Gr can be found in

[Z1, Z2, Kum2]:

◦ The connected components of Gr are in bijection with %/& – that is, c0 (Gr) ≃ c1

(
�ad

)
.

◦ Gr = ⊔<
8=0

Gr
(
Λ∨8

)
.

◦ For any 8 = 0, . . . , <, Pic
(
Gr

(
Λ∨8

) )
is generated by the class of the ample determinant line bundle L.

Recall (see, e.g., [BL]) that the affine Grassmannian Gr is the moduli space of pairs (P, V), where

P is a �ad-torsor on A1 and V : PA1\0 → � ×
(
A1 \ 0

)
is a trivialisation on A1 \ 0.
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Replacing the point 0 with an arbitrary 2 ∈ A1, one gets a version Gr2 of the affine Grassmannian.

Clearly, the isomorphism O ≃ O2 = C[[C − 2]] induces the isomorphism Gr2 ≃ Gr for any 2. The

schemes Gr2 glue together to the (trivial) bundle GrA1 over the affine line.

Remark 2.6. GrA1 is the simplest example of a Beilinson–Drinfeld Grassmannian; the general case is

discussed in the next section.

3. Beilinson–Drinfeld Schubert varieties

We will need several versions of the Beilinson–Drinfeld Schubert varieties [Z1, Z2]. Let us stress from

the very beginning that the Beilinson–Drinfeld Grassmannians are defined over (a power of) a smooth

curve - , but in this paper we consider only the case - = A1. The standard Beilinson–Drinfeld definition

produces schemes over affine spaces. We will also need the symmetrised versions with the natural

projections to the spectrum of the highest-weight algebras. So we first discuss the properties of the

highest-weight algebras, and then we introduce the symmetrised Beilinson–Drinfeld Schubert varieties.

3.1. The highest-weight algebras

Let _ = (_1, . . . , _: ) be a multiset of dominant coweights. Let _ =
∑:
8=1 _8 =

∑A
9=1 < 9l 9 and # =∑A

9=1 < 9 = |_ |. We set

(_ = (<1
× · · · × (<A

.

Recall the algebras A(_1, . . . , _: ) and

A_ ≃ A(l1, . . . , l1︸       ︷︷       ︸
<1

, . . . , lA , . . . , lA︸       ︷︷       ︸
<A

) ≃ C[I1, . . . , I# ]
(_

from section 2.2.

Lemma 3.1. There exists a natural surjection of algebras A_ ։ A
(
_
)
.

Proof. Note that A_ = A
(
l01

, . . . , l0#
)
, where

∑=
8=1 l08 = _. Now it suffices to note that there exists

a natural surjection

A(`, _1, . . . , _: ) → A(` + _1, . . . , _: )

induced by the surjection of the larger polynomial algebras

C[I1, . . . , I:+1] → C[I1, . . . , I: ], I1 ↦→ I1, I2 ↦→ I1, I8 ↦→ I8−1, 8 > 2.

�

Let A_ = A# /(_ = SpecA_ be the space of configurations of coloured points on the line A1 (<8
points of colour l8). We have the main diagonal A_ ⊃ A(_) ≃ A1 formed by all the configurations

where all the points coincide. We have a finite morphism of addition of configurations

add: Aa × A` → Aa+` .

Iterating it we obtain

add: A_1 × · · · × A_: → A_.

We define a closed subschemeA(_) ⊂ A_ as the add-image of the closed subschemeA(_1)×· · ·×A(_: ) ⊂

A_1 × · · · × A_: :

A(_) = add
(
A(_1) × · · · × A(_: )

)
⊂ A_.
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Lemma 3.2. One has

C

[
A(_)

]
= A

(
_
)
.

Proof. We denote the coordinates on A# by G8, 9 , where 8 = 1, . . . , A and 9 = 1, . . . , <8 . The group

(_ acts by permuting the second indices. Let _0 =
∑A
1=1 <0,1l1 for 0 = 1, . . . , : . In particular,∑:

0=1 <0,1 = <1 for all 1 = 1, . . . , A . Thus the coordinates with a fixed first index are divided into :

groups. For each 0 = 1, . . . , : , we combine the corresponding groups for all the possible first indices

into one big group Γ0. Now all the coordinates in A# are divided into groups Γ0, 1 ≤ 0 ≤ : . We

consider the linear subspace + in A# given by equations G8, 9 = G8′, 9′ whenever (8, 9) and (8′, 9 ′) lie in

the same group Γ0. We consider the saturation (_+ (a union of a few vector subspaces in A# ). Finally,

A(_) = ((_+)/(_. Now the same argument as in the proof of [BCES, Proposition 2.2] finishes our

proof. �

Remark 3.3. By construction, A: = A(_1) × · · · ×A(_: ) is finite over A(_) (compare [DF, BCES]). For

a closed point c = (21, . . . , 2: ) ∈ A
: we sometimes keep the same notation for its image in A(_) . For

instance, by Cc we usually mean the one-dimensional C
[
A(_)

]
-module corresponding to the point c.

3.2. BD Grassmannians and spherical Schubert varieties

The Beilinson–Drinfeld Grassmannian GrA: (BD Grassmannian for short) is the moduli space of

collections consisting of the points (21, . . . , 2: ) ∈ A
: , a �ad-torsor P over A1 and a trivialisation of P

outside the points 28 .

Example 3.4. If : = 1, then GrA1 is fibred over the affine line with a fibre isomorphic to the affine

Grassmannian Gr.

In general, the fibre of the natural projection c : GrA: → A: over a point (21, . . . , 2: ) is isomorphic

to the product of 0 copies of Gr, where 0 is the number of distinct entries 28 .

Example 3.5. Let
◦
A: , : ≥ 2, be the open subvariety of A: consisting of points with pairwise distinct

coordinates. Then

c−1
(
◦
A:

)
≃
◦
A: × Gr: . (3.1)

The BD Grassmannian GrA: enjoys the key factorisation property. We have the addition-of-

configurations morphism add: A: × A; → A:+; and an open subset
(
A: × A;

)
disj
⊂ A: × A; formed

by all the pairs of disjoint effective divisors. Then there is a canonical isomorphism

(GrA: × GrA; ) |(A:×A;)disj
� GrA:+; ×A:+;

(
A: × A;

)
disj
.

The BD Grassmannian GrA: is an ind-scheme – that is, it is an inductive limit of the finite-dimensional

BD Schubert varieties Gr_ for :-tuples of dominant coweights _ = (_1, . . . , _: ). More precisely, we

consider a group scheme G(:) over A: , whose fibre over a point c = (21, . . . , 2: ) ∈ A
: is equal to the

inverse limit (=→∞)

G(:)c = lim
←−−
=

�sc (C[C]/%(C)=), %(C) =

:∏

8=1

(C − 28). (3.2)

Clearly, a fibre G(:)c is isomorphic to the 0th power of the group �sc (O), where 0 is the number of

distinct elements among 28 . The group G(:) naturally acts on GrA: fibrewise.

The spherical Schubert varieties in the BD Grassmannian are the closures of the G(:)-orbits in the

fibre over the generic point of A: . The orbits are parametrised by the :-tuples _ ∈ %:+ . Given such a
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collection, let C_ : A: → GrA: be a section of c such that for c ∈
◦
A: one has

C_ (c) =
(
(C − 21)

_1 , . . . , (C − 2: )
_:

)
∈

:∏

8=1

Gr28 ,

so the total section is the closure of C_
(
◦
A:

)
. Now the BD Schubert varieties are defined as the closures

of the G(:)-orbits:

Gr_ = G(:).C_ ⊂ GrA: .

The restriction of c : GrA: → A: to Gr_ is denoted by c_ : Gr_ → A: . This is a flat morphism, and

all the fibres are reduced [Z1, Proposition 1.2.4] (it is proved there for : = 2, but the proof works for

arbitrary :). The fibre Gr
_
c = c−1

_
(c) over a point c ∈ A: with

21 = · · · = 281 ≠ 281+1 = · · · = 281+82 ≠ · · · ≠ 2:−8B+1 = · · · = 2: (3.3)

is isomorphic to the product

Gr_1+···+_81 × Gr_81+1+···+_81+82 × · · · × Gr_:−8B+1+···+_:

of spherical Schubert varieties in the affine Grassmannian Gr. In particular, the fibre of c_ over the origin

(or any other point of the total diagonal) is isomorphic to the spherical Schubert variety Gr_1+···+_: .

The BD Grassmannians and the BD Schubert varieties carry the relatively very ample determinant

line bundle L. In particular, for any ℓ ≥ 1,

�0
(
Gr
_
c ,L

⊗ℓ
c

)∗
≃ �ℓ,_1+···+_81

⊗ · · · ⊗ �ℓ,_:−8B+1+···+_: ,

where Lc is the restriction of the line bundle L to the fibre Gr
_
c .

We also introduce the partially symmetrised (coloured) version Gr(_) of the BD Schubert varieties. To

define it, we first consider the case of fundamental coweights _8 . So assume that all _8 are fundamental –

that is,

_1 = · · · = _<1
= l1, . . . , _:−<A+1 = · · · = _: = lA .

Let _ =
∑:
8=1 _8 =

∑A
9=1 < 9l 9 and # = |_ | = : . The action of (_ = (<1

× · · · × (<A
on A# lifts to an

action of (_ on GrA# such that c_ is (_-equivariant. We define

GrA_ := GrA# /(_.

It is the moduli space of �ad-torsors on A1 trivialised away from an #-tuple of points (G1, . . . , G# ),

but we disregard the order within the groups (G1, . . . , G<1
), . . . , (G#−<A+1, . . . , G# ). We introduce the

closed subvariety Gr(_) ⊂ GrA_ as the categorical quotient

Gr(_) = Gr_/(_ ⊂ GrA# /(_ = GrA_ .

Since the collection _ of fundamental weights is uniquely determined by their sum _, we also use the

notation Gr_ for Gr(_) .

Now we consider an arbitrary :-tuple _ = (_1, . . . , _: ), so that _8 are not necessarily fundamental

coweights. We set again _ = _1 + · · · + _: . Recall the closed subscheme A(_) ⊂ A_ introduced in

section 3.1. We set

Gr(_) := Gr_ ×A_ A(_) .
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The natural projection Gr(_) → A(_) is denoted c(_) .

Note that in case when
(
_
)
= (_, _, . . . , _), Gr(_) is a Schubert variety in the symmetrised version

of the Beilinson–Drinfeld Grassmannian [Z2].

The determinant line bundle L descends from GrA# to GrA_ . We will keep the same notation L for

its restriction to Gr_ and to Gr(_) .

Proposition 3.6.

(a) Let _1, . . . , _: be fundamental coweights, _ =
∑:
8=1 _8 . Then one has the base change isomorphism

�0
(
Gr_,L⊗ℓ

)
� �0

(
Gr_,L

⊗ℓ
)
⊗A_
C

[
A:

]
.

(b) Let _1, . . . , _: be arbitrary dominant coweights, _ =
∑:
8=1 _8 . Then one has the base change

isomorphism

�0
(
Gr_,L⊗ℓ

)
� �0

(
Gr(_) ,L⊗ℓ

)
⊗
A(_) C

[
A:

]
.

(c) The C
[
A:

]
-module �0

(
Gr_,L⊗ℓ

)
is free.

(d) The A
(
_
)
-module �0

(
Gr(_) ,L⊗ℓ

)
is free.

Proof. We have a cartesian square

Gr_ −−−−−−→ Gr(_)

y y

A(_1) × · · · × A(_: ) −−−−−−→ A(_) ,

and the determinant line bundle L on Gr_ is the pullback of the determinant line bundle L on Gr(_) .

The push-forward of the relatively very ample line bundle L⊗ℓ from Gr_ to A: is a locally free sheaf V.

Indeed, we already know that c_ : Gr_ → A: is flat and all the fibres are reduced. But the dimension

of the space of sections of L⊗ℓ restricted to any fibre is independent of the choice of fibre by [FL1,

Theorem 1] or [Z1, Theorem 1.2.2].

Furthermore, the push-forward of L⊗ℓ from Gr_ to A_ is a direct summand of (_-invariants in the

push-forward of V fromA: toA_. Hence the push-forward of L⊗ℓ from Gr_ toA_ is a locally free sheaf

W as well. Finally, c(_)∗L
⊗ℓ is the restriction of W to A(_) ⊂ A_, and hence c(_)∗L

⊗ℓ is a locally free

sheaf on A(_) as well. In particular it is flat, and it remains to apply the base change for the cartesian

square. This proves (a) and (b).

To prove (c) and (d), note that �0
(
Gr(_) ,L⊗ℓ

)
is projective over A

(
_
)
, because its fibres have the

same dimension at every closed point. Since both A
(
_
)

and �0
(
Gr(_) ,L⊗ℓ

)
are nonnegatively graded,

and the degree 0 part of A
(
_
)

is C, we conclude by the graded Nakayama lemma that �0
(
Gr(_) ,L⊗ℓ

)

is free over A
(
_
)
.1 �

4. Global modules

In this section, we prove several statements on the global modules defined in [DF]. Although we will be

mainly interested in the global Demazure modules, we start in a more general setup.

1This last observation is due to Roman Travkin.
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So let {"8}
:
8=1

be cyclic graded g[C]-modules with cyclic vectors of dominant nonzero weights

{](_8)}
:
8=1

, such that Ch[C] annihilates these cyclic vectors. Recall that it was proved in [DF] that for

c = (21, . . . , 2: ) lying in some Zariski-open subset of C: , one has

'("1, . . . , ": ) ⊗A(_) Cc ≃

:⊗

8=1

"8 (28) (4.1)

(see Remark 3.3).

It was also shown that the fibre of '("1, . . . , ": ) at 0 surjects to the fusion product:

'("1, . . . , ": ) ⊗A(_) C0 ։ "1 ∗ · · · ∗ ": . (4.2)

In particular, this surjection is an isomorphism if and only if the equality of dimensions

dim
(
'("1, . . . , ": ) ⊗A(_) C0

)
=

∏:
8=1 dim"8 holds.

The next proposition shows that if formula (4.2) is an isomorphism, then the Zariski-open subset for

which formula (4.1) holds can be described explicitly:

Proposition 4.1. Suppose an isomorphism '("1, . . . , ": ) ⊗A(_) C0 ≃ "1 ∗ · · · ∗ ": holds. Then

an isomorphism '("1, . . . , ": ) ⊗A(_) Cc ≃
⊗:

8=1 "8 (28) holds for any c with pairwise distinct
coordinates 28 ≠ 2 9 (not just for c in some open subset).

Proof. As explained in [DF], an isomorphism

'("1, . . . , ": ) ⊗A(_) C0 ≃ "1 ∗ · · · ∗ ":

implies by the semicontinuity theorem the equality

dim
(
'("1, . . . , ": ) ⊗A(_) Cc

)
=

:∏

8=1

dim"8

for any c. Hence, it suffices to construct a surjection

'("1, . . . , ": ) ⊗A(_) Cc ։

:⊗

8=1

"8 (28)

for c with 28 ≠ 2 9 . For any 8, clearly one has "8 [C] ։ "8 [C] ⊗A(_8) C28 ≃ "8 (28), and hence

'("1, . . . , ": ) =

:⊙

8=1

"8 [C] ։

:⊙

8=1

"8 (28) ≃

:⊗

8=1

"8 (28)

(the last isomorphism is proved in [FeLo, Proposition 1.4]). To show that this surjection factors through

'("1, . . . , ": ) ⊗Cc, one needs to show that the relations ℎC=−
(
〈](_1), ℎ〉2

=
1
+ · · · + 〈](_: ), ℎ〉2

=
:

)
hold

in the right-hand module for any ℎ ∈ h, which is clearly true. �

For a global module '("1, . . . , ": ), we denote by '("1, . . . , ": )
∨ its A

(
_
)
-dual – that is,

'("1, . . . , ": )
∨ = Hom

A(_)
(
'("1, . . . , ": ),A

(
_
) )
.

Remark 4.2. We note that '("1, . . . , ": )
∨ carries a natural structure of a g[C]-module. However, while

'("1, . . . , ": ) is cyclic, '("1, . . . , ": )
∨ does not have to be cyclic or cocyclic. The simplest example

pops up for g = sl2, : = 2 and _1 = _2 = l. We note that if '("1, . . . , ": ) is free over A
(
_
)
, then
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the @-character of '("1, . . . , ": )
∨ is computed as ch@

(
'("1, . . . , ": ) ⊗A(_) C0

)
|@→@−1 ·ch@A

(
_
)
.

Hence in our special case one has

ch@W
∨
2l = @−1 +

(
I2 + 2 + I−2

)
+ @ · · · ,

showing thatW∨
2l

is neither cyclic nor cocylic.

Proposition 4.3. Assume that the weights of the cyclic vectors of g[C]-modules "8 are nonzero. Then
there is an isomorphism of g[C] −A

(
_
)
-bimodules

'("1, . . . , ": )
⊙ℓ

A(_)
≃ '

(
" ⊙ℓ

1
, . . . , " ⊙ℓ

:

)
,

using the notation of section 2.2.

Proof. Recall that the action of the highest-weight algebra comes from the U(h[C])-action. In this proof,

we consider global modules with different highest-weight algebras, so we use the notation ⊗U(h [C ])

instead of ⊗
A(_) , although formally there is no difference.

We first consider an isomorphism

"8 [C] ⊗U(h [C ]) "8 [C]
∼
−→ ("8 ⊗ "8) [C],

E1C
:1 ⊗U(h [C ]) E2C

:2 ↦→ (E1 ⊗ E2)C
:1+:2

(one can easily check that it is bijective and g[C]-equivariant). Then we extend it to an isomorphism

(
⊗:8=1"8 [C]

)
⊗U(h [C ]) · · · ⊗U(h [C ])

(
⊗:8=1"8 [C]

)

︸                                                        ︷︷                                                        ︸
ℓ

∼
−→

:⊗

8=1

" ⊗ℓ8 [C] .

Considering the g[C]-envelopes of the tensor products of cyclic vectors on both sides, we obtain the

desired isomorphism

'("1, . . . , ": )
⊙ℓ

A(_)
≃ '

(
" ⊙ℓ

1
, . . . , " ⊙ℓ

:

)
.

�
Corollary 4.4. There is a natural structure of a graded A

(
_
)
-algebra on the space

⊕

ℓ≥0

'
(
" ⊙ℓ

1
, . . . , " ⊙ℓ

:

)∨
,

where we set '
(
" ⊙0

1
, . . . , " ⊙0

:

)∨
= A

(
_
)
.

Proof. The multiplication structure is given by the dual of the map

'
(
"
⊙ℓ1+ℓ2
1

, . . . , "
⊙ℓ1+ℓ2
:

)
↩→ '

(
"
⊙ℓ1
1
, . . . , "

⊙ℓ1
:

)
⊗
A(_) '

(
"
⊙ℓ2
1
, . . . , "

⊙ℓ2
:

)
.

�

To make a link to the Beilinson–Drinfeld setup, we consider the global modules with all "s being

Demazure modules of the same level ℓ and nonzero highest weights. Let us recall the notation

D
(
ℓ, _

)
= '

(
�ℓ,_1

, . . . , �ℓ,_:
)
,

Dℓ,_ = D(ℓ, l1, . . . , l1︸       ︷︷       ︸
<1

, . . . , lA , . . . , lA︸       ︷︷       ︸
<A

),

https://doi.org/10.1017/fms.2021.36 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.36


14 Ilya Dumanski et al.

where _ =
∑:
8=1 _8 =

∑A
9=1 < 9l 9 . Recall also that �⊙ℓ

1,_
≃ �ℓ,_. We get the following version of

Corollary 4.4:

Corollary 4.5. There is a natural structure of a graded A
(
_
)
-algebra on the space

⊕

ℓ≥0

D
(
ℓ, _

)∨
.

In particular, if all _8 are fundamental, we have an A_-algebra

D∨_ =
⊕

ℓ≥0

D∨ℓ,_.

Remark 4.6. Note that by construction this algebra is generated by its first homogeneous component –

or in other words, one has a surjection from the symmetric algebra:

Sym•
A(_)

D
(
1, _

)∨
։

⊕

ℓ≥0

D
(
ℓ, _

)∨
.

This means that the A(_)-scheme

Proj

(⊕

ℓ≥0

D
(
ℓ, _

)∨
)

is a closed subscheme of the projective space

P
A(_)

(
D

(
1, _

) )
= Proj

(
Sym•

A(_)
D

(
1, _

)∨)
.

Remark 4.7. Assume that g is simply laced, all _8 are fundamental and _ =
∑:
8=1 _8 . Then D

(
1, _

)
≃

W_ is the global Weyl module. It was proved in [Kato2] that the projective spectrum of the algebra⊕
_∈%+
W∗
_

is isomorphic to (the formal version of) the semi-infinite flag variety (see also [Kato1, KNS,

BF1, BF2, BF3, FiMi, FeMa1]). There are two important differences between the algebras
⊕

_∈%+
W∗
_

and
⊕

ℓ≥0 D
(
ℓ, _

)∨
. First, the sum in the first algebra runs over the dominant integral weights, while in

the second case the summation is performed over the nonnegative integers. Second, the dual in the first

algebra is taken with respect to the ground field, while in the second algebra one considers the duals

with respect to the highest-weight algebra.

Now we will prove that an arbitrary global Demazure module D
(
ℓ, _

)
is free over A

(
_
)
. We start

with the simply laced case.

Lemma 4.8. Let g be of simply-laced type, _ = (_1, . . . , _: ) and _ = _1 + · · · + _: . Then

D
(
ℓ, _

)
⊗
A(_) C0 ≃ �ℓ,_.

Proof. Note that this Lemma was already proved in [DF, Proposition 3.2] for the case of all _8 fundamen-

tal coweights. Thus, fundamental Demazure modules satisfy the condition of Proposition Appendix A.1.

Using associativity (Proposition Appendix A.1(c)), we obtain the lemma for arbitrary coweights. �

We proceed to an arbitrary type.

Proposition 4.9.

(a) One has an isomorphism of g[C]-modules

D
(
ℓ, _

)
⊗
A(_) C0 ≃ �ℓ,_1+···+_: .
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(b) The global Demazure module D
(
ℓ, _

)
is free over A

(
_
)
.

Our proof uses ideas of [FL2, Theorem 8].

Proof. We reduce the general case to the case of sl2, which is simply laced and hence follows from

Lemma 4.8.

As we know (recall formula (4.2)), dim
(
D

(
ℓ, _

)
⊗
A(_) C0

)
≥ dim(�ℓ,_), so it suffices to construct

a surjection

D
(
ℓ, _

)
⊗
A(_) C0 և �ℓ,_. (4.3)

As was shown in [FL2, J], the defining relations of �ℓ,_ are

n+ [C] .E = 0, ℎ.E = ℓ〈](_), ℎ〉E, Ch[C] .E = 0, ( 5VC
B):V+1.E = 0.

Here ℎ ∈ h, B ∈ Z≥0 and 5V is the Chevalley generator corresponding to a positive root V∨. Finally,

:V = ℓmax
{
0,

〈
Λ∨

0
+ ](_),−V + B

(V,V)

2
 
〉}

.

The first three relations obviously hold in the left-hand side of formula (4.3), so it remains to show

that the last one also does. Consider the sl2-triple sl
V

2
corresponding to V∨.

It was shown in [FL2, Lemma 7] that there is an sl
V

2
[C]-submodule of �1,_8 ,that is isomorphic to the

ŝl
V

2
Demazure module � n ,<l∨ , where n = (V, V)/2, < = 〈](_), V〉/n and l∨ is the fundamental weight

of sl
V

2
. It follows that there is an sl

V

2
[C]-submodule of �ℓ,_8 that is isomorphic to the ŝl

V

2
Demazure

module �ℓ n ,<l∨ . Denote it by " (ℓ, ](_8)).

This induces an embedding " (ℓ, ](_8)) [C] ↩→ �ℓ,_8 [C] and hence, denoting the highest vector of

�ℓ,_8 by E8 , we have

'(" (ℓ, ](_1)), . . . , " (ℓ, ](_: ))) ≃ U
(
sl
V

2
[C]

)
. ⊗:8=1 E8 ↩→

U(g[C]). ⊗:8=1 E8 ≃ '
(
�ℓ,_1

, . . . �ℓ,_:
)
≃ D

(
ℓ, _

)
.

Thereby, one has a map

'(" (ℓ, ](_1)), . . . , " (ℓ, ](_: ))) ⊗A C0 → D
(
ℓ, _

)
⊗
A(_) C0, (4.4)

where A is the highest-weight algebra of the global sl
V

2
[C] Demazure module '(" (ℓ, ](_1)),

. . . , " (ℓ, ](_: ))) and map (4.4) is induced by the natural inclusion A ⊂ A
(
_
)
. Now the left-hand side

of map (4.4) is isomorphic to " (ℓ, ](_)), since we are in the simply laced case g = sl
V

2
. The required

relations
(
5VC

B
) :V+1 .E = 0, B ≥ 0, hold in this module, and hence they hold inD

(
ℓ, _

)
⊗
A(_) C0 as well.

The end of the proof repeats that of Proposition 3.6:D
(
ℓ, _

)
is projective overA

(
_
)

because its fibres

have the same dimension at every closed point. Now since both D
(
ℓ, _

)
and A

(
_
)

are nonnegatively

graded and the degree 0 part of A
(
_
)

is C, we conclude by the graded Nakayama lemma that D
(
ℓ, _

)

is free over A
(
_
)
. �

Now we describe one more relation between global modules that will be used later in the paper:

Proposition 4.10. One has an isomorphism of g[C]-modules

D
(
ℓ, _

)
⊗
A(_)

:⊗

8=1

A(ℓ_8) ≃ U(g[C]).

(
:⊗

8=1

�ℓ,_8 [C]ℓ ] (_8)

)
⊂

:⊗

8=1

�ℓ,_8 [C],

where �ℓ,_8 [C]ℓ ] (_8) denotes the highest-weight part of �ℓ,_8 [C].
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Note that each algebra A(ℓ_8) is isomorphic to the algebra of polynomials in one variable. We write

A(ℓ_8) (as opposed to just C[I8]) to point out that these algebras come as the highest-weight spaces

of the modules �ℓ,_8 [C]. Further in the paper, in the Beilinson–Drinfeld context we use the notation

C

[
A(_)

]
⊂ C

[
A:

]
instead ofA

(
_
)
⊂

⊗:

8=1 A(ℓ_8), although it is the same, as explained in section 3.1.

Proof. Let E be the cyclic vector of D
(
ℓ, _

)
and let E8 be the cyclic vector of �ℓ,_8 [C]. We define the

desired morphism by setting

q : D
(
ℓ, _

)
⊗
A(_)

:⊗

8=1

A(ℓ_8) →

:⊗

8=1

�ℓ,_8 [C],

D.E ⊗
A(_) (ℎ1C

B1 ⊗ · · · ⊗ ℎ=C
B: ) ↦→ D (ℎ1C

B1E1 ⊗ · · · ⊗ ℎ=C
B: E: ) ,

for D ∈ U(g[C]).

It is well defined because A(ℓ_8) acts on �ℓ,_8 [C], and hence
⊗:

8=1 A(ℓ_8) acts on
⊗:

8=1 �ℓ,_8 [C]

commuting with the g[C]-action.

It remains to prove injectivity. Consider both sides as
⊗:

8=1 A(ℓ_8)-modules. Fibres of both sides

at any point c = (21, . . . , 2: ) with 28 ≠ 2 9 are
⊗:

8=1 �ℓ,_8 (28). Therefore q is injective on fibres in an

open subset, and hence injective. �

Example 4.11. Let g = sl2, : = 2 and _1 = _2 = l. Then one has two embeddings:

W2l ↩→Wl ⊗Wl ,

W2l ⊗C[I1 ,I2 ](2 C[I1, I2] ↩→Wl ⊗Wl .

The image of the first embedding (the special case of Kato’s theorem [Kato1, Corollary 3.5]) is the

U(g[C])-envelope of the tensor product of the highest vectors, while the image of the second embedding

is the U(g[C])-envelope of the tensor product of the highest-weight components.

Remark 4.12. Due to Proposition 4.9, D
(
ℓ, _

)
is free over A

(
_
)
. Hence, D

(
ℓ, _

)
⊗
A(_)

⊗:

8=1 A(ℓ_8)

is free over
⊗:

8=1 A(ℓ_8). In particular, this implies

ch@

(
D

(
ℓ, _

)
⊗
A(_)

:⊗

8=1

A(ℓ_8)

)
= ch@�ℓ,_1+···+_: × (1 − @)

−: .

Remark 4.13. In fact, the proof of Proposition 4.10 holds for arbitrary global modules '("1, . . . , "=)

without any changes. The isomorphism in the general case is of the form

'("1, . . . , ": ) ⊗A(_)

:⊗

8=1

A(_8) ≃ U(g[C]).

(
:⊗

8=1

U(h[C])E8

)
⊂

:⊗

8=1

'("8).

5. Global Demazure modules and BD Schubert varieties

5.1. Sections of the determinant line bundle

The goal of this section is to identify the global Demazure modules D
(
ℓ, _

)
with the A

(
_
)
-dual of the

space of sections �0
(
Gr(_) ,L⊗ℓ

)
. We note that the higher cohomology �>0

(
Gr(_) ,L⊗ℓ

)
vanishes:

as in the proof of Proposition 3.6, it follows from the flatness of c(_) and the fact that the restriction of
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L⊗ℓ to any fibre of c(_) is very ample. To this end, we first establish an isomorphism

�0
(
Gr_,L⊗ℓ

)∨
≃ D

(
ℓ, _

)
⊗
A(_) C

[
A:

]
,

where A: = A(_1) × · · · × A(_: ) and the notation "∨ stands for the C
[
A:

]
-dual module to a C

[
A:

]
-

module " . In order to compare these two spaces we make the following observation:

Lemma 5.1. There is a homomorphism of Lie groups

�sc [C] → Γ

(
A: ,G(:)

)
,

where Γ
(
A: ,G(:)

)
is the group of sections of the group scheme G(:) over A: .

Proof. Recall that G(:) is defined as a scheme over A: whose fibre over a point c is equal to the

inverse limit (= → ∞) of the groups �sc(C[C]/%(C)=), where %(C) =
∏:
8=1(C − 28). Now the desired

homomorphism is induced by sending the coordinate C in C[C] to C (mod %(C)=). �

Corollary 5.2. The space of sections �0
(
Gr_,L⊗ℓ

)
is a g[C]-module. The g[C]-action commutes with

the natural action of C
[
A:

]
.

Proof. The first claim is a direct consequence of Lemma 5.1. The second claim is clear because the

group scheme G(:) acts fibrewise. �

Now we prove our claim for the case of a single weight.

Lemma 5.3. Let : = 1 – that is, _ = (_), _ ∈ %+. Then for any ℓ ≥ 1 we have an isomorphism of
g[C]-modules

�0
(
Gr(_) ,L⊗ℓ

)∨
≃ �ℓ,_ [C] .

Proof. Recall equation (2.1) for the action of the Lie algebra g[G] on �ℓ,_ [C] ≃ �ℓ,_ ⊗ C[C]:

(6 ⊗ GB) (E ⊗ C0) =

B∑

8=0

(−1)B−8
(
B

8

) (
6 ⊗ G8 .E

)
⊗ C0+B−8 , 6 ∈ g. (5.1)

Here we deliberately replaced the variable C in g[C] with an auxiliary variable G in order to make the

picture similar to the BD context.

Now let us identify G with the global coordinate onA1. Then we have an isomorphism of vector spaces

�0
(
Gr(_) ,L⊗ℓ

)∨
≃ �ℓ,_ ⊗ C[G],

where �ℓ,_ is considered as a g[C]-module. The action of g[G] is induced by the map G ↦→ G− C, meaning

that the result of the action of 6 ⊗ GB on E ⊗ C0 is given by the right-hand side of equation (5.1). �

Theorem 5.4. Let_ = (_1, . . . , _: ) ∈ %
:
+ , all_8 nonzero. Then one has an isomorphism ofg[C]−C

[
A:

]
-

bimodules

�0
(
Gr_,L⊗ℓ

)∨
≃ D

(
ℓ, _

)
⊗
A(_) C

[
A:

]
,

where "∨ stands for the C
[
A:

]
-dual module to a C

[
A:

]
-module " .

Proof. According to Proposition 3.6(c), �0
(
Gr(_) ,L⊗ℓ

)∨
is free as a C

[
A:

]
-module. In particular, its

g-highest-weight part �0
(
Gr_,L⊗ℓ

)∨
ℓ ] (_)

is isomorphic to the free rank 1 module over C
[
A:

]
. We also
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conclude that

ch@�
0
(
Gr_,L⊗ℓ

)∨
= ch@�ℓ,_ · (1 − @)

−: . (5.2)

Due to Proposition 4.10 and Lemma 5.3, in order to prove the theorem it is enough to show that

�0
(
Gr_,L⊗ℓ

)∨
≃ U(g[C]).

:⊗

8=1

�0
(
Gr(_8) ,L⊗ℓ

)∨
ℓ ] (_8)

, (5.3)

where the lower index denotes the corresponding g-weight subspace.

By Lemma 5.3, �0
(
Gr(_8) ,L⊗ℓ

)∨
ℓ ] (_8 )

is isomorphic to the polynomial ring in one variable as a

vector space. We consider the embedding

�0
(
Gr_,L⊗ℓ

)∨
↩→ �0

(
Gr_

(
◦
A:

)
,L⊗ℓ

)∨
, (5.4)

where Gr_
(
◦
A:

)
⊂ Gr_ is c−1

_

(
◦
A:

)
, and the embedding (5.4) is induced by the open embedding

Gr_
(
◦
A:

)
↩→ Gr_. By the factorisation property,

�0
(
Gr_

(
◦
A:

)
,L⊗ℓ

)∨
� C

[
◦
A:

]
⊗

:⊗

8=1

� (ℓ, _8). (5.5)

In particular, the highest-weight part �0
(
Gr_

(
◦
A:

)
,L⊗ℓ

)∨
ℓ ] (_)

(with _ =
∑:
8=1 _8) is a free rank 1

module over the localisation C
[
◦
A:

]
of the polynomial algebra C

[
A:

]
.

Thus we have the embeddings

�0
(
Gr_,L⊗ℓ

)∨
ℓ ] (_)

↩→ �0
(
Gr_

(
◦
A:

)
,L⊗ℓ

)∨
ℓ ] (_)

� C

[
◦
A:

]
⊗

:⊗

8=1

� (ℓ, _8)ℓ ] (_8)

←↪ C
[
A:

]
⊗
A(_) D

(
ℓ, _

)
ℓ ] (_)

arising from the factorisation property.

We claim that the images of these embeddings coincide. First we consider the case : = 2. Then

the image �left of the left embedding and the image �right of the right embedding are both the free rank

1 modules over C
[
A2

]
inside the free rank 1 module over C

[
◦
A2

]
. If we denote the coordinates in

A2 by I1, I2, then necessarily �left = (I1 − I2)
0 �right for some 0 ∈ Z, and we have to prove 0 = 0.

Otherwise either �left ( �right (if 0 > 0) or �right ( �left (if 0 < 0). In the first case the graded

character of �left is strictly less than the graded character of �right (termwise), which contradicts the

equality ch@�
0
(
Gr_,L⊗ℓ

)∨
= ch@�ℓ,_ · (1 − @)

−: = ch@

(
C

[
A:

]
⊗
A(_) D

(
ℓ, _

) )
by equation (5.2)

and Remark 4.12 (in particular, the graded characters of the ℓ](_)-weight components must coincide as

well). The second case similarly leads to a contradiction.

The coincidence of images for general : now follows after localisation at generic points of diagonals

in A: by factorisation. Since we know the coincidence generically and in codimension 1, it follows

everywhere by the algebraic Hartogs lemma: given two locally free sheaves on A: , an isomorphism

between them defined off a codimension 2 closed subset of A: necessarily extends to the whole of A: .
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We conclude the equality

�0
(
Gr_,L⊗ℓ

)∨
ℓ ] (_)

= C
[
A:

]
⊗
A(_) D

(
ℓ, _

)
ℓ ] (_)

inside C
[
◦
A:

]
⊗

⊗:

8=1 � (ℓ, _8). But

�0
(
Gr_,L⊗ℓ

)∨
⊃ U(g[C])�0

(
Gr_,L⊗ℓ

)∨
ℓ ] (_)

= U(g[C])
(
C

[
A:

]
⊗
A(_) D

(
ℓ, _

)
ℓ ] (_)

)
= C

[
A:

]
⊗
A(_) D

(
ℓ, _

)
.

The equality of characters ch@�
0
(
Gr_,L⊗ℓ

)∨
= ch@

(
C

[
A:

]
⊗
A(_) D

(
ℓ, _

) )
once again guarantees

that the inclusion is actually an equality.

The theorem is proved. �

Now to establish a relation between the global Demazure modules and the spaces of sections of

determinant line bundles on the symmetrised Schubert varieties, we prove the following theorem:

Theorem 5.5. Set _1, . . . , _: ∈ %+, all _8 nonzero. Then one has an isomorphism of g[C]-modules

�0
(
Gr(_) ,L⊗ℓ

)∨
≃ D

(
ℓ, _

)
,

where "∨ stands for the A
(
_
)
-dual module to an A

(
_
)
-module " .

Proof. Using Proposition 3.6 and Theorem 5.4 we get an isomorphism

D
(
ℓ, _

)
⊗
A(_) C

[
A:

]
≃ �0

(
Gr(_) ,L⊗ℓ

)∨
⊗
A(_) C

[
A:

]
. (5.6)

Let E be the cyclic vector of D
(
ℓ, _

)
. The vector E ⊗

A(_) 1 on the left-hand side of formula (5.6) is

mapped to some vector of the form F ⊗
A(_) 1 on the right-hand side. Using the g[C]-equivariance we

obtain

D
(
ℓ, _

)
≃ (U(g[C]).F) ⊗

A(_) 1 ⊂ �0
(
Gr(_) ,L⊗ℓ

)∨
⊗
A(_) 1.

Hence there is an embedding D
(
ℓ, _

)
↩→ �0

(
Gr(_) ,L⊗ℓ

)∨
. Using Proposition 4.9, we see that the

fibres at 0 of both sides are isomorphic to �ℓ,_1+···+_: . The graded version of the Nakayama lemma

implies that the injective map is a surjection, and thus an isomorphism. �

Remark 5.6. If the highest weight of a cyclic g[C]-module " is 0, then the module " [I] is not cyclic.

That is why we impose the condition _8 ≠ 0 in Theorems 5.4 and 5.5.

It is an easy consequence of these theorems that for the case _ = (`, 0, . . . , 0︸   ︷︷   ︸
=

) with `8 ≠ 0, one has

�0
(
Gr_,L⊗ℓ

)∨
≃

(
D

(
ℓ, `

)
⊗
A

(
`
) C

[
A:

] )
⊗ C [A=] ,

�0
(
Gr(_) ,L⊗ℓ

)∨
≃ D

(
ℓ, `

)
⊗ C

[
A(=)

]
.
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Corollary 5.7. One has an isomorphism of A(_)-schemes

Gr(_) ≃ Proj

(⊕

ℓ≥0

D
(
ℓ, _

)∨
)
.

Let us consider the special case when all _8 are fundamental coweights. In particular, A
(
_
)
≃ A_.

We obtain the following corollary:

Corollary 5.8. Assume that all _8 are fundamental coweights and let _ =
∑:
8=1 _8 . Then

(i) �0
(
Gr(_) ,L⊗ℓ

)∨
≃ D(ℓ, _);

(ii) Gr(_) ≃ Proj
(⊕

ℓ≥0 D(ℓ, _)
∨
)
.

5.2. Embeddings of the BD Schubert varieties

The goal of this section is to show that the global Demazure modules provide projective embeddings

of Beilinson–Drinfeld Schubert varieties (generalising a relation between the affine Demazure modules

and Schubert varieties).

Thanks to Proposition 4.9, the global Demazure module D
(
ℓ, _

)
is free over A

(
_
)
. Hence one gets

a vector bundle D
(
ℓ, _

)
on A(_) = Spec

(
A

(
_
) )

, whose fibre is given by the fibre of D
(
ℓ, _

)
at a point

of the base. We will need the following lemma in order to embed the BD Schubert varieties into the

fibrewise projectivised vector bundle D
(
1, _

)
:

Lemma 5.9. The group scheme G(:) acts on D
(
ℓ, _

)
fibrewise.

Proof. Recall (see equation (3.2)) that the fibre of G(:) over a point c = (21, . . . , 2: ) ∈ A
: is equal to

the inverse limit

G(:)c = lim
←−−
<

�sc (C[C]/%(C)<), %(C) =

:∏

8=1

(C − 28).

We also know that for c = (21, . . . , 21︸      ︷︷      ︸
81

, . . . , 2=, . . . , 2=︸      ︷︷      ︸
8=

) ∈ C: such that 2? ≠ 2@ for ? ≠ @, we have

D
(
ℓ, _

)
⊗
A(_) Cc ≃

=⊗

?=1

�ℓ,_81+···+8?−1
+···+_81+···+8?

(28? ).

We conclude that G(:) acts on D
(
ℓ, _

)
fibrewise. �

One has a section B_ : A(_) → P
(
D

(
1, _

) )
of the natural projection map P

(
D

(
1, _

) )
→ A(_)

sending a point c to the highest-weight line of D
(
1, _

)
⊗
A(_) Cc. By Lemma 5.9, the group of sections

of the group scheme G(:) naturally acts on P
(
D

(
1, _

) )
. We obtain the following corollary:

Corollary 5.10. Gr(_) is equal to the closure of the G(:)-orbit of the section B_.

Proof. It follows from definition of Gr_ in section 3 and Theorem 5.5. �

Appendix A. On the associativity of the fusion product

It was conjectured in [DF] that

'("1, . . . , ": ) ⊗A(_) C0 ≃ "1 ∗ · · · ∗ ": . (A.1)
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The existence of isomorphism (A.1) implies that the fusion product does not depend on the choice of

constants. Now we prove that it also implies the associativity of the fusion product.

Proposition Appendix A.1. Let #1, . . . , #: , "1, . . . , "< be finite-dimensional graded cyclic g[C]-
modules with cyclic vectors of weights _∨

1
, . . . , _∨

:
, `∨

1
, . . . , `∨<, such that

'(#1, . . . , #: , "1, . . . , "<) ⊗
A

(
_∨ , ∨̀

) C0 ≃ #1 ∗ · · · ∗ #: ∗ "1 ∗ · · · ∗ "<.

Then the following are true:
(a)

'(#1, . . . , #: ) ⊗A(_∨) C0 ≃ #1 ∗ · · · ∗ #: .

(b)

#1 ∗ · · · ∗ #: ∗ "1 ∗ · · · ∗ "< ≃ (#1 ∗ · · · ∗ #: ) ∗ "1 ∗ · · · ∗ "<.

(c)

'
(
'(#1, . . . , #: ) ⊗A(_∨) C0, "1, . . . , "<

)
⊗
A

(
_∨

1
+···+_∨

:
, ∨̀

) C0

≃ '(#1, . . . , #: , "1, . . . , "<) ⊗
A

(
_∨ , ∨̀

) C0.

Proof. We consider pairwise distinct 20, 21, . . . , 2< ∈ C. Let

c = (20, . . . , 20︸      ︷︷      ︸
:

, 21, . . . , 2<) ∈ C
:+<.

Then clearly

'(#1, . . . , #: , "1, . . . , "<) ⊗
A

(
_∨ , ∨̀

) Cc ։

(
'(#1, . . . , #: ) ⊗A(_∨) C(20 ,...,20)

)
⊙

(
'("1, . . . , "<) ⊗

A

(
∨̀
) C(21 ,...,2<)

)

≃
(
'(#1, . . . , #: ) ⊗A(_∨) C0

)
(20) ⊙ ("1 (21) ⊗ · · · ⊗ "< (2<))

≃
(
'(#1, . . . , #: ) ⊗A(_∨) C0

)
(20) ⊗ ("1 (21) ⊗ · · · ⊗ "< (2<)). (A.2)

The last isomorphism holds because of [FeLo, Proposition 1.4].

Because of our assumption on the fibre at 0 of '(#1, . . . , #: , "1, . . . , "<), we conclude that the

fibres at all the points have the same dimension, and the surjection (A.2) implies

:∏

8=1

dim #8 ×

<∏

8=1

dim"8 ≥ dim
(
'(#1, . . . , #: ) ⊗A(_∨) C0

)
×

<∏

8=1

dim"8 ,

:∏

8=1

dim #8 ≥ dim
(
'(#1, . . . , #: ) ⊗A(_∨) C0

)
.

Comparing with formula (4.2), we obtain part (a) of the proposition. We also conclude that formula (A.2)

is an isomorphism.
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Now, as proved in [DF, Proposition 2.11], there is a surjection

#1 ∗ · · · ∗ #: ∗ "1 ∗ · · · ∗ "< ≃ '(#1, . . . , #: , "1, . . . , "<) ⊗
A

(
_∨ , ∨̀

) C0 ։

gr

(
'(#1, . . . , #: , "1, . . . , "<) ⊗

A

(
_∨ , ∨̀

) Cc

)

≃ gr
((
'(#1, . . . , #: ) ⊗A(_∨) C0

)
(20) ⊗ ("1 (21) ⊗ · · · ⊗ "< (2<))

)

≃ (#1 ∗ · · · ∗ #: ) ∗ "1 ∗ · · · ∗ "<.

Comparing the dimensions of both sides, we obtain part (b) of the proposition.

To prove part (c), we first prove that

(
'(#1, . . . , #: ) ⊗A(_∨) C0

)
[I] ≃ '(#1, . . . , #: ) ⊗A(_∨) A

′, (A.3)

where the algebra A′ is the algebra of polynomials in one variable, obtained by gluing all the variables

in the algebra A
(
_∨

)
:

C[I1, . . . , I: ] C[I]

A
(
_∨

)
A′.

I8 ↦→I

Indeed, it follows from part (a) of the proposition that '(#1, . . . , #: , ) is a free A
(
_∨

)
-module,

and hence '(#1, . . . , #: ) ⊗A(_∨) A
′ is a free A′-module. Therefore, we obtain formula (A.3) as an

isomorphism of vector spaces. We note that the fibres of the left- and right-hand sides of formula (A.3)

at a point 2 ∈ C are isomorphic as g[C]-modules to (#1 ∗ · · · ∗ #: ) (2). It follows that both sides of

formula (A.3) are isomorphic as g[C]-modules. In particular, there is a surjection

(
'(#1, . . . , #: ) ⊗A(_∨) C0

)
[I] և '(#1, . . . , #: ).

Using it, we obtain

'
(
'(#1, . . . , #: ) ⊗A(_∨) C0, "1, . . . , "<

)
⊗
A

(
_∨

1
+···+_∨

:
, ∨̀

) C0

≃
((
'(#1, . . . , #: ) ⊗A(_∨) C0

)
[I] ⊙ '("1, . . . , "<)

)
⊗
A

(
_∨

1
+···+_∨

:
, ∨̀

) C0

և ('(#1, . . . , #: ) ⊙ '("1, . . . , "<)) ⊗
A

(
_∨ , ∨̀

) C0

≃ '(#1, . . . , #: , "1, . . . , "<) ⊗
A

(
_∨ , ∨̀

) C0.

Comparing the dimensions of the leftmost and rightmost terms, we obtain part (c) of the proposition. �

Corollary Appendix A.2 (From the proof of Proposition Appendix A.1). Suppose "1, . . . , ": are
cyclic graded g[C] modules such that

'("1, . . . , ": ) ⊗A(_∨) C0 ≃ "1 ∗ · · · ∗ ": .
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Let c = (21, . . . , 21︸      ︷︷      ︸
81

, . . . , 2=, . . . , 2=︸      ︷︷      ︸
8=

) ∈ C: be such that 28 ≠ 2 9 for 8 ≠ 9 . Then

'("1, . . . , ": ) ⊗A(_∨) Cc ≃ ("1 ∗ · · · ∗ "81 ) (21) ∗ · · · ∗
(
"81+···+8=−1+1 ∗ · · · ∗ ":

)
(2=).

Appendix B. Key objects of the paper

Simple Lie algebras:

g – simple Lie algebra of rank A with Cartan decomposition g = n+ ⊕ h ⊕ n−
�sc (resp., �ad) – simply connected (resp., adjoint) complex Lie group of g

U∨
1
, . . . , U∨A – simple roots

l∨
1
, . . . , l∨A – fundamental weights

U1, . . . , UA – simple coroots

l1, . . . , lA – fundamental coweights

% =
⊕A

8=1 Zl8 ⊃
⊕A

8=1 Z≥0l8 – %+ coweight lattice and its dominant cone

%∨ =
⊕A

8=1 Zl
∨

8 ⊃
⊕A

8=1 Z≥0l
∨

8 – %∨+ weight lattice and its dominant cone

] : % → %∨ – linear map from the coweight lattice to the weight lattice corresponding to the minimal

invariant even bilinear form on the coroot lattice (‘level 1)

for _ =
∑A
8=1 <8l8 ∈ %+, we let |_ | =

∑A
8=1 <8

+_∨ – irreducible g-module with highest weight _∨ ∈ %∨+

Current and affine algebras:

g[C] = g ⊗ C[C] – current algebra

,_∨ ,W_∨ (_∨ ∈ %+) – local and global Weyl modules for g[C]

(_ = ×
A
8=1
(<8

– symmetric group attached to _ =
∑A
8=1 <8l8 ∈ %+

⊙ – cyclic product

ĝ – affine Kac–Moody Lie algebra

, ,,0 – finite Weyl group and extended affine Weyl group

�ℓ,_ (ℓ ∈ Z≥1, _ ∈ %+) – level ℓ weight ℓ](_) affine Demazure module

_ = (_1, . . . , _: ) – collection of integral dominant coweights

D
(
ℓ, _

)
≃ ' (� (ℓ, _1), . . . , � (ℓ, _: )) – global Demazure module

Dℓ,_ ≃ D(ℓ, l1, . . . , l1︸       ︷︷       ︸
<1

, . . . , lA , . . . , lA︸       ︷︷       ︸
<A

), where _ =
∑A
8=1 <8l8

A
(
_
)

– highest-weight algebra of D
(
ℓ, _

)

A_ ≃ A(l1, . . . , l1︸       ︷︷       ︸
<1

, . . . , lA , . . . , lA︸       ︷︷       ︸
<A

) – highest-weight algebra of Dℓ,_

"∨ = Hom
A(_)

(
",A

(
_
) )

– A
(
_
)
-dual of an A

(
_
)
-module " .

Geometry:

Gr_ ⊂ P(� (1, _)) – spherical affine Schubert variety

A_ = Spec(A_) – coloured configuration space on the affine line

A(_) = Spec
(
A

(
_
) )

– closure of a diagonal stratification stratum in a coloured configuration space

on the affine line

Λ∨
0

– basic level 1 integrable affine weight

Λ∨
0
,Λ∨

1
, . . . ,Λ∨< – all level 1 integrable affine weights

Gr := Gr�ad = �ad (C((C))) /�ad (C[[C]]) – affine Grassmannian of �ad

Gr ≃ ⊔<
8=0

Gr
(
Λ∨8

)
– decomposition into irreducible components
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GrA: – Beilinson–Drinfeld Grassmannian over A: Gr_ ⊂ GrA: – Beilinson–Drinfeld spherical Schu-

bert variety

Gr(_) – partially symmetrised Beilinson–Drinfeld spherical Schubert variety over A(_)

G(:) – group scheme acting on the Beilinson–Drinfeld Grassmannian

L – very ample determinant line bundle

D
(
ℓ, _

)
– locally free sheaf on A(_) , corresponding to the free A

(
_
)
-module D

(
ℓ, _

)
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